e

3

Computability and Incomputability

Computer Science is no more about computers than astronomy is about telescopes.
— E. W. Dijkstra

To use: Apply shampoo to wet hair. Massage to lather, then rinse. Repeat.
A typical hair-washing algorithm that fails to halt

But let your communication be Yea, yea; Nay, nay: for whatsoever
is more than these cometh of evil.
— An early proposal for binary code, Matthew 5:37

FOR MOST PEOPLE, the notion of what is computable is closely related to what
types of programs exist. A typical computer has an operating system that acts as
an interface between the computer hardware and the software. Window systems
that provide graphical user interfaces to other programs are at an even higher level
of abstraction. A typical program that could operate in this environment is a word-
processing program that allows the user to type in keystrokes and to perform mouse
actions such as pointing, clicking, dragging, and using menus. Many things appear
to be happening at once, but in fact each action by the user is processed by the
computer program during a discrete time interval. When you type a key to insert
text into your document, the program must update the graphical representation of
your document by drawing the raw pixels that make up the letters. The program will
usually have to update some internal representation of the text of your document as
well. Similarly, when you use a mouse, the program translates the mouse clicks to a
coordinate system and performs whatever action is required to make the graphical
representation of your document look the way it is supposed to. Each action is
carefully coordinated by the computer program, which can be a daunting task,
considering the thousands of details that go into writing a program such as a word
processor.

-23-

The example above illustrates an interactive session that a human could have
with a program; however, there is no reason why the session would have to be
interactive at all. As a thought experiment, imagine that we could record each
keystroke and mouse action. The recording could be saved into a file that has
strings' of the form keystroke ’k’, mouse-down (113, 156), or mouse-up (115,
234). It is always possible to take a program like a word processor and convert it
into a similar program that processes a file that has the recorded actions. If one
of those actions corresponded to pulling down a menu and selecting a “save file”
option, then one form of the output of the program can be saved as well. Moreover,
each graphical action taken by the word processor could be saved into another file
with entries indicating which pixels were drawn and in what color. In this way it
is possible to convert any program into a form that takes one long string as input
and produces one long string as output.

As a historical footnote, in the early days of computers, both programs and
input data had to be submitted to a computer via an antiquated device known as
a punch-card reader. The output of the program could then be sent to a printer
or some other device. Graphical user interfaces are a very convenient way of using
a computer, but in no way does the user interface change what is fundamentally
possible for a computer to compute. If a mad computer programmer had the desire
to, there is no reason why he couldn’t have simulated an entire interactive computer
session back in the 1950s with punch cards and printer output.

Therefore, without losing any of the notion of what it means to compute, we
can completely disregard the “bells and whistles” of modern computers and only
concentrate on the gist of what happens inside of a computer. What is left is a
picture not unlike the earliest computer mainframes that handled only punch cards
as input. Why bother to do this? If we were to attempt to discuss the notion of
computability in the context of user interfaces, sound cards, mice, and laser printers,
there would be no clear way of reducing all of the detail into something that looks
remotely mathematical. If we could not reduce what happens inside of computers
into some mathematical formalism, there would be no way of proving or disproving
the properties that computers have.

Scientists like to boil things down to the simplest terms possible, and it turns
out that this picture of having a string of input and a string of output is still
overly verbose for a theoretical computer scientist’s tastes. Just as we were able to
dispense with most of the details of how modern computers operate, so it is possible
to dispense with the idea that programs have “strings” of input and output. It is
possible (and also theoretically useful) to convert a program, input string, or output
string into a single natural number.

IThe term string will be used to denote any sequence of letters, numbers, or digits, or any
other type of list.

-24-

3.1 Godelization

Kurt Godel, one of the greatest mathematicians of the twentieth century, literally
shocked his contemporaries with some of his mathematical results. We will talk
more about Godel and his contributions to mathematics toward the end of this
book part; however, in this section we will concentrate on the process for converting
many numbers into one number that bears his name.

A Goadelization is a method for mapping many natural numbers into a single
natural number. The details of how the mapping is performed are not very inter-
esting, but the fact that it can be done is extremely important. Recall that the
input or output to a program can be represented as some finite-length string. Also
note that a program can be represented in the same way. Don’t be bothered by
the fact that one form of the input string may look like keystroke ’k’ or some
other nonnumerical form. We can always adopt some convention whereby we agree
to represent actions such as keystroke ’k’ by two natural numbers, one for the
action, keystroke, and the other for the key that was pressed, *k’. It is always
possible to perform some mapping such that any string is unambiguously coded
into a sequence of integers. The interesting question is: How can many numbers be
encoded into one?

The key to the whole process is the fact that every number has a unique prime
factorization. If you pick any natural number, z, then there is exactly one sequence
of prime numbers, p;,, Pz,; ---, Pz, , such that the product of the n prime numbers
is equal to z. Now, let’s go back to looking at a program’s input, which we earlier
agreed to think of as a sequence of numbers. If there are n numbers in the sequence,
then let every number in the sequence be denoted by zi, x9, ..., z,,. To calculate
the Gédel number of the input string, we use the first n prime numbers and calculate

n

Ty __ g L1 ,.T2 Tn
[1»7 =pips - pin,
i=1

which forms a unique natural number. Granted, Godel numbers will tend to be
huge in size, but who cares? Given a Godel number, we can reconstruct the original
string by taking the prime factorization of the Gédel number. If there are thirteen
2s in the prime factorization of the Godel number, then that means that the first
number in the original string was 13. If there are eighty-seven 3s in the prime
factorization, then the second number in the original string was 87. And if there is
a single 5 in the prime factorization, then the third number was 1.

Godelization adds another simplification to studying the nature of computation.
Instead of worrying about programs with multiple input and output sequences we
can now ignore most of the details and just concentrate on functions that take a
single number as input and produce a single number as output. Even with this
restriction, a computer program that operates in this manner is still doing all of

-25-

[How Many Prime Numbers Exist? Digression 3.1 |

Constructing a Goédel number from a string depends on there existing an infinite
number of prime numbers. If there were only a finite number of prime numbers, say n
of them, then it would be impossible to encode strings of length greater than n. Here
is an extremely elegant proof discovered by Euclid around the third century B.C. that
shows that there are an infinite number of primes.

If there are a finite number of prime numbers, then we could list all of them as
P1, P2, - - -5 Pn, Where pp is the largest prime number. We will now construct a new
number from these n prime numbers by taking the product of all n prime numbers
and adding one

p = Hpg +1=(pip2---pn) + 1.
=1
What does the prime factorization of p’ look like? Before you answer, take note of
the fact that none of the n prime numbers, pi, ..., pn, evenly divides p’. Try it and
you will see that you always get a remainder of 1. But if no prime number evenly
divides p’, then one of two things must be true: Either p’ is prime or it is not and
there exists some other prime number greater than p, that does evenly divide p’. We
don’t care which is the case, since either implies that there is another prime number
greater than p,. Therefore, there must be an infinite number of primes.

the “hard” part of computing. Therefore, without loss of generalization, when we
speak of computation, we will sometimes refer to the computation as manipulating
strings, numbers, or even bits. It really doesn’t matter. What does matter is that
the representation of a computer’s input and output can always be converted from
one form to another. We will simply use whatever form is most convenient at the
time.

Another conclusion that can be reached from the ideas of this section is that
there are as many programs as there are natural numbers, since we can Godelize
programs as well. This fact will be expanded on toward the end of this chapter.
In the next section we will get into the details of what it means to compute by
studying some models of computation.

3.2 Models of Computation

There is a subtle difference between computations and models of computation that
we should examine. It is fair to think of a computation as a *method” for producing
one number from another. Computer textbooks often speak of algorithms and
instructions. If it makes you feel more comfortable with the subject, you can think

-26-

of a computation, method, algorithm, or instruction as merely a recipe like one you
would find in any cookbook. We are, after all, cooking here, but with numbers
instead of food.

What is a model of computation? Generally speaking, a model of computation
describes how to build recipes or, if you like, a recipe for recipes. Actually, compu-
tations describe how to map numbers to other numbers, and models of computation
describe how to construct the mappings.

In the past century, many mathematicians have grappled with the problem of
how to describe all of the infinitely many computations that are possible. The
problem, put more concisely, is: What is the minimal set of rules that we can use
to construct computations such that every possible computation can be realized by
the rules? Many models of computation have been proposed in the past century.
What follows is a brief description of some of the better-known ones. What they
have in common is that each model of computation operates on numbers, strings,
and symbols by manipulating them at discrete time steps. Moreover, each model
has a well-defined “program,” “input,” and “output.” If the presentation of the
models is too formal for your tastes, feel free to skim the descriptions and jump
ahead to the end of this section.

General Recursive Functions General recursive functions are constructed by
composing a small number of rules together. The idea is that one can take a few
simple functions and construct more complex functions by applying the following
rules repeatedly. The rules will either specify a base general recursive function, in
which case a name and an example are given, or a rule for composing a new general
recursive function.

e Zero: The zero function returns zero for any argument, e.g., Z(z) = 0.

e Successor: The successor function adds one to its argument, e.g., S(x) =
it L

e Projection: The projection rule simply states that a general recursive
function is allowed to return any one of its arguments as the result, e.g.,
Pi(z1,---,2n) = 5.

e Composition: The composition rule allows for a new function to be con-
structed as the composition of two or more functions. Thus, if g(x) and f(x)
are general recursive functions, then so is g(f(x)).

e Recursion: General recursive functions can have recursive definitions. For

example, if g(x) and h(x) are general recursive, then so is f(z,y) defined as
f(z,0) = g(x), for y =0, and f(z,y+ 1) = f(h(z),y), for all other y.

-27-

e Minimization: A general recursive function can be expressed as the min-
imization of another general recursive function. For example, if g(x,y) is
general recursive, then so is the function f(z) = py[g(z,y) = 100], where u
is the minimization operator. We can interpret f(x) as being “the smallest
value of y such that g(z,y) = 100.” Note that there may be no y that satisfies
the constraint for the supplied z, in which case f is undefined for that x.

Notice that the definition of general recursive functions is closely coupled to
natural numbers, in that the functions clearly operate on the natural numbers.
If we wanted to construct a general recursive function to add two numbers, the
definition would look like:

flz;0) = P(z)=
flx,y+1) = S(P(z,y, f(z,9) = f(z,y) + 1.

Here we can think of a “program” as being a general recursive function that is
constructed, of the program’s “input” as the natural number that we plug into the
function, and of the program “output” as the natural number that we get as a
result.

Turing Machines A Turing machine is a hypothetical device proposed by Alan
Turing in 1936. The machine has a read/write head mounted to a tape of infinite
length. The tape consists of an infinite number of discrete cells in which the Tur-
ing machine can read or write symbols. At every discrete point in time a Turing
machine exists in one and only one state. The “program” for a Turing machine
consists of a state transition table with entries that contain: the current state, the
symbol underneath the head, the next state that the machine should enter, the new
symbol that should be written, and the direction that the tape should move (left,
right, or none). There is also a unique state known as the starting state and one or
more halting states. When a Turing machine starts up, the “input” to the program
consists of the symbols already written on the tape. At each time step, the Tur-
ing machine performs an action, determined by the current state and the symbol

State | Input Action/Output Next State
Start | * get in cruise lane cruise
Cruise | cruise lane clear drive at cruise speed | cruise
Cruise | slow driver ahead get in pass lane pass

Pass cruise lane clear get in cruise lane cruise

Pass slow driver in cruise lane | accelerate pass

* desired exit ahead exit highway halt

Table 3.1 A driving “program” for a Turing machine

-28-

‘ Alan Turing: A Mini-Biography Digression 3.2 |

Alan Turing was born in 1912. As one of the pioneers in the theory of computation,
his importance to the field is staggering. He participated in many public debates
concerning the future of computers and artificial intelligence, and as part of this
activity he invented what is now popularly known as the Turing test, a method to
determine if a computer has “intelligence.” During World War II, Turing was part
of a British research team that cracked the Germans’ most secret encryption device.
The success of the project allowed Winston Churchill to listen in on many of the Axis
powers’ most classified command decisions.

Alan Turing was also a homosexual. While filing a complaint to the police department
about a burglary of his house, he implied that he had more than a casual relation-
ship with a possible suspect. The police interrogated Turing regarding this, and he
confessed to being a homosexual. Subsequently, he was forced to undergo hormone
therapy that led to depression. In 1954, Turing was simultaneously experimenting
with chemicals and making candied apples. In what may or may have not been sui-
cide, he ate a poisoned apple and died (Hodges, 1983).

underneath the head. This action may involve writing a new symbol, moving the
head, and/or moving into a new internal state. The Turing machine continues this
process until one of the halting states is reached. The “output” of the program
consists of the remaining symbols on the tape.

At first glance, Turing machines seem very alien, but in actuality most people
are familiar with how they work on an intuitive level. Table 3.1 illustrates a sort of
Turing machine algorithm (without reference to the tape) for driving on a highway.
To simplify things, we will consider only four types of states while driving: entering
the highway (the starting state), cruising at a steady speed, passing a slow driver,
and exiting the highway. For passing and cruising, we consider two special cases:
when we should maintain the current state and when we should switch to another
state.

In the table the x character is a wild card, meaning that it matches any possibility
for that entry. Thus, according to the table, whenever you see the desired exit, you
should exit the highway and go into the halting state, regardless of what state you
are currently in.

Lambda Calculus The A-calculus is a model of computation proposed by Alonzo
Church in 1941. In it, computations are defined in terms of A-expressions that
consist of either a symbol or a list of A-expressions, or have the form:

(Abound-variable(\-expression)).\-expression.

-29-

The last form describes a way of rewriting the leftmost A-expression. The result is
to take the leftmost A-expression and replace every occurrence of the bound variable
with the lambda expression on the right-hand side. For example (Az(fz)).a = (fa),
since we replace every occurrence of x in (fz) by a.

In A-calculus the “program” corresponds to the left-hand A-expression, and
the “input” is the right-hand A-expression. The “output” corresponds to the A-
expression resulting from continuously expanding the input applied to the pro-
gram. You may be inclined to think that expanding a A-expression is a one-step
process but, in fact, A\-expressions can consist of A-expressions nested within more
A-expressions, which means that expanding a single A-expression may take many
steps. The A-calculus is very similar to the programming language Lisp, which is
discussed in further detail shortly.

General recursive functions, Turing machines, and A-calculus are not the only
formal models of computation, just the best known. There are actually several
more. You probably noticed that each model was very different from the others. An
interesting question at this time is: Are there any functions that can be computed
by one model of computation but not by another? In 1941, Church proved that A-
calculus was capable of representing exactly the same functions as general recursive
functions. Later Turing proved that Turing machines could compute exactly the
same functions as A-calculus, which proved that all three models of computation
are equivalent. This is a truly remarkable result, considering how different the three
models of computation are. In Church’s 1941 paper he made a statement that is
now known as the Church-Turing thesis: Any function that can be called computable
can be computed by A-calculus, a Turing machine, or a general recursive function.

Recall the point that was made about functions describing relationships between
numbers and models of computation describing functions. Well, the Church-Turing
thesis is yet another level more fundamental than a model of computation. As a
statement about models of computation, it is not subject to proof in the usual sense;
thus, it is impossible to prove that the thesis is correct. One could disprove it by
coming up with a model of computation over discrete elements that could calculate
things that one of the other models could not; however, this has not happened.
The fact that every posed model of computation has always been exactly equivalent
to (or weaker than) one of the others lends strong support to the Church-Turing
thesis.

3.3 Lisp and Stutter

So far we have really discussed computation only in very broad terms. It would be
nice to demonstrate exactly how one could compute some useful functions with one
of the three mentioned models. As we shall see, there is a certain beauty in deriving
higher mathematical functions from such primitive beginnings. To illustrate this
point, we will now examine a simple computer language that is as powerful as the

-30-

other models but is a bit more understandable. In the late 1950s John McCarthy
created a computer language known as Lisp (which stands for list processing). Lisp
was inspired by A-calculus, but I like to think of it as a close cousin of general
recursive functions as well. A testament to the elegance of Lisp is that it is one of
the few “old” languages still in common use today.

Modern Lisp (Common Lisp) is a very rich language, with hundreds of defined
functions, macros, and operators. What follows is a description of a subset of Lisp
that I will refer to as Stutter.? Stutter is an interpreted language which means that
all expressions are evaluated during the runtime of a program, unlike compilers,
which translate modern computer languages into the native machine language of
the computer or an intermediate language (as in the case of Java and its bytecode
compilation). The heart of the Stutter interpreter is the read-eval-print loop, which
does exactly what its name describes. More specifically, when using Stutter, the
user is prompted by the ‘>’ prompt. After the user types in a Stutter expression
and presses the “Enter” key, the computer evaluates the expression and prints the
result, which brings us back to the “read” portion of the loop.

But what is a Stutter expression? In Stutter everything is either a list or an
atom. An atom is simply a sequence of characters, such as bob, xyz, or 266. There
is nothing significant about any of these atoms, including 256 since the Stutter
interpreter has no hardwired notion of what the value of 256 means to you and
me. There are also four reserved punctuation characters that have special meaning;:
“‘C, 97, ¢, and ¢;’. Other than these four characters an atom can consist of any
sequence of nonblank characters in any order. The parentheses are used to contain
lists, and the quotation character is used to quote atoms and lists. The reason
why the quotation character is necessary will be explained in the examples below.
The semicolon is used as a comment delimiter, that is, any text in a single line of
a Stutter program following a semicolon is ignored by the Stutter interpreter and
serves only to add comments within a Stutter program.

A list can have any number of members of any type, including other lists. Func-
tion definitions in Stutter are also lists, which lends to the beauty of the language,
since functions can operate on other functions. As a special case, the empty list
is denoted as either () or nil, and can be considered both an atom and a list. A
function call is yet another list of the form (f a b ¢), which means that the named
function, £, will be called with the supplied arguments, a, b, and c. We must also
make a distinction between the name of an atom and the value of an atom. Because
it is useful to store things in variables, we are allowed to treat each atom as a vari-
able. In this case, we say that the atom and variable are “bound” to each other.
Later we will see how one can extract the value of an atom, but for now note the
distinction that an atom unevaluated is itself, while an atom evaluated results in
its value.

2Motivated readers can consult the C source code to Stutter. All of the examples from this
chapter were produced from the supplied Stutter interpreter.

-31-

In the examples that follow, we will see the input to the Stutter interpreter as
the text immediately following the ‘>’ prompt. The line immediately following the
input is the Stutter interpreter’s output. Sometimes the output will be omitted if
it is not interesting. To start, let’s examine how things look when quoted:

> ’testing

testing

> ’testing-1-2-3

testing-1-2-3

> ’(this is one way of writing a string of text)

(this is one way of writing a string of text)

> ’(here is a list (with a list and another (list)))
(here is a list (with a list and another (list)))

> this-is-an-unquoted-undefined-atom

Error: unbound atom "this-is-an-unquoted-undefined-atom"

In the last example, when we typed in the unquoted atom, the Stutter interpreter
responded with an error message because the unquoted atom was not bound to any
value. We can set the value of an atom with the set function. Because this is our
first use of a Stutter function, a brief digression is in order. In general, all Stutter
functions either are built-in primitives or are user-defined. We will see how to define
a user-defined function a little later, but for now let’s examine how a function call
is evaluated. When the Stutter interpreter is asked to call a function such as (f a
b c), the Stutter interpreter will first evaluate the first element in the list, £, which
must be bound to a function or an error will occur. If £ is a user-defined function,
then the Stutter interpreter will immediately evaluate the arguments, a, b, and c.

For built-in functions, things are a little more subtle. The built-in functions
are either value functions or special functions. Value functions behave just like
user-defined functions but are primitives in the Stutter language because there is
no way of defining them as user functions. Some value functions that we will
encounter later on are car, cdr, and cons. The set function is also a primitive
value function. Special functions behave similarly to the other functions except
that their arguments are not evaluated initially. This allows the special functions
to evaluate arguments only if it is appropriate. For example, the quote, character *?’
is really equivalent to the special function quote. Instead of using the single quote
we could also type (quote a), which evaluates to a—not the value of a. Later we
will use another special function, if.

To use the set function, we supply it with two arguments. The first argument
should evaluate to the atom that we want to bind a value to. The second argument
is also evaluated, and the result is bound to the atom the first argument evaluated
to. Most uses of set will look like (set ’a b), with the first atom being quoted.
Requiring the quote may seem like an unnecessary inconvenience, but it actually
gives us some latitude in how we define things. Consider the examples:

-32-

> (set ’name ’call-me-Ishmael)
> name

call-me-Ishmael

> (set ’ten ’10)

> ten

10

> (set ten ’5-plus-5) ;;; Change the value of ’10 indirectly.
> ten

10

> 10

5-plus-5

Let’s now look at how car, cdr, and cons work. All three functions are used
to manipulate lists in some way. Computer science has had some strange effects on
spoken language, and one such oddity is that Lisp programmers often say things
like “the car of the list” or “the cdr of something.” What they really mean in
the first example is “the result of calling the car function with the given list as an
argument.” That’s too much of a mouthful for my tastes, so you should not be
confused when I use the programmer’s verbal shortcut.

The car function always returns the first element in a list. If you try to take the
car of something that is not a list, an error will occur. As a special case, the car
of nil is also nil. Complementary to car, the cdr function returns the supplied
list with everything but the first element. If you like, you can think of cdr as being
synonymous with “everything but the car.” Thus, the cdr of a list with a single
element is nil, and as another special case the cdr of nil is also nil

The cons function is used to construct a new list from two arguments. The first
argument will be the car of the result list and the second argument will be the cdr
of the result. Thus, for any list 1 except nil, (cons (car 1) (cdr 1)) is always
equal to 1. Here are some example uses of car, cdr, and cons.

> (car *((a D) x ¥))

(a bc)

> (cdr ’((@a b c) xy))

(x y)

> (car (car ’((a b c) x y)))
a

> (cdr (cdr ’((a b c) x y)))
(y)

> (car (cdr (cdr (car ’((a b c) x y)))))
c

> (cons ’a nil)

(a)

> (cons ’a ’(b))

-33-

(a b)
> (cons ’(abc) ’(x y))

((abc) xy)
> (cons ’(a b c¢) nil)
((a bc))

During the lifetime of a program, it is often necessary to ask questions. Stutter is
no exception to this, so to facilitate this need, Stutter has a built-in special function
known as if, which takes three arguments. The first argument is a condition. The
if function evaluates the condition, and if it is true, then if will return the second
argument evaluated but not evaluate the third argument at all. If the condition is
false, then if will not evaluate the second argument but return the third argument
evaluated instead. Any missing arguments are presumed to be nil. But what is
“true” and “false” in Stutter? We will take “false” to be synonymous with nil and
“true” to mean anything that is not nil. Because it useful to have a consistent name
for the concept of “true,” we will use t to mean just that. Moreover, t evaluates to
itself because it is defined by (set ’t ’t). Yet, in Stutter there is nothing special
about the symbol t; it is just an atom like any other atom. By themselves, if
expressions are not very interesting, but here are two that illustrate how they work:

> (if nil ’(it was true) ’(it was false))

(it was false)

> (if ’blah-blah-blah ’(it was true) ’(it was false))
(it was true)

In general, if statements usually take the form: (if (condition-expression)
(then-expression) (else-expression)). The real power of an if statement is
when the “then” or “else” portions of the statement contain even more expressions.

The last type of Stutter expression that will be highlighted is a special type of
expression known as a lambda expression. Lambda expressions in Stutter are similar
to A-expressions in A-calculus, in that they allow the user to define new functions.
The symbol lambda is not a function per se, but a special atom. In general, a
lambda expression will look like (lambda (argl arg2) (function body ...)).
You should read the last expression as “This is a function with two arguments.
When the function is called, the function body is evaluated, with the supplied
arguments replacing the arguments that appear in the body.”

That’s all there is to Stutter. Nothing else. Your first reaction to Stutter may
be that it is a rather weak programming language. For example, how would one
go about adding numbers? The concept of numbers doesn’t even appear in the
language definition, let alone addition. Yet Stutter is as powerful as any other
programming language. It is universal in that it can do anything that the other
three models of computation can do (as well as your home computer?). How so? To

3Technically speaking, your home PC is weaker than any of the other models of computation
because it has only finite memory.

illustrate this, we will reinvent the basic mathematical operations in Stutter. Doing
so will also illustrate how to use lambda expressions.

To begin with, we need a representation for the numbers. For a start, let’s define
Z€ero:

> (set ’0 nil)

That’s fine, but there is an infinite number of other numbers to deal with. Instead
of giving a unique definition for each number, we will define what it means to be a
number. More specifically, for every number there is always another number that
is one greater than the first. In this spirit, let’s define an increment function:

> (set ’1+ (lambda (x) (coms t x)))

In English the 1+ function definition reads as “take the argument (which is
presumably a list) and append the symbol t to the front of it.” Now, if we wanted
to, we could define other numbers:

A\

(set ’1 (1+ 0))
(set 2 (1+ 1))
(set 3 (1+ 2))

v Vv

> (set 710 (1+ 9))

But these definitions are not strictly necessary, since Stutter now understands
that ’ (t t t) means the same thing as (1+ (1+ (1+ 0))), which means the same
thing as 3 does to us. This may seem like a cumbersome way of representing
numbers, but not for Stutter.

It would also be useful to have a notion of “one less” than some number. The only
difficulty is that all natural numbers are positive. Thus, the following decrement
function will do just fine for positive numbers:

> (set ’1- (lambda (x) (cdr x)))

Now that we have numbers, how do we do useful things with them? Let’s start
with addition:

> (set '+ (lambda (x y) (Af y (1+ (+ x (1- y))) x)))

This definition is clearly recursive since it refers to itself. The definition in
English reads “The sum of two numbers is defined as the first number if the second
number is 0. If the second number is not 0 then the result is equal to 1 plus the
sum of the first number and 1 less than the second number.” In other words,
if you ask Stutter to compute (5 + 2), it will roughly carry out the expansion:
54+2)=01+0GB+1)=014+(1+(5+0))) =7. Let’s try it out:

-35-

> (+ 5 2)
(5555 &%)

> (+ 9 3)
(EEBETEEETEEE L L)

Multiplication and exponentiation are just as easy to define as addition since
they have their own elegant recursive definitions:

> (set ’+ (lambda (x y) (if y (+ (* x (1- y)) x) 0)))
> (set ’" (lambda (x y) (if y (* x (" x (1- ¥))) 1))

With these definitions, we can now do some fancy calculating:

> (x 35)

[t EEELETELELL TR L)

> (" 24) ;;; 2 raised to the 4th power.
(EEETELETLEEEE L EEE)

> (" (+12) (x22)) ;;; 3 raised to the 4th power.
ttrttttttttettstttrtttEttEttEERE R
ttttttttttttttetttttttttttttttt
tttttttttts sttt sttt bttt

Included with the Stutter source code are Stutter statements that define many
more useful operations and predicates, such as subtraction, division, logarithm, an
equality test, and greater than and less than. Moreover, if you are still troubled by
the fact that numbers are represented by very long lists, there is a simple function
that converts lists of the form ?(1 2 3) into unary lists (which is the form that
we have been using) and back. It is also possible to define a representation for
floating-point numbers and to define more complex operations, such as the square
root.

3.4 Equivalence and Time Complexity

Since all of the mentioned models of computation are equivalent, in that each of
them can compute exactly what all of the others can compute, what can we say
about the relative efficiency of each model? Is one type of model more efficient
than another, in the sense that it can do exactly what another model can do but
faster? There are some differences in speed between the different models, but not
a significant amount. Why this is so is the topic of this section.

Computer science theory has a branch, known as time complexity theory, that
deals with the question of how fast something can be computed. In each model of
computation, the “computer” has to take some step-by-step actions. For example,
in one time step the Turing machine reads the symbol underneath the head, writes

-36-

(+ 2 3) ;;; Expand (+ 2 3)
(1+ (+ 2 (1- 3))) ;3 Evaluate (1- 3) -> 2
(1+ (+ 2 2)) ;3; Expand (+ 2 2)
(1+ (1+ (+ 2 (1- 2)))) ;3; Evaluate (1- 2) -> 1
1+ (1+ (+ 2 1)) ;;; Expand (+ 2 1)
1+ 1+ 1+ (+ 2 (13- 1))X))) ;3; Evaluate (1- 1) -> 0
(1+ (1+ 1+ (+ 2 0)) ;;; Evaluate (+ 2 0) -> 2
(1+ (1+ (1+ 2))) :;; Evaluate (1+ 2) -> 3
(1+ (1+ 3)) ;;; Evaluate (1+ 3) -> 4
(1+ 4) :3: Evaluate (1+ 4) -> 5
5

Table 3.2 Stutter execution path of (+ 2 3)

the appropriate new symbol, moves the tape left or right, and then makes a virtual
jump to the next state. For a general recursive function, A-calculus expression, or
Stutter program there is also an iterative process taking place. You can imagine
that each primitive or built-in function takes exactly one time step to execute, and
that user-defined functions take as many time steps as the number of primitive
functions they ultimately call upon. Modern digital computers also have a fetch-
execute cycle that involves retrieving a machine language instruction from memory,
decoding it, then executing it.

How do we measure the speed of a computer program? First of all, some pro-
grams will always take longer than others, given the same input. As an example,
let’s simulate how Stutter would add the numbers 2 and 3. Recall that addition
was defined as (lambda (x y) (if y (1+ (+ x (1- y))) x)). Table 3.2 shows
roughly what takes place to compute the final result by indenting each level of re-
cursion. The listing is simplified somewhat, in that most of the details have been
omitted of how, say, (1- 3) is evaluated, since it is not self-recursive and simply
calls cdr. Moreover, instead of expanding each recursive function call into the full
function body, I have expanded recursive function calls only into the portion of the
body that is evaluated by the if expression. Looking closely at how the + function
executes, there appear to be three types of steps. First of all, there are several
expansions of the + function because it recursively refers to itself. Next, there are
three 1+ calls and three 1- calls. The fact that there are three of each of these calls
is a consequence of 3 being the second argument. If 7 been the second argument,
then there would have been seven calls to 1+ and 1-. Likewise, the four expansions
are a result of 3 being the second argument. Putting this all together, we find that
the total number of steps for performing the operation (+ a b) is roughly 3b+ 1.

-37-

Obviously, the smart thing to do would be to make sure that the second argument
is at least as small as the first. If we amended the + function so that this check
is performed initially, then we would have the additional overhead of computing
which is the smaller of the two arguments. The supplied Stutter code contains a
Stutter definition for the relational operator <, which takes approximately the same
number of steps as the smaller of the two arguments. Therefore, combining all of
this into a “smart” + operation would yield a total number of steps roughly equal
to 4x + 1, where z is the smaller of the two arguments.

This is still not quite the answer that we are looking for, since we really don’t
want to estimate the time a function takes to execute on the basis of only one of
its arguments. What we really need is a way of expressing the execution time as a
function of the length of the input. In the case of the + function, the input length
is equal to the length of the two list arguments. Therefore, let’s agree to call the
sum of the length of the two arguments, a and b. As a worst case, let’s also assume
that a and b are really equal to one another. Why? If one of the two arguments
was less than the other, then, since the + function executes in time proportional to
its smallest argument, this would be faster than if a and b were really equal. With
this assumption the smallest argument is equal to 3. Therefore, the execution time
of the + function, expressed in terms of the length of the input, is equal to 2z + 1.
This means that if you give the + function any two arguments, you can reasonably
expect it to take about 2x + 1 steps to compute the result.

However, we are not yet finished with simplifying the time measure. Time com-
plexity analysis is one of the few mathematical disciplines in which one is supposed
to take shortcuts. More specifically, the expression 2z + 1 is just an affine linear
function, and the 2 is simply a coefficient. Since we really want to know how well
the + function scales when we give it really big numbers, the 2 doesn’t tell us any-
thing special, since one computer can easily be twice as fast as another. Moreover,
if instead of 2z + 1, the number of steps that a function takes was something more
complicated, like %:1:4 — 22?2 4 82z + 13, under time complexity analysis we would
simplify the whole expression down to z*, which is the most significant term in the
polynomial. The reason we are allowed to do this is not as superficial as I have made
it seem, and is in fact mathematically sound. As an exercise you could compute
124 — 227 + 82z + 13 divided by z* on a calculator with some very large values for
z. As you increase the size of z, the ratio of the numbers will eventually approach a
constant factor of 3. We are allowed to simplify time complexity expressions in this
manner because the ratio approaches a constant value. A computer scientist would
express the z* time complexity measure with what is known as “big-Oh” notation,
or O(z*), which is just a formal way of saying that a function or program takes
about z* time steps to execute, given an input of length z.

Now back to the issue of how fast the + function is. Since we are now in agreement
that the addition operation takes time proportional to z, we will denote this fact by
saying that + has a time complexity of O(z). Intuitively, this analysis makes sense,

-38-

(* 2 3) :;; Expand (% 2 3)
(+ (*x 2 (1- 3)) 2) ;;; Evaluate (1- 3) -> 2
(+ (x 2 2) 2) ;33 Expand (x 2 2)
(+ (+ (x 2 (1- 2)) 2) 2) ;33 Evaluate (1- 2) ->1
+ (+ (x21) 2) 2) ;33 Expand (x 2 1)
(+ (+ (+ (*2 (1- 1)) 2) 2) 2) ;;; Evaluate (1- 1) ->0
+ &+ (x20 2) 2) 2) ;33 Evaluate (*x 2 0) -> 0
(+ (+ (+02) 2 2 ;33 Evaluate (+ 0 2) -> 2
(+ (+ 22 2) ;33 Evaluate (+ 2 2) -> 4
(+ 4 2) ;33 Evaluate (+ 4 2) -> 6
6

Table 3.3 Stutter execution path of (¥ 2 3).

since our smart + operation is very similar to the way you would “add” two piles
of stones. You would take one stone from the smaller of the two piles and place it
into the larger pile, repeating the process until the smaller pile was gone. If you
doubled the size of your original pile of stones, then the whole task would take you
twice as long as before. This is exactly what it means to have a time complexity of
O(z): If you multiply the input size by n, then the task will take roughly n times
as long as before. Isn’t it nice to see that mathematics agrees with intuition?

We are now going to take a quicker look at multiplication in Stutter. The
execution of * is illustrated in Table 3.3. The multiplication listing is very similar
to the listing for addition. Note, however, that we did not expand each of the +
function calls. A quick look of the listing shows that to perform (* a b) requires
b+1 expansions, b 1- operations, and b + operations, with a always being the second
argument to the + function. As before, the worst-case scenario for the * function
is for a and b to be equal to one another. Thus, denoting the input length by =z,
we know that a and b are equal to §. A quick estimate of the running time reveals
that the costliest portion of the function is the § additions that we have to make
with Z being the second argument. Since we are performing an O(z) operation
5 times with input length %, the time complexity of the * function is equal to
O(z?), which means that if you double the size of the arguments to the * function,
you can reasonably expect the function to take four times as long. Similarly, if you
increased the size of the arguments by a factor of n, it would take n? times as long to
compute the product. This means that in some ways multiplication is “harder” than
addition, but you knew this already. Once again, mathematics confirms intuition.

We are now ready to go back to the question posed at the beginning of this
section, “Which model of computation is more efficient than the others?” If you were
hoping for a definitive answer, then I am afraid you are going to be disappointed,

-39-

since some models of computation are ideally suited for certain problems that are
difficult for other models. However, what is truly interesting is that no matter what
the problem is and no matter what model you use to solve it, any of the other models
can compute the same result in time proportional to some polynomial of what it
took the first model to compute it. In other words, if it takes Stutter O(f(z)) time
steps to compute some function, then in the worst case a Turing machine can do
the same thing in O(g(f(z))) time, where g is a polynomial function.
Polynomial functions always have the form

=
G 2™ + 812" o0 4 G022 + 642 + 60,

where the a; terms are coefficients and n is the largest power. Under time complex-
ity analysis we would simplify the above function to O(z™). Computer scientists like
functions that take polynomial time because of all the possible functions, polynomi-
als are relatively well-behaved. On the other extreme, many well-known problems
have no known solution that takes less than exponential time. To see the differ-
ence in how these functions can grow, you can take a moderate polynomial like
z? and a small exponential function like 2*. For small values of = (less than 16),
the polynomial will be larger than the exponential. For slightly larger values of z,
such as 20 or 30, the exponential will explode in size relative to the polynomial.
Another redeeming feature of polynomials is that they are closed under composi-
tion. This means that if you take a polynomial of a polynomial, you will still have
a polynomial. Therefore, if a problem can be solved in a “reasonable” amount of
time under one model of computation, it can be solved in a “reasonable” amount of
time with any of the other models. If the problem takes exponential time to solve,
then it really isn’t all that solvable to begin with, and taking a polynomial of an
exponential makes it marginally worse. Thus, relatively speaking, all of the models
of computation are roughly equivalent in speed. Nevertheless, if you try to use the
Stutter exponentiation function, you’ll be in for a long wait, so these facts should
be taken with a grain of salt.

3.5 Universal Computation and Decision Problems

One of the nice things about Lisp and Stutter is that function definitions are also
lists. This property not only is cosmetically appealing but also lends the languages
a certain degree of power, in that functions can operate on function definitions very
easily. For example, in Stutter (or Lisp) one could theoretically write a Stutter pro-
gram with only about a hundred lines of code that is actually a Stutter interpreter
running on top of the original Stutter interpreter. You may have seen commer-
cial software that allows one type of computer to run software from another type.
Such programs are known as emulators, and they are normally very complicated.
Moreover, to write a program on a computer that emulates the computer that the
program is running on is normally very difficult. But Stutter’s simple and compact

-40-

e Input z and y.

e If z = 0, then output 0 and halt.

e If y = 0, then output 1 and halt.

e (We can assume that z > 1 and y > 1.)

e Set h to 1.

e Repeat until z¥ < h is true.
e Set [to h.
e Set h to 2 * h.

e (We now know that z¥ is between [and h.)

e Set m to (h+1)/2.

e Repeat until ¥ < m is false and z¥ < m + 1 is true.
e If ¥ < m is true, then set h to m.
o If z¥ < m is false, then set [to m.
e Set m to (h+1)/2.

e OQutput m.

Table 3.4 An algorithm that computes z¥ from queries.

representation makes doing the same thing under Stutter relatively easy. However,
having a universal computer emulate itself is always possible, no matter what the
underlying model of computation is.

Recall that we were able to reduce any program’s input into a single natural
number via Godelization. Using the same technique as before, it is possible to
represent all of the Stutter primitive function names and punctuation characters
as a list of integers. For example, we could represent car, cdr, cons, if, lambda,
quote, set, *)’, and ‘(" by the numbers 1 through 9. Any additional variables or
atom names that we need for a program could be mapped into the numbers 10, 11,
12, and so on. Now that the program is represented as a list of natural numbers,
one could code the entire program into a single Godel number.

The important thing to realize is that any of our models of computation can con-
vert a program representation into a Godel number. Moreover, they also can invert
the process to retrieve the original program. Combining the facts that computers
can invert Godel numbers and emulate themselves means that for any computational
model there theoretically exists a very special program that takes two numbers as
input and performs the following computation. The first number is interpreted as
the GGdel number of a program, and the second number is interpreted as the Godel
number for the input that one would want to supply to the program represented by
the first input number. This special program can emulate the Godelized program
on the Godelized input as if the real program were being executed. Such a program

-41-

is known as a universal computer, and I will use the notation U(z,y) to mean that
“the universal computer is executed with the Gédel number = of some program on
the Godel number y as input.”

We are also used to thinking of programs as producing some sort of meaningful
output. Yet it is possible to take any program and convert it to another program
that performs a computation similar to that of the first but outputs only either a 1
or a 0. The new program is referred to as solving a decision problem. Using decision
problems will provide us with another mathematical shortcut later on, but for now
let’s see what this idea really means.

Consider a program that takes two inputs, * and y (or a single Gédel number
for the two inputs), and outputs r¥. We could use this program to write another
program that takes three inputs, z, y, and z, and outputs a 1 if z¥ < 2z and 0
otherwise. Now suppose that you never really have access to the first program, and
you are allowed to only use the second program. How would you find out what z¥
really is? Table 3.4 gives an algorithm that computes z¥ by querying the second
program. The basic idea behind the algorithm is to perform what is known as a
binary search. It works in two stages. In the first stage the algorithm figures out an
upper bound for z¥ by doubling an estimate until the estimate exceeds z¥. Since
the previous estimate was less than ¥, we can assume that ¥ must be between [
(for low) and h (for high). In the second stage the algorithm computes a middle
point, m, between [and h and checks to see which half of the range (I to h) =¥ is
in. The value of [or h is updated to reflect the in which half z¥ was found, and the
process is repeated until ¥ is finally isolated.

How significant is the extra overhead in computing z¥ in such a manner? Sur-
prisingly, not very. As a worst case, exponentiation in Stutter takes O(2%) time
(where z is the input length). However, the binary search performs the exponenti-
ation operation only log,(z) times in the worst case, which is actually better than
a polynomial. Therefore, computing an exponent via a decision problem is just as
“hard” as the original exponentiation program but not significantly harder.

In general, any program can be converted into a similar program that solves a
decision problem, that is, set membership determination for some predetermined
set. Moreover, using the decision program instead of the original program increases
the original complexity only by an amount polynomial in the original running time.
Why would you want to compute something in such an awkward manner? You
wouldn’t, but theoretically this gives us a simplification in how computers work
that we will exploit in the next section.

3.6 Incomputability
Do there exist problems that are unsolvable by any computer? “Unsolvable” should

be understood in the strictest sense of the word; that is, if all of the computers in
the world worked in conjunction on one specific problem and they theoretically re-

-42-

Natural Numbers
Subsets 1 2 3 4 5 6

Even Numbers | [no| yes no yes no yes
Odd Numbers | yes yes no yes no

Primes no yes |yes no yes no
Squares yes no no yes| 1o no
Powers of 2 yes yes no yes no

Multiples of 3 no no yes no no |yes

| Diagonal Set | yes yes no no yes no - |

Table 3.5 Listing out simple sets to derive a diagonal set.

quired a billion times the age of the universe to finally compute the correct answer,
we would still consider such a problem “solvable.” This definition may seem un-
reasonable, but the fact is that there are many problems that can’t be solved even
with such loose criteria.

Recall once again that every program can be reduced to another program that
computes set membership. Some computable sets for sophisticated programs are
very complex, but others should be familiar to all of us. Listed in Table 3.5 are
some simple sets with the membership for a particular number being given in the
entries.

Since the number of programs and computable sets is countable, we can enu-
merate all of the computable sets (or programs) in one long list, just as we did with
the natural numbers in Chapter 2. Once again, the entries along the diagonal are
boxed for emphasis. With the diagonal entries we can construct a diagonal set such
that each member of that set is exactly opposite the entry in the main diagonal.
Amazingly, the full infinite set represented by the complement of the diagonal is not
computable because it differs by at least one entry from every computable set; thus
no computer program could ever exist that could tell you for any natural number
whether it was a member or not. Our diagonal set is a nice illustration and serves
as an existence proof, but it really doesn’t tell us what a truly impossible problem
looks like.

Alan Turing was the first to demonstrate that there are many problems that are
not computable. For the rest of this section, we will concentrate on a single note-
worthy incomputable problem that Turing discovered. Suppose you had a program
and some data that you wanted to run the program on. A reasonable question to
ask is: Will the program ever halt with a solution? Let’s assume that the program
you want to check looks for the solution to a problem and halts only when it finds
one. Therefore, the program may not ever stop if a solution doesn’t exist (or if

-43-

it is simply too dumb to find one). Wouldn’t it be nice if there existed a special
program that could tell us if another program would not halt? We could save a lot
of time by seeing if the program we are really interested in would halt, and only
then would we go to the next step of running it to find the solution. If such a
program existed, programmers could use it to see if other programs had bugs in
them that caused infinite loops. You could also use this special program on your
home computer’s operating system (which is just another program) to eliminate
those annoying software crashes.

Let’s assume that this special program exists. We will denote an instance of
this program by the notation M (z,y), where z is the Godel number of the program
that we wish to check and y is the Godel number of the input that we want to
feed to program x. Note that this is very similar to the universal computer that
we constructed in the last section, but instead of producing the normal output of
program z on y, it outputs

| 1ifU(z,y) halts
M(z,y) = { 0if U(z,y) does not halt

If the program M (z, y) exists, then we can easily construct another program, M’ (z),
based on it that gives the output

3 runs forever in an infinite loop if M(z,z) =1
M'(z) = J
halts with any output if M(z,z) =0

Don’t be bothered by the fact that we have purposely designed M’ so that it
can conceivably run forever (that is, diverge). Doing so is actually quite easy;
for example, the Stutter function defined by (set ’f (lambda () (£f))) will run
forever if called. Since M’ is just another program, it has its own unique Godel
number, which we will call m’. Let’s see what happens if we try to run M’(z) with
an input of m’. What do you think will happen? Will it halt or run forever?

Let’s assume for a moment that M’(m’) halts. If this is so, we know that
M(m'’,m") = 0 must be true. This means that program m’ with input m’ runs
forever, which contradicts our original assumption that M’(m') halts. Similarly,
assuming that M’(m’) runs forever, we can conclude that M(m’,m') = 1, which
further implies that program m’ on input m’ halts. Again, a contradiction! We are
faced with contradictions no matter what assumption we make because the original
program, M (z,y), simply cannot exist since it pretends to solve an unsolvable
problem.

Notice that the real difficulty in constructing a program similar to M (z,y) is in
determining when a program fails to halt. If a program will halt, then plugging the
program and input into the universal computer will tell us this is the case because
the universal computer will also halt. Determining if a program will not halt is
impossible because you would have to wait forever to see that it did not halt.

One tantalizing facet of our proof above is that it relies on running the program
M’ on its own Godel number, m’. Think about this: We are feeding a program itself
as input. In other words, the program is examining itself and trying to perform some
sort of self-analysis: Do I halt—or not? “Know thyself” seems to be an impossible
command for a computer program. If a model of computation is so weak that it
cannot ask questions about programs, then it will skirt the abyss, but at the cost of
being too stupid to solve interesting problems. Once a model of computation has
the ability to look within itself, it pays the price of not being able to halt under the
right (or wrong) set of circumstances.

3.7 Number Sets Revisited

Let’s put a few of the ideas from the last two sections together. Since every program
has a unique G6del number, let’s think about what those numbers look like. Ob-
viously they will be very large numbers. Moreover, not every natural number will
represent a legal program; for example, we could compute a Godel number for the
character sequence (xy)) (z’’ (), but such a string of characters does not represent
a legal Stutter program because it violates the syntax of the language. However,
syntax checking is not too difficult a problem, so it would be theoretically possible
to write a program that takes a single natural number as input and decides if it
represents a Godelization of a legal program. With this program, we could write
another program that also takes a single natural number, z, as input, but this time
the new program will output the zth Gédel number that represents a legal Stutter
program.

This new program maps the natural numbers to programs, just as we did in
Chapter 2 with simpler sets. Since we now know how to do a one-to-one mapping of
natural numbers to programs, consider the set of numbers that map to a program
that halts. This set is known as the halting set and has the property that it is
recursively enumerable (RE for short) but not computable.

A recursive set is a set of numbers such that some program can decide if a
number is a member or not. Recursive sets obviously can be finite in size, since a
program to decide set membership for a finite set can always be written as a simple
lookup table. There are also recursive sets that are infinite in size, such as the
set of even numbers, or primes, or the infinite set of numbers that represent the
Godelization of three numbers, z, y, and z, such that z¥ < z is true.

The really important attribute that recursive sets have is that a program can
determine if a number is or is not a member. On the other hand, for strictly RE
sets (i.e., a set that is RE but not recursive) a program can decide only if a number
is a member of the set. If a number is not a member of an RE set, there is no
general way of determining that this is the case.

Since for every strictly RE set there is a program that halts only if its input
is a member of the RE set, there are as many RE sets as programs (and natural

-45-

numbers); that is, there is a countably infinite number of RE sets. There is a
close relationship between RE sets and the computable irrational numbers. Recall
from Chapter 2 that two examples of irrational computable numbers are 7 and
V2. These numbers are called “computable” because you can write a program that
enumerates each digit, one after the other. All modern operating systems have the
ability to multitask, which gives the impression that the computer is running many
programs simultaneously. All of our formal models of computation are also capable
of emulating an arbitrary number of “virtual” computers. With such a scheme, it is
possible for a master program to spawn another virtual program that checks the set
membership of one particular number. At a future time step, the master program
can spawn another virtual program that checks a second potential member, and so
on. If any of these virtual programs ever halts with the answer “yes, this element
is a member of the RE set we are considering,” then the master program can halt
that particular virtual program. A virtual program may never halt with an answer
of “no” but instead just keeps running forever. Thus, it is theoretically possible for
one program to continuously spit out members of an RE set, which is why we say it
is recursively enumerable. The master program will never halt, but there also will
never be a last element that it gives a positive membership classification to. This
master program is similar to a program that would continuously print out digits of
m. The 7 program also will never halt (unless we explicitly tell it to halt at some
future time), but always produce another digit, and another, and so on. The main
difference between computable numbers and RE sets in this analogy is that we can’t
compute the nth member of an RE set the way we can compute the nth digit of ,
but it is still interesting to see that both RE sets and computable numbers can, in
a sense, be perfectly described by an algorithm.

Things get really strange when you start to think about sets that are not re-
cursively enumerable, or “NOT-RE.” To start, let’s consider a set that is the
complement of an RE set that is not recursive. The complement of a set consists
of all numbers that are not in the original set. We will give the label “CO-RE” to
sets that are constructed in this manner. The complement of the halting set is an
example of a CO-RE set. We can think of CO-RE sets as being special cases of the
more general NOT-RE set type.

Just as for RE sets, for a CO-RE set you could never write a program that
would halt if and only if the input was a member of the CO-RE set. However,
in many ways CO-RE sets are more pathological than RE sets because we cannot
even determine in a general way if some number is a member. We can answer only
the opposite question with any degree of reliability: Is this number not a member?
This is reminiscent of trying to draw a picture only by filling in the background—we
are not allowed to draw the foreground but can only infer things about it based on
what we see in the background. I like to think of CO-RE sets as the “black holes”
of recursive mathematics because of this property.

Yet, there are sets that are NOT-RE and also are not CO-RE. What could
this possibly mean? Such a set defies algorithmic description, meaning that no

-46-

Not RE
and Not CO-RE
Sets

4

RE Recursive
Sets \ Sets

Algorithmically Indescribable Objects

Figure 3.1 Subdivision of numbers and sets

program could tell you anything at all about a potential member with any certainty.
The truly disturbing thing about such sets is that there is an uncountably infinite
number of them —more than the recursive. RE, and CO-RE combined. These sets
are analogous to the uncomputable irrational numbers. You can imagine that the
digit expansion of an uncomputable irrational number is effectively random because
there is no consistent relationship between any of the digits. (We will talk more
about such random numbers in Chapter 9.)

Figure 3.1 gives a stylized representation of numbers and sets, and specific exam-
ples of these different set types are given in Table 3.6. Recursive sets are a special
case because their complements are also recursive. Recursive sets are trivially RE as
well. Sets that are not recursive but are RE are found in the large light-gray section
on the left of Figure 3.1. The NOT-RE sets that are also CO-RE are in the darkest
nonblack section. The black section contains the uncountably infinite NOT-RE sets
that are “very” NOT-RE, in that their complements are also NOT-RE. You can
view the lightest regions of the figure as denoting the most “knowable” sets. In the
darker regions the sets under consideration become more and more “unknowable.”

-47-

Set Type | Example]

Recursive (finite) | 1, 2, and 3

Recursive (infinite) | all even numbers

RE but not Recursive | the Gédel numbers of all programs that halt

CO-RE but not Recursive | the Godel numbers of all programs that never halt

NOT-RE | a CO-RE set that is not recursive or a “random” set

NOT-CO-RE | an RE set that is not recursive or a “random” set

Recursive Subset of an | the Gédel numbers of all programs that provably halt
RE but not Recursive Set

Recursive Subset of a | the Godel numbers of all programs that provably never halt
CO-RE but not Recursive Set

NOT-RE and NOT-CO-RE | “random” and beyond algorithmic description

Table 3.6 Examples of different types of sets

If you are still bothered by the fact that some infinities are larger than others,
then I have some bad news for you: It gets worse. Recall that Georg Cantor
was the first to realize that there is a difference between countable infinity and
uncountable infinity. Cantor also discovered power sets, which is another way of
deriving the differences in the infinities. A power set of another set, A, is the
set of all subsets of A. For example, if A = {1, 2, 3}, then the power set of A
is {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Notice that we include the
original set and the empty set. If A has n members, then its power set will have 2"
members. The set of all natural numbers has a power set. There is also a power set
of the power set of all of the natural numbers. The sizes, or cardinalities, of each
successive power set are known as the transfinite numbers, with the size of the set
of natural numbers being the first transfinite number. It is regarded as true but not
provable that the second transfinite number is equal to the cardinality of the real
numbers. What is really astounding is that there is an infinite number of transfinite
numbers.

-48-

