
1

9/19/2019

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Bubble Sort

CS 241

Data Organization using C

Bubble Sort Algorithm

◼ Given a list of unsorted numbers.

◼ Each pass consists of:

1. Starting with the first number in the list.

2. Walking through the list and comparing each number

with the number that is one position father down the list.

3. In each comparison, if the first number is greater than

the second, then swap the two numbers.

◼ Continue making passes until a full pass is completed

without making any swaps.

◼ Optimization: After m passes it is guaranteed that the last m

numbers in the list will be sorted. Therefore, each pass
need not compare the last m numbers.

2

1

2

mailto:joel@unm.edu
http://cs.unm.edu/~joel/

2

Bubble Sort – Pass 1

Pass 1

(3 2 7 5 1 9 4)

(2 3 7 5 1 9 4)

(2 3 7 5 1 9 4)

(2 3 5 7 1 9 4)

(2 3 5 1 7 9 4)

(2 3 5 1 7 9 4)

(2 3 5 1 7 4 9)

Original Numbers

{3, 2, 7, 5, 1, 9, 4}

Each pass consists of

walking through the list

and comparing each

number with the

number that is one

position father down

the list.

In each comparison, if the

first number is greater

than the second, then

swap.
3

Bubble Sort – Pass 2

Pass 2

(2 3 5 1 7 4 9)

(2 3 5 1 7 4 9)

(2 3 5 1 7 4 9)

(2 3 1 5 7 4 9)

(2 3 1 5 7 4 9)

(2 3 1 5 4 7 9)

After the first pass, the

largest number will have

been moved to the end

of the list.

Therefore, in pass 2,

only the first 6 numbers

need to be compared.

4

3

4

3

Bubble Sort – Pass 3

Pass 3

(2 3 1 5 4 7 9)

(2 3 1 5 4 7 9)

(2 1 3 5 4 7 9)

(2 1 3 5 4 7 9)

(2 1 3 4 5 7 9)

After the second pass,

the second largest

number will have been

moved to the second to

last position in the list.

Therefore, in pass 3,

only the first 5 numbers

need to be compared.

5

Bubble Sort – Pass 4

Pass 4

(2 1 3 4 5 7 9)

(1 2 3 4 5 7 9)

(1 2 3 4 5 7 9)

(1 2 3 4 5 7 9)

After the first step of

pass 4, the list is

completely sorted;

However, the algorithm

does not “know” the list

is sorted until a full pass

is made with no

swapping.

6

5

6

4

Bubble Sort – Pass 5

Pass 5

(1 2 3 4 5 7 9)

(1 2 3 4 5 7 9)

(1 2 3 4 5 7 9)

After 4 passes, the last

4 numbers are sorted,

so only the first 3

numbers need to be

compared.

Nothing is swapped in

pass 5. Therefore, the

list is fully sorted.

7

Bubble Sort: Performance

◼ Bubble sort has worst-case and average complexity

both О(n²), where n is the number of items being sorted.

◼ There exist many sorting algorithms with the

substantially better worst-case or average complexity of

O(n log n).

◼ For example, for n = 1 million,
◼ n² = 1,000,000,000,000

◼ n log n = 13,815,511

◼ Therefore bubble sort is not a practical sorting algorithm

when n is large, except in rare specific applications

where the array is known to be very close to being

initially sorted.

8

7

8

5

Bubble Sort on an int Array

1) void bubbleSort(int array[], int n)

2) { int i, swap = 1;

3)

4) while(swap)

5) { swap = 0;

6) for (i=0; i<n-1; i++)

7) {

8) if (array[i] > array[i+1])

9) { int tmp = array[i];

10) array[i] = array[i+1];

11) array[i+1] = tmp;

12) swap = 1;

13) }

14) }

15) }

16)}9

Bubble Sort: main(...)

void main(void)

{

int numList[] = {3, 2, 7, 5, 1, 9, 4};

int n = sizeof(numList)/sizeof(int);

bubbleSort(numList, n);

int i;

for (i=0; i<7; i++)

{

printf("%d ", numList[i]); //1 2 3 4 5 7 9

}

printf("\n");

}
10

9

10

6

Use of sizeof with Arrays

#include <stdio.h>

void foo(int array[])

{

int n = sizeof(array);

printf("foo: sizeof(array)=%d\n", n);

}

void main(void)

{

int array[] = {3, 2, 7, 5, 1};

int n = sizeof(array);

printf("main: sizeof(array)=%d\n", n);

foo(array);

}

11

Output:
main: sizeof(array)=20

foo: sizeof(array)=8

Efficiency can be improved by adding the statement
n--; between which two lines of code?

a) 2 & 3 b) 4 & 5 c) 6 & 7

d) 12 & 13 e) 13 & 1412

1. void bubbleSort(int array[], int n)

2. { int i, swap = 1;

3. while(swap)

4. { swap = 0;

5. for (i=0; i<n-1; i++)

6. {

7. if (array[i] > array[i+1])

8. { int tmp = array[i];

9. array[i] = array[i+1];

10. array[i+1] = tmp;

11. swap = 1;

12. }

13. }

14. }

15.}

Quiz: Bubble Sort

11

12

