
11/28/2016

CS 259
Computer Programming

Fundamentals

 Diffusion-Limited Aggregation

Instructor:

 Joel Castellanos

 e-mail: joel@unm.edu

 Web: http://cs.unm.edu/~joel/

mailto:joel@unm.edu
http://cs.unm.edu/~joel/
http://cs.unm.edu/~joel/

2

Diffusion-Limited Aggregation

 Start with an immobile seed in a 2D, square grid.

 A walker is then launched from a random

position far away and is allowed to diffuse by

moving one grid space in a random direction

each time step.

 If the walker touches the seed, it is immobilized

instantly and becomes part of the aggregate.

 Similar walkers are launched one-by-one and

each of them stops upon hitting the cluster.

 Try imagining what the result of this process....

2D Diffusion-Limited Aggregation

3

4

3D Diffusion-Limited Aggregation

By Mark Stock By Simon Chorley

Pyrolusite: Manganese Dioxide, MnO2

5

Photo: wanderflechten of

Flickr.com under Creative

Commons license

Photo: Professor George R.

Rossman, Dept Geology, Caltech

6

Manganese Dioxide Dendrites on Limestone

Photograph by Mark A. Wilson (Department of Geology, The College of Wooster).

7

Copper Crystal

Copper Crystallization from Copper Sulfate Solution

DLA: (1 of 2)

 Create DLA_yourName.java that implements Diffusion-

Limited Aggregation on a 2D, 800x800 grid of pixel.

 Initialize the grid with one seed crystal in an interesting spot.

Also create n particles in random locations along the bottom.

 Each timestep, every non-crystalized particle moves, with

equal probability, north, south, east or west by one pixel.

 If a particle moves out of the window, then reset its location,

to a random spot along the bottom.

8

Lab 4 DLA: (2 of 2)

 If a particle moves adjacent (by whatever definition you were

assigned) to a crystalized particle, then the moving particle

crystalizes:

a) Draw it in a color determined by whatever rules you have

coloring.

b) Sets it x and y values to a random location along the bottom.

 Moving particles may pass through each other.

 All the colors must look good together.

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

int[][] grid = new int[15][9]

grid[2][1] = 1;

grid[1][1] = 5;

Creating and Using a 2D Array

Individualized Assignments

color by age

color by

neighbor count

within radius of

2

Stop on edge (N, S, E, W) Stewart Moses

Stop on corner (NW, NE, SW, SW) Ryan Rafael

Stop on edge or corner (all 8 directions) tomas, Winston Jacob, bugra

Layers (6 faces) Color by depth Zeke, Ben

Layers (26 faces and edges and corners)

Color Depth Jay, Bryant

Automatic change of most likly

face/edge/corner Jarett

11

Stop on edge or corner (all 8 directions)

12

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

2,5

5,0

4,4

Stop on edge or corner (all 8 directions)

13

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0

4 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0

2,5

5,0

4,5

private static final int[] dx = {1, 0, -1, 0};

private static final int[] dy = {0, 1, 0, -1};

Stop on edge

14

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 8 0 0 0

3 0 0 0 1 8 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

