
tive designs. We repeat: Design should be
left to designers!” [1].

To further clarify, let’s take an example
of one of the concepts listed above—pace.
We’ve defined pace in the past as “the
rate at which players experience new
challenges and novel game details.”[2].
This is a very high-level definition, but
spans across most, if not all, game genres.
The way that a game designer will
address pace is going to vary widely
depending on the genre, their vision, and
the experience they want to create. Let’s
look at two examples.

1. A tennis game. Pace can manifest itself
in a number of ways, including the length
and number of the cut scenes (or short
movie clips or replays) that occur between
points and between games. Pace can also
manifest itself with ball and player move-
ment speed or the mechanics for hitting
the ball. Commercially successful tennis
games have varied the pace on both of
these dimensions. Therefore, before we
know which aspect of pace to focus on,
we need to understand the vision of the
game designer. If the vision is a frenetic,
high-action packed game (as opposed to a
simulation), then we may focus on usabil-
ity and gameplay issues that help speed
up the action. Can users get right in and
start playing? Do users really want to see
a replay after every point? Do users want
to see animations of their players walking
back and forth between the sides of the
court (as in real tennis)?

2. A First-Person-Shooter game (FPS).
Pace can be affected in several ways in an
FPS, such as the amount of chaotic action in
the game or amount of tension that may be
experienced. If the designer wants to create
a gameplay experience that is pure adrena-
line-driving action, pace will be affected if
the intended chaotic action was actually
perceived as being chaotic, or if the behav-
ior that triggers the chaos is not achievable
because the game objectives were not clear.
Alternatively, if the design intention was
more about stealth and tension, then pace

will be affected very differently.

So what methods do we use to begin to
address these kinds of issues? It depends
on what exactly we are trying to achieve. A
think-out-loud usability technique will be
very useful to determine whether or not
users are able to figure out how to skip
scenes in the tennis game. Large sample
surveys would be good for measuring the
perceived “chaos” in a shooter game. The
point is, we must define the problem before
we can discuss the appropriate methodolo-
gies, and that starting point, the identifica-
tion of objectives, most often comes from
the vision of the game designer.

REFERENCES

1. Overbeeke, K., Djajadiningrat, T., Hummels, C.,
Wensveen, S., and Frens, J. (2003). Let’s make things
Engaging. In M. Blythe, A. Monk, K. Overbeeke, and P.
Wright (eds.), Funology: From Usability to Enjoyment (pp.
7-17). Netherlands, Kluwer Academic Publishers.

2. Pagulayan, R. J., Keeker, K., Wixon, D., Romero, R. L.,
& Fuller, T. (2003). User-centered design in games. In
J. A. Jacko & A. Sears (Eds.), The Human-Computer
Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications (pp. 883-906). Mahwah, NJ:
Lawrence Erlbaum Associates.

3. Pagulayan, R., Steury, K., Fulton, B., and Romero, R.
(2003). Designing for Fun: User-Testing Case Studies.
In M. Blythe, A. Monk, K. Overbeeke, and P. Wright
(eds.), Funology: From Usability to Enjoyment (pp. 137-
150). Netherlands, Kluwer Academic Publishers.

© ACM 1072-5220/04/0900 $5.00

Computer
Games as
Interfaces

By Dennis L. Chao
Department of Computer Science
University of New Mexico
dlchao@cs.unm.edu

We can learn a lot from computer games.
While most application software can be a
source of confusion and frustration for
users, people consistently find enjoyment
in their games. One way to make every-
day software more fun is to incorporate

game-like elements, such as action, narra-
tive, and interactive graphics. The prob-
lem with this approach is that the individ-
ual features that make a game entertain-
ing might not work out of context. For
example, a cartoon character stranded in a
serious application is not only incongru-
ous, but it could feel condescending to the
user. So why not use a complete game as
a front-end for a “serious” application?
Would this hybrid be as fun to use as the
original game? To answer these questions,
I created PSDoom, a system administra-
tion tool that takes its interface from the
popular first-person shooter Doom.

From Doom to PSDoom

I wanted to add an interface to the stan-
dard set of tools used to manage pro-
grams running on a computer, such as
the Windows task manager (Figure 1).
These provide data about running pro-
grams and allow the user to terminate
those that have stalled or crashed. What
is interesting about this mundane task is
the vivid language used to describe it.
People talk about “killing” programs or
“blowing them away,” “fighting for
resources,” and letting “daemons
spawn.” I chose to borrow the interface of
Doom to reflect this aggressive language.

In 1999, Id Software released Doom’s
source code, making it easy for me to turn
Doom into the program manager
PSDoom. I added code to create one mon-
ster in the Doom environment for each
program running on the user’s computer.
Each of these new monsters is labeled
with the name of its associated program
(Figure 2). For example, as I write this arti-
cle, I can see zombies representing my
word processor, a Web browser, and sev-
eral terminal windows waiting patiently
for me in a large room. PSDoom allows the
user to affect the running programs by
inflicting damage on the monsters. A light
wound lowers the corresponding pro-
gram’s priority to give it fewer CPU
cycles, causing the program to run more
slowly on the computer. If the monster is
killed, the associated program is terminat-

: / 71i n t e r a c t i o n s / s e p t e m b e r + o c t o b e r 2 0 0 4

:games>

ed (Figure 3). The user’s character can also
sustain damage, and when it is killed the
character is restored to health and loses
any items, such as powerful weapons, that
he or she had previously acquired.
Because part of the fun of Doom is to find
and use more powerful weapons, the fear
of losing them is a strong incentive to be
careful with one’s character.

PSDoom appeared to be an immediate
success. Only a few weeks after the appli-
cation was written, tens of thousands of
people visited the project’s Web page and
thousands downloaded the code. The
computer community seemed ready to
have an interface to match the violent lan-
guage used for system administration
tasks. Many system administrators, who
would be the most likely to perform such
tasks, have played Doom, so its interface is
a familiar one. However, out of the hun-
dreds of e-mails I received from people

who loved the interface metaphor, only a
handful had actually used PSDoom. These
users found it much more satisfying to
“shoot” a misbehaving program than to
click on it in the task manager or to type
kill -9 at a UNIX prompt. Unfortunately,
they also enjoyed shooting at everything
in PSDoom, killing critical programs and
causing the computer to crash in surpris-
ing and sometimes spectacular ways. So
despite its entertaining interface and com-
pelling metaphor, PSDoom never became
a practical application.

Metaphors can initially help users
become familiar with a system but will
inevitably mislead when the metaphor
and the system differ. In this case, the
metaphor breaks down when one consid-
ers the goals in Doom (the game) and
PSDoom (the application). The goal of the
game is to kill as many monsters as possi-
ble, while the goal of the system adminis-
tration task is to kill processes only when
they need to be killed. The PSDoom inter-
face gives no information about which
monsters should be attacked, so users
often attempt to kill all of them. Even if
there were such information, the user, sur-
rounded by hostile-looking monsters,
would probably try to shoot them all any-
way. Allowing anything to survive would
be antithetical to the Doom narrative.

Conclusion

Game-like interfaces have not entered the
workplace, but they have entered the
home. Developers of children’s software
embrace computer games, though not

always intelligently. In Interface as
Mimesis, Brenda Laurel criticizes educa-
tional software that interleaves educa-
tional drills and short game segments.
Writing about a hypothetical program
that allows a child to play a game for 20
seconds if he or she solves three math
problems, she asserts:

Either the math problems or the game
segments are gratuitous, depending on
Jimmy’s point of view. The proper solu-
tion is either to eliminate one of the
activities, or re-shape the context so
that it includes both; e.g., a starfighter
simulation in which Jimmy must natu-
rally solve math problems in order to
operate the ship.

Adults at work are in the same situation
as Jimmy—surreptitiously playing a few
rounds of computer solitaire or browsing
the Web as a reward for using a boring
application. Is there a way to integrate
work and fun? It will be difficult, but the
overwhelming response to PSDoom
shows that it would be greatly appreciated.

REFERENCES

1. Chao, D.L. Doom as an interface for process manage-
ment. (2001). In J.A. Jacko, A. Sears, M. Beaudouin-
Lafon, & R. Jacob (Eds.), Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp.
152-157). New York: ACM Press.

2. Laurel, B. K., Interface as mimesis. (1986). In, D.A.
Norman & S.W. Draper (Eds.), User centered system
design: New perspectives on human-computer interaction
(pp. 67-85). Hillsdale, NJ: Erlbaum.

RELATED URLS

Information on PSDoom can be found here:
www.cs.unm.edu/~dlchao/

Source code for PSDoom (for Linux) can be found here:
http://psdoom.sourceforge.net/

© ACM 1072-5220/04/0900 $5.00

: / 72 i n t e r a c t i o n s / s e p t e m b e r + o c t o b e r 2 0 0 4

Figure 2: Programs are represented as monsters in PSDoom. Figure 3: Killing programs in PSDoom. The user is terminating emacs, a text editor,

with a shotgun.

Figure 1: The Windows XP task manager. Users can

terminate running programs by selecting them from

the list and clicking the “End Process” button.

<

