CS 259 Computer Programming Fundamentals

Diffusion-Limited Aggregation

Instructor:
Joel Castellanos
e-mail: joel@unm.edu
Web: http://cs.unm.edu/~joel/

Diffusion-Limited Aggregation

- Start with an immobile seed in a 2D, square grid.
- A walker is then launched from a random position far away and is allowed to diffuse by moving one grid space in a random direction each time step.
■ If the walker touches the seed, it is immobilized instantly and becomes part of the aggregate.
- Similar walkers are launched one-by-one and each of them stops upon hitting the cluster.
- Try imagining what the result of this process....

2D Diffusion-Limited Aggregation

3D Diffusion-Limited Aggregation

By Mark Stock

By Simon Chorley

Pyrolusite: Manganese Dioxide, MnO_{2}

Photo: Professor George R. Rossman, Dept Geology, Caltech

Photo: wanderflechten of Flickr.com under Creative Commons license

Manganese Dioxide Dendrites on Limestone

Copper Crystal

, Copper Crystallization from Copper Sulfate Solution

DLA: (1 of 2)

- Create DLA_yourName.java that implements DiffusionLimited Aggregation on a 2D, 800×800 grid of pixel.
- Initialize the grid with one seed crystal in an interesting spot. Also create n particles in random locations along the bottom.
- Each timestep, every non-crystalized particle moves, with equal probability, north, south, east or west by one pixel.
- If a particle moves out of the window, then reset its location, to a random spot along the bottom.

Lab 4 DLA: (2 of 2)

- If a particle moves adjacent (by whatever definition you were assigned) to a crystalized particle, then the moving particle crystalizes:
a) Draw it in a color determined by whatever rules you have coloring.
b) Sets it x and y values to a random location along the bottom.
- Moving particles may pass through each other.
- All the colors must look good together.

Creating and Using a 2D Array

int[][] grid = new int[15][9]
grid[2][1] = 1;
grid[1][1] = 5;

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	5	1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Individualized Assignments

	color by age	color by neighbor count within radius of 2
Stop on edge (N, S, E, W)	Stewart	Moses
Stop on corner (NW, NE, SW, SW)	Ryan	Rafael
Stop on edge or corner (all 8 directions)	tomas, Winston	Jacob, bugra
Layers (6 faces) Color by depth	Zek	e, Ben
Layers (26 faces and edges and corners) Color Depth	Jay, Bryant	
Automatic change of most likly face/edge/corner	Jarett	

Stop on edge or corner (all 8 directions)

	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	2,5
2	0	0	0	0	0	0	0	5,0
3	0	0	0	1	0	0	0	
4	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	

Stop on edge or corner (all 8 directions)

	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	2,5
2	0	0	0	0	0	0	0	5,0
3	0	0	0	1	0	0	0	
4	0	0	0	0	1	0	0	
5	0	0	0	0	0	0	0	

private static final int[] $d x=\{1,0,-1,0\}$; private static final int[] $d y=\{0,1,0,-1\}$;

Stop on edge

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	0	0	8	0	0	0
3	0	0	0	1	8	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0

