
Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

 Doom as an Interface for Process Management

Dennis Chao
Computer Science Department

University of New Mexico
Albuquerque, NM 87131 USA

+1 505 277 5957
dlchao@cs.unm.edu

ABSTRACT
This paper explores a novel interface to a system adminis-
tration task. Instead of creating an interface de novo for the
task, the author modified a popular computer game, Doom,
to perform useful work. The game was chosen for its appeal
to the target audience of system administrators. The imple-
mentation described is not a mature application, but it illus-
trates important points about user interfaces and our relation-
ship with computers. The application relies on a computer
game vernacular rather than the simulations of physical re-
ality found in typical navigable virtual environments. Using
a computer game vocabulary may broaden an application’s
audience by providing an intuitive environment for children
and non-technical users. In addition, the application high-
lights the adversarial relationships that exist in a computer
and suggests a new resource allocation scheme.

Keywords
Cyberspace, Doom, first-person shooter, games, metaphors,
operating systems, Post-Modernism, 3D user interfaces, ver-
nacular, video games, visualization

INTRODUCTION
Those who use computers inevitably encounter some of the
metaphors that allow for easier assimilation of abstract con-
cepts. The desktop metaphor is so pervasive that most users
hardly notice it [9], but the richness of the science-fiction ver-
sion of cyberspace is largely confined to research laboratories
and Hollywood. The application described in this paper is an
initial step towards bringing a richer environment to personal
computers.

There is a large gap between how we think about perform-
ing actions on our computers and how we actually perform
them. For example, people who need to manage processes
on a UNIX system think about the “daemons” spawning chil-
dren that may need to be “killed” or “blown away.” This vio-
lent language suggests a metaphor for process management:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCHI’01, March 31-April 4, 2001, Seattle, WA, USA.
Copyright 2001 ACM 1-58113-327-8/01/0003. . . $5.00.

Figure 1: The PSDoom interface.

a first-person shooter game. Each process can be represented
as a monster, and interacting with the monsters would af-
fect the corresponding processes. The implementation of this
metaphor and the great interest it generated reveal interesting
insights about our computers and our society.

IMPLEMENTATION

The Doom process manager (PSDoom) is a modification of
the game Doom [8] that displays representations of the pro-
cesses running on a machine. Rather than using standard
text-mode UNIX tools to view and manipulate processes, one
surveys and shoots at a room full of bloodthirsty mutants, as
shown in Figure 1. When a user starts PSDoom, currently
running processes are instantiated as “process monsters” in a
single room in a “dungeon.” These monsters have their asso-
ciated process’ name and id printed on them. The program
periodically polls the operating system to add newly-created
processes to the game. The user may choose to view the pro-
cesses from a balcony above the room, as shown in Figure 2,
or to enter the room to interact with them. If the user inflicts
a wound upon a process monster, the corresponding process’
priority is lowered to give it fewer CPU cycles. When the
monster accumulates enough damage and is killed, the asso-
ciated process is also killed.

PSDoom inherits the rest of its behavior from the original
Doom, and play is not noticeably affected. Monsters attempt
to attack the player and each other. The hostility of the mon-

152

CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

Figure 2: The view from the balcony in PSDoom.

sters and the user’s limited ammunition are disincentives to
attack them. Conflict among process monsters could help
regulate heavily-utilized systems by making crowded rooms
have higher mortality rates. Killing random processes on an
extremely loaded system is not an uncommon operating sys-
tem strategy. When the user is “killed,” he or she will be
healed and placed at the entrance of the dungeon with a pis-
tol and a modest amount of ammunition.

Doom was chosen for this project for two reasons. The first is
that it is a classic game, familiar to most system administra-
tors. The second is that its source code was recently released
under the GNU General Public License (GPL) [13]. This li-
cense not only allows the author to modify the source code,
but it guarantees that future derivatives of the author’s work
will be available to the public.

RESULTS
PSDoom received a surprisingly large reaction even though
it was not publicized [24, 26, 4, 17]. Less than a week af-
ter the initial version of the code was written, the project’s
website was attracting tens of thousands of visitors per day.
Approximately 800 responses were e-mailed to the author or
www.slashdot.org within the first two months. Of these re-
sponses 27% praised the project, 23% offered suggestions
for improving PSDoom, 10% found the project funny, 10%
reported technical problems, 8% related PSDoom to science
fiction or to the future of interfaces, 1% disliked the project,
and 0.6% were frightened by its implications.

Users found the interface intuitive. One can quickly assess
machine load by seeing how crowded a room is. The com-
mand line methods to slow down and kill processes are dif-
ferent, while PSDoom unifies them – shooting a monster
with a small weapon slows down or “wounds” the corre-
sponding process, and repeated firings or the use of a large
weapon kills the process, as shown in Figure 3. The violence
inflicted upon the monsters reflects the violent terminology
of UNIX commands.

A significant problem with the current implementation of PS-

Figure 3: Killing a process in PSDoom.

Doom is that monsters are much more likely to attack each
other than expected. This causes many windows to mysteri-
ously disappear as the program runs. For the same reason,
the computer is prone to crashing because certain processes
are vital to the computer’s operation and should not be killed.

Many users want a larger variety of monsters in PSDoom. If
larger or more important processes were represented as larger
monsters, it would be easier to assess the machine load at
a glance. If these monsters were also more powerful, they
would be less likely to be killed by accident and be more able
to defend themselves against the player. Several users made
similar suggestions for altering the appearance of monsters
based on certain attributes. Processes that take more memory
could appear wider, while those that take more CPU time
can appear taller. Sleeping processes could be represented
by napping monsters.

To address some of these requests, I added code to make
some of the more important processes “Barons of Hell,” the
largest monsters in the game. Unfortunately, they had a ten-
dency to quickly kill all of the other processes, and the user
could not interact with processes for more than a few seconds
before his or her avatar is killed. Making the monsters less
aggressive would allow the user to navigate among processes
more easily as well as make the computer more stable.

DISCUSSION
The enormous interest that PSDoom generated naturally raises
the question of why people find it so compelling. Perhaps
even more interesting than the application itself is the set of
issues that it raises.

Cyberspace Environments
In 1981, Vernor Vinge introduced the concept of cyberspace
to the reading public in his novella True Names [30], in which
characters could plug into a virtual universe where their ac-
tions in a fantasy world mapped to performing sophisticated
actions on the network. For example, navigating a treacher-
ous path through a swamp in cyberspace could gain the user
entry into a high-security network in the real world.

153

Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

The use of a cyberspace environment can make performing
complex tasks easy if the mapping between the actions in the
virtual world and their effects in the real world is intuitive.
Communication among users may be facilitated because in-
teracting with a group of avatars can be made as natural as
interacting with a group of people. Doom places the user
into a 3D first-person perspective environment that rapidly
engages the senses. Its interface is particularly suitable for
the task of process management because many system ad-
ministrators are familiar with the game and it realizes the
common metaphor of killing processes.

In PSDoom, actions that affect the processes take time and
effort. This philosophy runs counter to intuition, which tells
us to make everything as easy to do as possible. In a com-
mand line interface, all actions take approximately the same
amount of work, making it just as easy to erase all of one’s
files as it is to remove a single one. In this cyberspace envi-
ronment, the players are not omnipotent, so actions take an
amount of effort proportional to their effects. People with
different levels of authority can be given weapons of differ-
ent strengths. An experienced system administrator can be
given a large gun, while the beginner may be forced to deal
with monsters with his or her bare hands. It would take a
foolhardy player to attack a room full of monsters, just as
a newbie should not kill a bunch of important processes. A
more experienced sysadmin would have time to stop a novice
who is trying to kill the wrong process.

The Software Vernacular

Current applications often do not leverage the rich vocabu-
lary of contemporary mass media and video games. Their
user interfaces are usually austere, reflecting the limitations
of the machines of two decades ago. Our rectilinear desktops
feature a Machine Aesthetic, not a human one. There have
been attempts to create friendlier interfaces based on familiar
physical settings (e.g. General Magic’s MagicCap [21] (Fig-
ure 4) and Microsoft Bob [2] (Figure 5)), but they have often
been derided as condescending or confining [12]. The failure
of these more humane interfaces may be due to the denial
of the computer world’s own vocabulary that is distinct from
that of everyday life’s. In many ways, computer games have
become the vernacular of the computer world because they
are what children and many non-technical adults use.

Interfaces that adhere strictly to a metaphor based on the
physical world are in danger of becoming simulations of
reality instead of useful analogies [18]. One problem with
simulations is that one must closely adhere to all the restric-
tions of the real system. For example, in Microsoft Bob it is
disturbing to see pieces of furniture hovering over the floor
in apparent violation of gravity. In contrast, it is more or
less natural to have an arbitrarily large number of windows
open on a computer desktop, which is a less-literal, and thus
less-confining, metaphor. Cartoon-like animations have been
suggested as a compromise between straightforward repre-

Figure 4: General Magic’s MagicCap.

Figure 5: Microsoft Bob.

sentation and artistic expression [6]. The idioms of cartoons
form an effective vocabulary for concise visual communica-
tion with the user, but cartoons lack a crucial element of user
interfaces: interactivity. Computer games have successfully
integrated concise, stylized visual representations and feed-
back from the user.

The desktop metaphor derives much of its power from the
fact that users were traditionally office workers who spent
much of their days at actual desks [12, 20]. However, in re-
cent years computers have entered the home, and the current
generation of users is gaining increased exposure to comput-
ers that are not merely office appliances. Children are now
growing up on MTV and Nintendo and are therefore more lit-
erate in the languages of video games and mass media than
in that of the traditional office milieu. Designers should con-
sider taking advantage of the vocabulary of popular culture
instead of trapping the next generation in dioramas of subur-
ban homes and offices.

Like the Post-Modern architects, I would like to blur the
distinction between “high” and “low” culture [29, 3] and

154

CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

bring popular culture into “serious” computer applications.
By adding familiar cultural elements to our interfaces, we
can make them appealing to the common user and children,
the next generation of users. These elements would bring a
sense of playfulness and ease that are usually absent from our
button- and toolbar- laden windows.

Several attempts have been made to introduce game-like el-
ements to the desktop, including the recent UBUBU Uni-
verse [27]. UBUBU replaces the hyperlinks and folders on
the desktop with navigable planets in a solar system. While
the concept is superficially similar to Bob, the choice of fly-
ing through space rather than walking around a house may
engage the general public instead of being perceived as pa-
tronizing. Companies like UBUBU that design products for
web-surfers are using playful game-like designs to tap into
the lucrative demographic of computer game players.

An Adversarial Operating System
PSDoom presents an unusual perspective on our interactions
with computer programs. It is unique in that it allows the
processes to fight each other and the user. Thinking of our
computing environments as being adversarial can be enlight-
ening. Processes are competing for machine resources, such
as memory and CPU time, and PSDoom makes this compe-
tition explicit. The user may want to kill processes to free
needed resources, so from the process’s perspective, the user
may be its greatest threat. The processes are given the ability
to shoot back and defend themselves.

Operating systems attempt to satisfy users and processes
through fairness policies for resource allocation. An adver-
sarial operating system would invert the responsibility for
sharing resources by forcing the users and processes to com-
pete directly with each other. It would simply maintain a
stable arena in which processes could compete. An offensive
and defensive arms race could ensue, but the system would
not necessarily degrade to an hostile, anarchic environment.
Under the right conditions, processes will cooperate rather
than compete [1]. They would find it in their best interests to
only attack when necessary because unduly belligerent pro-
cesses would become injured in frequent conflicts and die.

Violence in Computer Games
It is unfortunate, especially in the light of recent schoolyard
tragedies, that first-person shooters are so popular. Even
though studies on the effects of violent media on youth are
not conclusive [11], interface designers must proceed with
caution when adding potentially aggressive aspects to inter-
faces. One must take into consideration the age of the ex-
pected user base and the possible use of non-aggressive al-
ternatives.

Lucasfilm’s Habitat [14], an early multi-user virtual envi-
ronment, faced these ethical dilemmas with the introduction
of “weapons.” These weapons could “kill” avatars, though
death in Habitat is no more serious than death in Doom – the

Figure 6: The UNIX top application.

avatar loses possession of the items he or she was carrying
and is sent home. About half the players enjoyed this aspect
of the environment while the rest were opposed to it [23]. To
stem anarchy, the players established their own churches and
laws. In Ultima Online [28], an online fantasy environment,
player-killing is an integral part of gameplay for some, but
many value the complex social interactions with their fellow
players even more.

We have seen violent multi-user games evolve into peace-
ful virtual communities. Production values play a role in the
suspension of disbelief essential for this to happen [19], but
even text-based MUDs, which originated as hack-and-slash
games, have become chatrooms [5]. The key elements seem
to be the rich interactions with other players and the persis-
tence of identity over multiple sessions. These seminal ex-
periments in multi-user virtual worlds are showing us how to
moderate violence with a sense of community.

RELATED WORK

Visualizing Processes

The standard UNIX application to view processes is top (Fig-
ure 6). It is a dynamic version of ps, a command that simply
lists the running processes. As implied by its name, top dis-
plays the “top” CPU-users, refreshing at regular intervals. Its
interface is primitive. The user may not interact directly with
the process list – an instruction and process number must be
entered, much like on the command line. Another limitation
is that the number of processes displayed is limited by the
number of lines on the display (typically around twenty to
thirty). There is now a plethora of alternatives to top that
allow more interaction with the list, such as clicking on the
entries. These contribute obvious graphical additions to a
process display and add little conceptually.

LavaPS [16] is a more abstract way to view processes. It
displays processes as colored blobs in a window, using the
size, color, and location of shapes in the window to repre-
sent certain metrics of the processes, as shown in Figure 7.
More explicit information can be shown on demand. Like

155

Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

Figure 7: Heidemann’s LavaPS process visualization ap-
plication.

PSDoom, LavaPS represents processes as physical entities
with no quantitative information. However, the application
is inspired by “calm technology” [31] and is therefore in-
tentionally passive. Its main purpose is to display the state
of processes, and manipulating the actual processes can be
done through a menu.

Game-like Interfaces
The CHI 97 Workshop on Game Design and HCI suggests
that computer game design has much to offer to the HCI com-
munity, but little has been done so far [7]. A popular area for
game-like interfaces is software for children. Such products
range from educational games to tools that encourage cre-
ativity, such as authoring tools. It is difficult to make direct
comparisons between software for children and software for
adults because the expectations we have for the intended au-
diences are so different. Designers readily use entertaining
interfaces to keep children engaged [15]. Even in educational
software, in which the ultimate goal is to teach the user, the
proximate goal is to keep the child engaged, or else the ul-
timate goal will never be reached. In application software
for adults, the burden of staying focused is on the user. The
measurement for success is not how enjoyable the software
is but rather how effectively it accomplishes a task.

The contrast between software for these two audiences high-
lights the difference between enjoyment and ergonomics. A
piece of children’s software must look good and be fun, while
software for adults must work. These are not necessarily con-
flicting goals, as an interface that is difficult to use will also
adversely affect the user’s enjoyment. However, for “seri-
ous” software, concessions to make a program more enjoy-
able might not be implemented because they can not be jus-
tified on ergonomic grounds.

For an application that helps the user monitor the state of a
system, like PSDoom, the case for making user interfaces
more engaging is compelling. Keeping the user engaged is
as important as making the tasks easy to perform. In such
cases, the use of randomness in a program, which adversely

affects ease-of-use, may be desirable because it can make the
task more enjoyable [22].

The use of game-like interfaces need not harm the perfor-
mance of applications. In fact, it can reduce the learning
curve. We would not need to sacrifice power – games have
amazingly complex maneuvers that skilled operators can use
in addition to their simple repertoires for novices.

FUTURE WORK
It would not be difficult to remedy the major source of in-
stability of PSDoom, the belligerence of the monsters. The
monsters currently have no sense of self-preservation. They
will continue to attack until they or their targets are elimi-
nated. One could simply make the monsters only attack when
provoked and more likely to run away rather than fight to the
end.

It would be natural to extend the program to networked envi-
ronments. In fact, many internet search engines have already
classified PSDoom as a network tool in anticipation of this
feature. A networked version would allow multiple users to
communicate verbally as well as work cooperatively [10].
Turning this single-player game environment into an online
world could reduce the level of violence by increasing the
sense of community.

By selecting only certain types of processes to appear in the
dungeon, one can change the nature of PSDoom. For in-
stance a filter that only allows suspicious or possibly cor-
rupted processes [25] to appear would turn PSDoom into a
security program. Alternatively, one can choose to display
only large users of memory or bandwidth in order to allevi-
ate pressure on these resources.

CONCLUSION
PSDoom presents a novel approach to process visualization
and manipulation that illuminates many aspects of our rela-
tionship with computers. The popularity of this early pro-
totype demonstrates that interfaces inspired by video games
and science fiction are eagerly awaited by a large audience.
Computer games are a rich and often overlooked source of
technology and metaphors for user interfaces that will only
increase in importance as children, the next generation of
users, grow up with computers. Our computer environments
are rapidly becoming an anachronism as people who have
never handled actual file folders are forced to use their virtual
counterparts. The process of changing interface metaphors
will expose previously-obscured facets of the underlying ap-
plications, such as the genuinely adversarial interactions in
our operating systems. Interested programmers can explore
and modify the code for PSDoom, which is available at
http://www.cs.unm.edu/�dlchao/flake/doom.

ACKNOWLEDGMENTS
I would like to thank the Adaptive Computation Group at
UNM for providing a supportive environment in which one
can claim one is doing research while playing Doom for

154156

CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

two days. The offhand remarks of Anil Somayaji provided
the initial inspiration for the project. David Ackley, Ben
Bederson, Patrik D’haeseleer, Stephanie Forrest, and Jason
Stewart provided helpful comments that improved this paper.
This work was partially supported by the National Science
Foundation (grants NSF-9553623, CDA-9503064, and IRI-
9711199) and the Office of Naval Research (grant N00014-
99-1-0417).

REFERENCES
1. Axelrod, R. The Evolution of Cooperation. Basic Books,

New York, 1984.

2. Bob. Microsoft Corporation, Seattle WA, 1995.

3. Brand, S. How Buildings Learn: What Happens After
They’re Built. Viking Penguin, New York, 1994.

4. Brockmeier, J. A SysAdmin’s Dream. Linux Magazine
2, 1 (January 2000), 76.

5. Bruckman, A. MOOSE Crossing: Construction, Com-
munity, and Learning in a Networked Virtual World for
Kids. MIT Media Lab, Cambridge MA, 1997.

6. Chang, B.W., and Ungar, D. Animation: From Cartoons
to the User Interface. UIST ’93 Conference Proceedings
(Atlanta GA, November 1993), ACM Press, 45–55.

7. Cherny, L., Clanton, C., and Ostrom, E. Entertainment is
a Human Factor: A CHI 97 Workshop on Game Design
and HCI. SIGCHI Bulletin 29, 4 (October 1997), 50–54.

8. Doom. Id Software, Mesquite TX, 1993.

9. Erickson, T. Working With Interface Metaphors. The Art
of Human-Computer Interface Design, edited by Brenda
Laurel. Addison-Wesley Publishing Company, Inc., New
York, 1990.

10. Evard, R. Collaborative Networked Communication:
MUDs as Systems Tools. Proceedings of the Seventh
Systems Administration Conference (LISA VII) (Monter-
rey CA, November 1993), USENIX, 1–8.

11. The Federal Trade Commission. Marketing Violent En-
tertainment To Children: A Review Of Self-Regulation
And Industry Practices In The Motion Picture, Music
Recording & Electronic Game Industries. Washington:
Government Printing Office, 2000.

12. Gentner, D., and Nielson, J. The Anti-Mac Interface.
Communications of the ACM 39, 8 (August 1996), 70–
82.

13. GNU General Public License. Free Software Founda-
tion, Inc., Boston MA, 1991.

14. Habitat. Lucasfilm Ltd, San Rafael CA, 1986.

15. Hakansson, J. Lessons Learned From Kids: One Devel-
oper’s Point of View. The Art of Human-Computer Inter-
face Design, edited by Brenda Laurel. Addison-Wesley
Publishing Company, Inc., New York, 1990.

16. Heidemann, J. LavaPS. 1998. Available at
http://www.isi.edu/�johnh/SOFTWARE/LAVAPS/.

17. Hwang, F. Commando Line Interface. Wired 8, 2 (Febru-
ary 2000), 52.

18. Johnson, S. Interface Culture. Harper, San Francisco
CA, 1997.

19. Kim, A.J. Ultima Online: An Interactive Virtual World
with Multiple Personalities. SIGGRAPH Bulletin 32, 2
(May 1998), 15–19.

20. Langford, D., and Jones, C. The Kitchen Interface - A
Lateral Approach to GUI. SIGCHI Bulletin 26, 2 (April
1994), 41–45.

21. MagicCap. General Magic, Sunnyvale CA, 1994.

22. Malone, T.W. Toward a theory of intrinsically motivating
instruction. Cognitive Science 4, 333–370.

23. Morningstar, C., and Farmer, F.R. The Lessons of Lu-
casfilm’s Habitat. Cyberspace: First Steps, edited by
Michael Benedikt. MIT Press, Cambridge MA, 1990,
273-301.

24. Schmidt, J. Systemverwaltung nach Hackerart. c’t:
Magazin für Computer Technik, 23 (1999), 68.

25. Somayaji, A. Automated Response Using System-Call
Delays. 9th USENIX Security Symposium (Denver CO,
August 2000), ACM Press, 185-197.

26. Systemadministration mit dem Colt. IX: Magazin
für professionelle Informationstechnik, 12 (December
1999), 44.

27. UBUBU Universe. UBUBU, Inc., San Francisco CA,
2000. Available at http://www.ububu.com/.

28. Ultima Online. Electronic Arts, Inc., Redwood City CA,
1997.

29. Venturi, R., Scott Brown, D., and Izenour, S. Learning
From Las Vegas. The MIT Press, Cambridge MA, 1972.

30. Vinge, V. True Names, in Binary Star #5, edited by
James R. Frenkel. Dell, New York, 1981.

31. Weiser, M., and Brown, J.S. Designing Calm Technol-
ogy. PowerGrid Journal 1.01 (July 1996).

157

