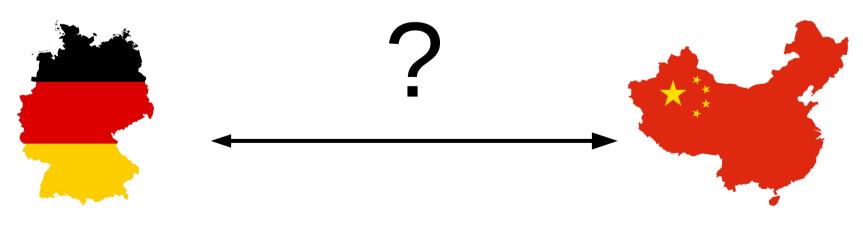

Measuring Censorship Everywhere All the Time

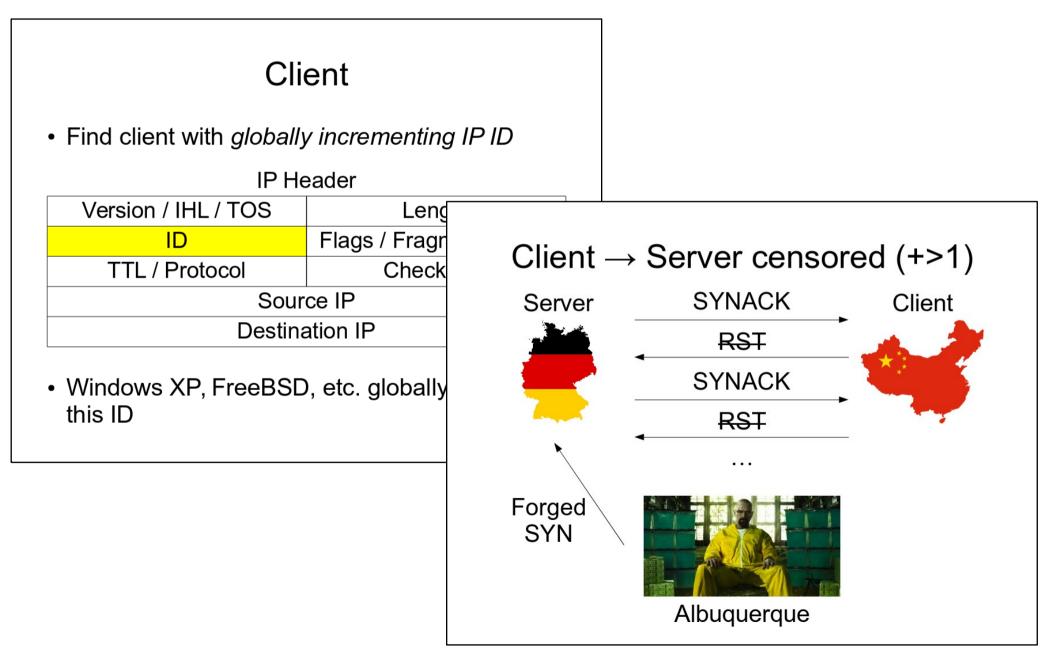
Jeffrey Knockel Jedidiah R. Crandall

Department of Computer Science University of New Mexico


Goal

- Measure censorship everywhere all the time
- Problems:
 - no vantage points in country
 - not in right city/institution/building/etc.

Our solution


- Side channels: turn ordinary machines into vantage points
- Measure IP censorship off-path
- No software on server, client, or anywhere in between

5.6.7.8

1.2.3.4

Previous Layer 4 (TCP) technique

Layer 3 (IP) techniques

- Layer 3 already has enough side channels
- More general assumptions
- One technique we have is for Linux servers
- Question: can some address talk to some Linux server?
- If that address responds to pings, then we can measure this!

IP fragments

- Utilize Linux's *fragment cache* behavior
- IP datagrams are split into fragments when they are too large to go over a medium

Fragment cache

- Fragments are kept in a cache until all fragments arrive and the datagram is complete
- Linux has a "maximum distance" rule:
 - If I receive a fragment for datagram *d* from address *X*
 - Then I receive another 64 fragments from *X*
 - If *d* hasn't been completed yet, then its other fragments ain't ever coming
- Bookkeeping! Side channel!

By way of example

Linux machine

Pingable address

Can P talk to L?

Prime L

Linux machine L

Received 63 fragments from P since Pingable address

Spoof 63 fragment first-halves from P

Spoof echo request

Linux machine

Pingable address

Received 63 fragments from P since

Albuquerque

Spoof large, fragmented echo request from L

Case: Censorship

Linux machine

Pingable address

Received 63 fragments from P since

Case: No censorship

Linux machine

Pingable address

Fragmented echo reply

Received 65+ fragments from P since

Complete datagrams

Pingable address

Censorship cases

- In censorship case:
 - Second halves complete datagram
- In no censorship case:
 - Second halves are too late!
 - The first halves are already gone
 - The second halves create new entries

To actually determine censorship

- Are those 63 entries in there or not?
- How much room is left?
- Send our own pings:
 - Room for (e.g.) $263 \Rightarrow$ Censorship
 - Room for (e.g.) 200 \Rightarrow No censorship

Deploying vantage points

- Almost 10% of IPv4 address space responds to large pings
 - Over 16% of China's space
- To deploy 10 vantage points...
 - Ping 100 random IP addresses
 - Which 10 respond to large pings?
 - That's it!

Ethical considerations

- Vantage points do not send pings—they respond to pings
- Measure an entire (e.g.) /24
 - Make it look like someone is ping sweeping