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ABSTRACT

We describe an algorithm for Byzantine agreement that is
scalable in the sense that each processor sends only O(y/n)
bits, where n is the total number of processors. Our al-
gorithm succeeds with high probability against an adaptive
adversary, which can take over processors at any time during
the protocol, up to the point of taking over arbitrarily close
to a 1/3 fraction. We assume synchronous communication
but a rushing adversary. Moreover, our algorithm works in
the presence of flooding: processors controlled by the adver-
sary can send out any number of messages. We assume the
existence of private channels between all pairs of processors
but make no other cryptographic assumptions. Finally, our
algorithm has latency that is polylogarithmic in n. To the
best of our knowledge, ours is the first algorithm to solve
Byzantine agreement against an adaptive adversary, while
requiring o(n?) total bits of communication.
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1. INTRODUCTION

Recent years have seen rapid growth in networks that
are characterized by large sizes and little admission control.
Such networks are open to attacks by malicious users, who
may subvert the network for their own gain. To address this
problem, the research community has been recently revisit-
ing techniques for dealing with nodes under the control of a
malicious adversary [21, 8, 9, 5].

The Byzantine agreement problem, defined in 1982, is the
sine qua mon of handling malicious nodes. With a solu-
tion to Byzantine agreement, it is possible to create a net-
work that is reliable, even when its components are not.
Without a solution, a compromised network cannot per-
form even the most basic computations reliably. A testa-
ment to the continued importance of the problem is its ap-
pearance in modern domains such as sensor networks [26];
mediation in game theory [1, 2]; grid computing [5]; peer-
to-peer networks [25]; and cloud computing [27]. However,
despite decades of work and thousands of papers, we still
have no practical solution to Byzantine agreement for large
networks. One impediment to practicality is suggested by
the following quote from a recent systems papers (see also [6,
22, 4, 3]): “Eventually batching cannot compensate for the
quadratic number of messages [of Practical Byzantine Fault
Tolerance (PBFT)]” [10]

In this paper, we describe an algorithm for Byzantine
agreement with only O(n'/?) bit communication per pro-
cessor overhead. Our techniques also lead to solutions with
O(n'/?) bit complexity for generating a distributed sequen-
tial version of a bit-fixing random source which generates a
polylogarithmic length string, most of which are global coin-
flips generated uniformly and independently at random and
agreed upon by all the good processors. Our protocols are
polylogarithmic in time and, succeed with high probability.*

We overcome the lower bound of [11] by allowing for a
small probability of error. This is necessary since this lower
bound also implies that any randomized algorithm which
always uses no more than o(n?) messages must necessarily
err with positive probability, since the adversary can guess
the random coinflips and achieve the lower bound if the guess
is correct.

1.1 Model and Problem Definition

We assume a fully connected network of n processors
Pp1, P2, ..., Pn whose ID’s are common knowledge. Each pro-
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cessor has a private random coin. We assume that all com-
munication channels are private and that whenever a pro-
cessor sends a message directly to another, the identity of
the sender is known to the recipient, but we otherwise make
no cryptographic assumptions. We assume an adaptive ad-
versary. That is, the adversary can take over processors at
any point during the protocol, up to a total of 1/3 — € frac-
tion of the processors for any positive constant e. When an
adversary takes over a processor, it learns the processor’s
state. The adversary is malicious: it chooses the input bits
of every processor, bad processors can engage in any kind of
deviations from the protocol, including false messages and
collusion, or crash failures, while the remaining processors
are good and follow the protocol. Bad processors can send
any number of messages.

We assume a synchronous model of communication. In
particular, we assume there is a known upper bound on the
transit time of any message and communication proceeds
in rounds determined by this transit time. The time com-
plexity of our protocols are given in the number of rounds.
However, we assume a rushing adversary which receives all
messages sent by good processors to bad processors before
sending out its own messages.

In the Byzantine agreement problem, each processor be-
gins with either a 0 or 1. An execution of a protocol is
successful if all processors terminate and, upon termination,
agree on a bit held by at least one good processor at the
start.

We define a distributed, sequential variant of a bit-fixing
(random) source, see [7], which we call an (s,t) random
source or random source, for short. This is a distributed
protocol which generates a stream of words wi, ..., ws such
that ¢ are generated uniformly and independently at ran-
dom, and are agreed upon by all good processors. An ad-
versary chooses the indices of these t words and the values
received by the processors of each remaining word (these
values may not be agreed upon). In fixing the value(s) of a
word at index j the adversary knows the values only of the
words which appear in positions ¢ < j. We also consider a
non-sequential version in which the sequence is generated in
parallel and the adversary knows all the random words be-
fore fixing its words. An example is a simple (n,2n/3) O(n)
time protocol, O(wn) bit complexity per processor for words
of length w: For ¢ = 1,..,n, each p; randomly picks a word
and sends it to all other processors. The challenge here is
to reduce the length of the stream and the communication
cost per processor.

1.2 Results

We use the phrase with high probability (w.h.p.) to mean
that an event happens with probability at least 1 —1/n° for
every constant ¢ and sufficiently large n. For readability, we
treat logn as an integer throughout.

In all of our results, n is the number of processors in a syn-
chronous message passing model with an adaptive, rushing
adversary that controls less than 1/3 — € fraction of proces-
sors, for any positive constant ¢ We have three main results.
The first result makes use of the second and third ones,
but these latter two results may be of independent interest.
First, we show:

THEOREM 1. [BA | There ezists a protocol which w.h.p.
computes Byzantine agreement, runs in polylogarithmic time,
and uses O(n1/2) bits of communication per processor.

Our second result concerns almost-everywhere (“a.e.”) Byzan-
tine agreement and, almost-everywhere (“a.e.”) random source
where a (1 — 1/logn) fraction of the good processors come
to agreement on a good processor’s input bit, or the random
words, resp.

THEOREM 2. [ALMOST EVERYWHERE BYZANTINE AGREE-
MENT]| For any € > 0, there exists a protocol that w.h.p. com-
putes a.e. Byzantine agreement; uses O(n4/€) bits of commu-
nication per processor; and runs in time O((log?™* n/loglogn).
In addition, this protocol can be used as an a.e. (s,2s/3) ran-
dom source for an additional cost of O(logn/loglogn) time
and O(n4/é) bits of communication per bit of the stream, for
s = 0(log®> ™ n).

Our third result concerns going from a.e. Byzantine agree-
ment to Byzantine agreement. It makes use of the a.e. (s,t)
random source in Lemma 2. We actually prove a result
below that is stronger than what is necessary to establish
Theorem 1.

THEOREM 3. Assume n/2 + en good processors agree on
a message M and have access to an a.e. (s,t) random source,
where t > clogn, which generates s words of length (1/2)1g,n
in O(f(s)) time and g(s) bits of communication per pro-
cessor. Then there is a protocol that ensures with proba-
bility 1 — 1/n° that all good processors output M and n.
Moreover this protocol runs in O(s + f(s)) time and uses
O(snl/Z + g(s)) bits of communication per processor.

1.3 Techniques

Our protocol uses a sparse network construction and tour-
nament tree similar to the network and tournament network
in [19]. This past result gives a bandwidth efficient a.e.
Byzantine agreement algorithm for a non-adaptive adver-
sary, which must take over all its processors at the start of
the algorithm. The basic idea of the algorithm from [19]
is that processors compete in local elections in a tourna-
ment network, where the winners advance to the next high-
est level, until finally a small set is elected that is represen-
tative in the sense that the fraction of bad processors in this
set is not much more than the fraction of bad processors in
the general population.

This approach is prima facie impossible with an adaptive
adversary, which can simply wait until a small set is elected
and then can take over all processors in that set. To avoid
this problem, we make use of two novel techniques. First,
instead of electing processors, we elect arrays of random
numbers, each generated initially by a processor. Second,
we use secret sharing on the contents of the arrays to make
sure that 1) the arrays are split among an increasingly larger
numbers of processors as the array is elected higher up in
the tournament. As the nodes higher in the tree have more
processors (and the memories of previously held shares are
erased), the adversary must corrupt an increasingly larger
number of processors to learn the secret; 2) the secrets in
the arrays cannot be reconstructed except at the appropriate
time in the protocol. Critical to our approach is the need to
iteratively reapply secret sharing on shares of secrets that
were computed previously, in order to increase the number
of processors the adversary must corrupt as elections occur
higher up in the tournament.

Another contribution of this paper is a method a.e. BA-
with-random-source for computing a.e. Byzantine Agreement



given an a.e. distributed random source. In [19], each elec-
tion was run by a small group of participants using Feige’s
bin selection protocol [12]. Adapting Feige’s bin selection
protocol from an atomic broadcast model to a message-

passing model requires a Byzantine agreement protocol. In [19],

this was run by the small group of election participants. Be-
cause we are now faced with an adaptive adversary which
can adaptively corrupt small groups, we instead need to
implement BA on a much larger sets of processors. To
achieve this, we use our algorithm, a.e.BA-with-random-
source, which is an a.e. version of Rabin’s algorithm [24]
(which requires a global coin) run on a sparse network. To
run an a.e. version of Rabin’s algorithm in a node on a par-
ticular level, we supply coinflips using an a.e.random-source
generated from the arrays which won on the previous tour-
nament level.

Our final new technique is a simple but non-obvious pro-
tocol for going from a.e. Byzantine agreement and an a.e.
random source to Byzantine agreement, with an adaptive
adversary (Section 4). A past result [18] shows that it is pos-
sible to do this with a non-adaptive adversary, even without
private channels. However, the technique presented in this
paper for solving the problem with an adaptive adversary is
significantly different from the approach from [18].

1.4 Map of the algorithms

Initially, processor p; provides an array of random bits to
leaf i of the tournament tree. There are five algorithms: BA,
a.e.BA, a.e. BA-with-random-source, a.e.random-source, and
a.e.BA-to-BA.

e BA (Section 5) solves Byzantine agreement and yields
Theorem 1.

BA calls a.e. BA (Section 3) which solves a.e. Byzantine
agreement, yielding Theorem 2, and then calls a.e. BA-
to-BA (Section 4) which yields Theorem 3.

e a.e.BA-to-BA uses a.e.random-source to go from a.e.
Byzantine agreement to Byzantine agreement.

e a.e.random-source (Section 3.6) is a simple variant of
a.e.BA which gives an a.e. sequential (s,¢) random
source.

e a.e.BA calls a.e. BA-with-random-source (Section 3.3)
for each set of processors in each node of the tour-
nament tree. This protocol produces a.e. Byzantine
agreement for each set, given an a.e. random source
for that set.

source generated from the subtree of the node in ques-
tion. This implementation of a.e.random-source is im-
plicit in the description of a.e.BA in Section 3.

2. RELATED WORK

As mentioned previously, this paper builds on a main idea
from [19] which gives a polylogarithmic time protocol with
polylogarithmic bits of communication per processor for a.
e. Byzantine agreement, leader election, and universe re-
duction in the synchronous full information message pass-
ing model with a nonadaptive rushing adversary. The result
from [18] shows how the a.e. universe reduction problem (i.e.,
to select a small representative subset of processors known

Each call of a.e. BA-with-random-source uses a.e.random-

to almost all the processors) can be used to go from a.e.
Byzantine agreement to Byzantine agreement with a non-
adaptive adversary. Empirical results in [17] suggest that
the algorithms from [19, 18] use less bandwidth in practice
than other popular Byzantine agreement algorithms once
the network size reaches about 1,000 nodes.

A.e. agreement in sparse networks has been studied since
1986. See [19, 20] for references. The problem of almost
everywhere agreement for secure multiparty computation on
a partially connected network was defined and solved in 2008
n [13], albeit with Q(n?) message cost.

In [20], the authors give a sparse network implementation
of their protocols from [19]. It is easy to see that every-
where agreement is impossible in a sparse network where
the number of faulty processors t is sufficient to surround
a good processor. A protocol in which processors use o(n)
bits may seem as vulnerable to being isolated as in a sparse
network, but the difference is that without access to private
random bits, the adversary can’t anticipate at the start of
the protocol where communication will occur. In [14], it is
shown that even with private channels, if a processor must
pre-specify the set of processors it is willing to listen to at
the start of a round, where its choice in each round can de-
pend on the outcome of its random coin tosses, at least one
processor must send Q(nl/ 3) messages to compute Byzantine
agreement with probability at least 1/241/logn. Hence the
only hope for a protocol where every processor sends o(n'/?)
messages is to design outside this constraint. We note that
a.e.BA falls within this restrictive model, but a.e. BA-to-BA
does not, as the decision of whether a message is listened to
(or acted upon) depends on how many messages carrying a
certain value are received so far.

3. ALMOST EVERYWHERE BYZANTINE
AGREEMENT

We now outline our main algorithm, a.e. BA. The proces-
sors are arranged into nodes in a g-ary tree. Each processor
appears in polylogarithmic places in each level of the tree,
so that a large fraction of nodes on each level must con-
tain a majority of good processors. The levels of the tree
are numbered from the leaf nodes (level 1) to the root (level
£*). Nodes at higher levels contain more processors; the root
contains all processors.

At the start, each processor p;, generates an array of ran-
dom bits, consisting of one block for each level of the network
and secret shares each block with the processors in the ‘"
node on level 1.

Beginning with the lowest level of the tree, (the processors
of) each node runs an election among r arrays from which a
subset of w arrays are selected. To run this election at level
¢, the £ block of each array supplies a random bin choice and
random bits to run a.e. BA-with-random-source to agree on
each bin choice of every competing array. The shares of the
remaining blocks of arrays which remain in the competition
are further subdivided into more shares and split among
the larger number of processors in the parent node (and
erased from the current processors’ memories.) In this way,
as an array becomes more important, an adversary cannot
learn its secret value by taking over the smaller number of
processors on lower levels which used to share the secret.

Random bits are revealed as needed by sending the iter-
ated shares of secrets down paths to all the leaves of the



subtree rooted at the node where the election is occurring.
In particular, at each level ¢, -shares are collected to recon-
struct £— 1-shares. In the level 1 nodes, each processor sends
the other processors its 1-share to reconstruct the original
secret.

The winning arrays of a node’s election compete in elec-
tions at the next higher level. At the root which contains
all processors, there are a small number of arrays which can
be used to run a.e.BA or a.e.random-source, to produce the
output of the protocol.

The method of secret sharing and iterative secret sharing
is described in Section 3.1. Networks and communication
protocols are described in Section 3.2; the election routine is
described in Section 3.4. The procedure for running a.e. BA-
with-random-source is described in Section 3.3. The main
procedure for a.e.BA is in 3.5. The extension of the almost
everywhere Byzantine Agreement protocol to a solution for
a.e.random-source is in Section 3.6. Finally the analysis
and correctness proof can be found in Sections 3.7 and 3.8,
respectively.

3.1 Secret sharing

We assume any secret sharing scheme which is a (n,7)
threshold scheme, for 7 = n/3. That is, each of n players
are given shares of size proportional to the message M and 7
shares are required to reconstruct M. Every message which
is the size of M is consistent with any subset of 7 or fewer
shares, so no information as to the contents of M is gained
about the secret from holding fewer than 7 shares. Further-
more, we require that if a player possesses all the shares and
less than n/3 are falsified by an adversary, the player can
reconstruct the secret. See [23] for details on constructing
such a scheme. We will make extensive use of the following
definition.

DEFINITION 1. secretShare(s): To share a sequence of se-
cret words s with m1 processes (including itself) of which
71 — 1 may be corrupt, a processor (dealer) creates and dis-
tributes shares of each of the words using a (ni,m1) secret
sharing mechanism. Note that if a processor knows a share
of a secret, it can treat that share as a secret. To share that
share with na processors of which at most T2 — 1 processors
are corrupt, it creates and distributes shares of the share us-
ing a (n2,72) mechanism and deletes its original share from
memory. This can be iterated many times. We define a 1-
share of a secret to be a share of a secret and an i-share of
a secret to be a share of an i — 1-share of a secret.

To reveal a secret sequence s, all processors which receive
a share of s from a dealer send this shares to a processor p
which computes the secret. This also may be iterated to first
reconstruct ¢ — 1 shares from i shares, etc., and eventually
the secret sequence.

LEMMA 1. If a secret is shared in this manner up to i
iterations, then an adversary which possesses less than T1
1-shares of a secret and for 1 < j < i, less than 7; j-shares
of each j — 1-share that it does not possess, learns no infor-
mation about the secret.

ProoFr. The proof is by induction. For level 1, it is true
by definition of secret sharing. Suppose it is true up to ¢
iterations.

Let v be any value. By induction, it is consistent with the
known 7; — 1 shares on all levels j < 4 and some assignment

S; of values to sets of unknown n; — 7; + 1 i-shares. Then
consider the shares of these shares that have been spread to
level i 4+ 1. For each value of an i-share given by S;, there is
an assignment S; 41 of values to the unknown n;4+1 —7i41+1
shares consistent with that value. Hence knowing in addition
the 7,41 — 1 i + 1-shares of each i-share does not reveal any
information about the secret. [

3.2 Network and Communication

We first describe the topology of the network and then
the communications protoocols.

3.2.1 Samplers

Key to the construction of the network is the definition of
an averaging sampler which was also used heavily in [16, 20].
We repeat the definition here for convenience. Our protocols
rely on the use of averaging (or oblivious) samplers to deter-
mine the assignment of processors to nodes on each level and
to determine the communication links between processors.
Samplers are families of bipartite graphs which define sub-
sets of elements such that all but a small number contain at
most a fraction of “bad” elements close to the fraction of bad
elements of the entire set. Intuitively, they are used in our
algorithm in order to generate samples that do not have too
many bad processors. We assume either a nonuniform model
in which each processor has a copy of the required samplers
for a given input size, or else that each processor initializes
by constructing the required samplers in exponential time.

DEFINITION 2. Let [r] denote the set of integers {1,...,r},
and [s]* the multisets of size d consisting of elements of [s].
Let H : [r] — [s]? be a function assigning multisets of size d
to integers. We define the size of the intersection of a mul-
tiset A and a set B to be the number of elements of A which
are in B.

Then we say H is a (0,6) sampler if for every set S C [s]

at most a § fraction of all inputs x have W > % +0.

The following lemma establishing the existence of sam-
plers can be shown using the probabilistic method. For
s € [s], let deg(s’) = |r' € [r] | s.t. s € H(r')}|. A slight
modification of Lemma 2 in [16] yields:

LEMMA 2. For every r,s,d,0,5 > 0 such that 2log,(e) -
d6%5 > s/r+1—4, there exists a (0, 8) sampler H : [r] — [s]*
and for all s € [s], deg(s) = O((rd/s)logn).

Note that limiting the degree of s limits the number of
subsets that any one element appears in.

For this paper we will use the term sampler to refer to a
(1/1ogn,1/logn) sampler, where d = O((s/r + 1) log®n).

3.2.2 Network structure

Let P be the set of all n processors. The network is struc-
tured as a complete g-ary tree. The level 1 nodes (leaves)
contain ki = log®n processors. Each node at height ¢ > 1
contains ke = q‘k; processors; there are (n/k¢) log® n nodes
on level £; and the root node at height £* = log, (n/k1) con-
tains all the processors. There are n leaves, each assigned
to a different processor. The contents of each node on level
¢ is determined by a sampler where [r] is the set of nodes,
[s] = P and d = k.

The edges in the network are of three types:



1. Uplinks: The uplinks from processors in a child node
on level ¢ to processors in a parent node on level ¢+ 1
are determined by a sampler of degree d = ¢qlog®n, [r]
is the set of processors in the child node and [s] is the
set of processors in the parent node. Let C,C’ be child
nodes of a node A. Then the mapping of processors in
C,C" to [r] (and A to [s]) determines a correspondence
between the uplinks of C and C’.

2. £ — links: The ¢ — links between processors in a node
C' at any level £ > 1 to C’s descendants at level 1 are
determined by a sampler where [r] is the set of proces-
sors in the node C and [s] is C’s level 1 descendants.
Here, r = ¢‘k1; s = ¢*; d = O(log®n) and the maxi-
mum number of ¢ — links incident to a level 1 node is
O(k11og* n).

3. Links between processors in a node are also determined
by a sampler of polylogarithmic degree. These are de-
scribed in a.e. BA-with-random-source.

DEFINITION 3. Call a node good if it contains at least a
2/3 + € fraction of good processors. Call it bad otherwise.

From the properties of samplers, we have:

1. Less than a 1/logn fraction of the nodes on any level
are bad.

2. Less than a 1/logn fraction of processors in every node
whose uplinks are connected to fewer than a 2/3 +¢—
1/logn fraction of good processors, unless the parent
or child, resp. is a bad node. We call such a set of
uplinks for a processor bad.

3. If alevel £ node C has less than a 1/2—e fraction of bad
level 1 descendants, then less than a 1/logn fraction
of processors in C' are connected through ¢ — links to
a majority of bad nodes on level 1.

3.2.3 Communication protocols

We use the following three subroutines for communica-
tion. Initially each processor p; shares its secret with all the
processors in the " node at level 1.

sendSecretUp(s): To send up a sequence s of secret words,
a processor in a node uses secretShare(w) to send to each of
its neighbors in its parent node (those connected by uplinks)
a share of each word w of s. Then the processor erases s from
its own memory.

sendDown(w,1): After a secret w has been passed up a
path to a node C, the secret can be recovered by passing
it down to the processors in the 1-nodes in the subtree. To
send a secret word w down the tree, each processor in a
node C on level ¢ sends its i-shares of w down the uplinks
it came from plus the corresponding uplinks from each of
its other children. The processors on level ¢ — 1 receiving
the i-shares use these shares to reconstruct ¢ — 1-shares of
w. This is repeated for lower levels until all the 1-shares
are reconstructed by the processors in all the 1-nodes in C’s
subtree. The processors in the 1-node each send each other
all their shares and reconstruct the secrets received. Note
that a processor may have received an i-share generated from
more than one i — 1 share because of the overlapping of sets
(of uplinks) in the sampler.

sendOpen(w, £) : This procedure is used by a node C on any
level £ to learn a word w held by the set of level 1 nodes in
C’s subtree. Each processor in each level 1 node A sends
w up the ¢ — links from A to a subset of processors in C.
A processor in C receiving a version of w from each of the
processors in a level 1 node takes a majority to determine
the node A’s version of w. Then it takes a majority over the
values obtained from each of the level 1 nodes it is linked to.

3.2.4 Correctness of communications

DEFINITION 4. A good path up the tree is a path from
leaf to root which has no nodes which become bad during the
protocol.

LeEMMA 3. 1. IfsendSecretUp(s) is executed up a path
in the tree and if the adversary learns a word of the
secret s, there must be at least one bad mode on that
path.

2. Assume that s is generated by a good processor and
sendSecretUp(s) is executed up a good path in a tree to
a node A on level £, followed by sendDown(w, £) where
w is a word of s, and then sendOpen(w). Further
assume there are at least a 1/2 + € fraction of nodes
among A’s descendants on level 1 which are good, and
whose paths to A are good. Then a1—1/logn fraction
of the good processors in A learn w.

PROOF. Proof of (1): If sendSecretUp(s) is executed up
a good path of length ¢, then all secrets passed up uplinks
incident to a 2/3 majority of good processors will remain
secret, by Lemma 1.

We consider the effect of secrets passed up uplinks incident
to less than 2/3 majority of good processors. Let us define
a processor in a node as “bad” if it is bad or it is good and
its share is learned by the adversary. We show by induction
on the level number that when secrets are passed from a leaf
to level ¢ for any level ¢, the level ¢ node on a good path up
to level ¢ contains no more than 1/3 — e 4+ 1/logn fraction
of processors which are “bad”.

For the basis case, i = ¢, only the shares received by bad
processors in the level ¢ node are learned by the adversary.
Since the node is good, there are no more than a 1/3 — ¢
fraction of “bad” processors.

We assume by induction that no more than 1/3 — e +
1/log n processors in nodes on levels 7 through ¢ are “bad”.
We show it is true for level ¢ — 1. Since the uplinks are
determined by a (1/logn,1/logn)-sampler, when the pro-
cessors in a node on level ¢ — 1 pass the secret shares up
the uplinks, no more than a 1/logn fraction of the uplink
sets are incident to more than 1/3 — e 4+ 2/logn fraction of
“bad” processors on level i. The adversary through these
processors may thus learn a 1/logn fraction of ¢ — 1-shares
sent by processors in the level ¢ — 1 node in the path. Thus
no more than a 1/logn fraction of processors holding the
i — l-shares are “bad” in addition to the bad processors in
the level ¢ — 1 node, for a total fraction of 1/3 —e—1/logn
“bad” processors. This completes the induction.

We have shown that no more than 1/3 —e+1/logn frac-
tion of 1-shares will be learned by the adversary. Thus, the
adversary cannot learn the secret, which completes the proof
of part (1) of the lemma.

Proof of (2): The proof of part (1) shows that on each
level of a good path, no more than a 1/logn fraction of



good processors in the path have uplinks which are incident
to less than a 2/3 fraction of good processors. Hence when
the i-shares are returned down the uplinks they were sent,
for all but 1/ log n processors, each receives enough shares to
recover the 7 — 1 share that it once had. The same is true for
the processors in the other good paths of the subtree rooted
at A. In particular, all but 1/logn fraction of processors
learn the secret in each of the leaves of the subtree rooted
at A, for all leaves on good paths to A. If there are at least
1/2 + € fraction of such leaves then by property (3) of the
samplers, at least 1 — 1/logn fraction of the processors in
A will be connected by ¢-links to a majority of such leaves.
Thus when sendOpen is executed, 1 — 1/logn fraction of
processors in A will learn the secret correctly when they
take the majority of values held by each leaf to which they
are connected by ¢-links, where that value is determined by
a majority of processors in the leaf. [

3.3 a.e.BA with random source

We present the algorithm and otherwise leave out the
proof of Theorem 4 for lack of space. We assume here that
the fraction of bad processors is no more than 1/3 + € for
some fixed € > 0. We assume access to a sequential (s, t)
a.e.random-source, where s and t are polylogarithmic, which
outputs sequences of bits, one per call.

THEOREM 4. [a.e.BA-with-random-source] Given a sequen-

tial (s,t) a.erandom-source which generates s bits in f(s)
time and g(s) bit complezity per processor, and let C1 and
Cy be any positive constants. Then there is a protocol which
runs in time O(f(s)) with bit complexity O(logn+ g(s)) per
processor, such that with probability at least 1 —6761"—1—1/2’5,
all but Can/logn of the good processors commit to the same
vote b, where b was the input of at least one good processor.

The algorithm is an implementation of Rabin’s global coin
toss Byzantine agreement protocol except that the coin toss
is a.e., rather than global. In addition, only some of the coin
tosses are random, and broadcast is replaced by sampling a
fraction of the other processors according to the edges of a
certain type of O(logn) regular graph. This graph has the
property that almost all of the samples contain a majority
of processors whose value matches the value of the majority
of the whole set.

Algorithm 1 a.e. BA-with-random-source

Set vote <« b;; For s rounds do the following:

1. Send wote to all neighbors in Gj
Collect votes from neighbors in G;
maj < majority bit among votes received;
fraction «— fraction of votes received for maj;
coin <« result of call to a.e.random-source;
If fraction > (1 — €)(2/3 + €/2) then vote «— maj

else

N o ok W

(a) If coin = “heads”, then vote « 1, else vote «— 0

At the end of all rounds, commit to vote as the output bit;

3.4 Arrays and the election subroutine

Here we describe the array of random bits generated by
each processor. Each processor generates a sequence of blocks,

each except the last to be used for the elections in the nodes
along the path to the root are disgarded. The last block is
only used to decide the final output bit, and contains only
the bits needed to compute a.e. BA-with-random-source. To
understand the blocks, we first describe Feige’s election pro-
cedure.

The procedure is simple: each processor announces a bin
number in some small range. The winners are the processors
which choose the bin picked by the fewest. Here we describe
Feige’s election procedure [12], adapted to this context. We
assume r candidates are competing in the election.

DEFINITION 5. Let numBins = r/(5clog®n), and let a
word consist of lognumBins bits. In general, a block B
is a sequence of bits, beginning with an initial word (bin
choice) B(0) followed by r words B(1), B(2),..,B(r), each
bit of which is used as coins in running a.e.BA-with-random-
source on each bit of the bin choices for each of the r can-
didates. The input to an election is a set of r candidate
blocks labelled B, ..., By. The output is a set of r/numBins
indices W. Let w = |W| = 5clog® n.

‘We now describe the election subroutine.

1. In parallel, for i = 1,...,r, the processors run a.e.BA-
with-random-source on the bin choice of each of the
r candidate blocks. Round j of a.e. BA-with-random-
source to determine #’s bin choice is run using the i*"
word of the j*" processor’s block B ().
Let by, ..., b, be the decided bin choices.

2. Let min =min{i | }_, B;(0) = i}.
W —{j | B;(0) = min}.
(If [W| < r/numBins then W is augmented by adding

the first r/numBins—|W/| indices that would otherwise
be omitted.)

Then Feige’s result for the atomic broadcast model holds
(except agreement on the choices is a.e.):

LEMMA 4. [12] Let S be the set of bin choices gener-
ated independently at random. Then even if the adversary
sets the remaining bits after seeing the bin choices of S,

with probability at least 1 — 9=<*ISI/BnumBins) thore gre at
least (1/numBins — €)|S| winners from S. In particular,
if |S| > 2/3r and r/numBins > 5clog®n then with prob-
ability 1 — 1/n° the fraction of winners from S is at least
|S|/r —1/logn. The winners are known to all but 1/logn
fraction of the processors.

3.5 Main protocol for a.e. BA

The main protocol for a.e.BA is given as Algorithm 2.
Figure 1, which we now describe, outlines the main ideas
behind the algorithm. The left part of Figure 1 illustrates
the algorithm when run on a 3-ary network tree. The pro-
cessors are represented with the numbers 1 through 9 and
the ovals represent the nodes of the network, where a link
between a pair of nodes illustrates a parent child relation-
ship. The numbers in the bottom part of each node are the
processors contained in that nodes. Note that the size of
these sets increase as we go up tree. Further note that each
processor is contained in more than one node at a given level.
The numbers in the top part of each node represent the pro-
cessors whose blocks are candidates at that node. Note that
the size of this set remains constant (3) as we go from level



2 to level 3. Further note that each processor is a candidate
in at most one node at a given level.

The right part of Figure 1 illustrates communication in
a.e.BA for the election subroutine occurring at a fixed node
at level £. The figure illustrates three main parts of the
algorithm (time moves from left to right). First, on the
left, is “Expose bin Choices”. Here, the bin choices of the
candidates at the level £ node are revealed in two parts:
(1) hop-by-hop communication down the network using the
sendDown protocol from level ¢ to level 1, at the end of
which the nodes at level 1 know the relevant bin choices;
and (2) direct communication up the network using the
sendOpen protocol of these bin choices from the level 1
nodes to the level ¢ node.

The second part of the algorithm is “Agree Bin Choices”.
This involves running a.e. BA-with-random-source which uses
“horizontal” communication among the processors in the node
at level ¢ that are running a.e. BA-with-random-source. It
requires the output of a sequential a.e.random-source. This
is provided by communication within the subtree rooted at
the node via hop-by-hop communication down the network,
using sendDown, at the end of which the nodes at level 1
know the outcome of the next coin toss; and direct commu-
nication up the network, using sendOpen, of the coin toss
outcome from the level 1 nodes to the level ¢ node.

The third and final part of the algorithm is “Send Shares
Winners”, where shares of the blocks of the winners at the
level £ node are sent to the level £ 4+ 1 parent node, via use
of the procedure sendSecretUp.

3.6 Modification to a.e. random-source

The protocol a.e. BA can be modified easily to solve (s, 2s/3)-

a.e.random-source for s a sequence of wqg words. Add one
more block of the desired length to each processor’s array at
the start. At level £*, use sendDown and sendOpen to re-
cover each word, one from each of the wq contestants. The
time and bit complexity is given in Theorem 2.

3.7 Bit complexity and running time analysis

To optimize, we set the degree of the tree, ¢ to ¢ =
(logn)?, § > 4. Recall from Section 3.4 that w = O(log® n).
The proof of the following lemma is fairly straightforward
and is omitted for lack of space. One not-so-straightforward
point is that a processor in a parent node may receive up-
links from several different processors in a child node, and
this will increase the load on the processor by a d,, factor
with each increase in level of the processor, where d,, is the
maximum number of such uplinks from one child node. d.,
is limited by the construction of the sampler.

LEMMA 5. For any § > 0, Almost Everywhere Byzantine
Agreement protocol requires O(n4/6) bits per processor and
runs in time O((logn)**°/loglogn)).

3.8 Proof of correctness

Call an array at node A good if it is generated by good
processors and it is known by a 1 — O(1/logn) fraction of
good processors at node A.

An election is good at a node A if the processors can carry
out a.e.BA-with-random-source, a 1 — 1/logn fraction of
good processors agree on the result, and the election winners
are representative, i.e., the fraction of good arrays in the set
of winners is no less than the fraction of good arrays among
the contestants minus a 1 — 1/logn fraction.

Algorithm 2 a.e.BA

1. Generate Secrets and Send Up Shares:
For all ¢ in parallel

(a) Each processor p; generates an array of ¢ blocks B;
and uses secretshare to share its array with the :*"
level 1 node;

(b) Each processor in the i*" level 1 node uses
sendSecretUp to share its 1-share of B; with
its parent node and then erases its shares from
memory.

2. Elect Winners at Root Node:
Repeat for £ =2 to £* — 1

(a) Expose bin choices:

For each processor in each node C' on level ¢:
fort=1,..,wandi=1,..,g—1, let B;_1)w4+: be
the t'" array sent up from child 5. ( If £ = 2 then
w=1)

W < Bi|Ba..| B,

Let F' be the sequence of first blocks of the arrays
of W, i.e., the it" array of F is the first block of
the i'" array of W. Let S be the sequence of the
remaining blocks of each array of W.

In parallel, for all candidates i = 1,2,..,r

i. sendDown(F;(1));

ii. sendOpen(F;(1),£).

(b) Agree on bin choices:

If £ < ¢ then for rounds i =1, ..., r

i. Expose coin flips: Generate r random words
for the 7" round of a.e. BA-with-random-source
to decide each of r bin choices.

In parallel, for all contestants j = 1,..,7
A. sendDown(F;(7)); upon receiving all 1-
shares, level 1 processors compute the secret
bits F(j));
B. sendOpen(F;(j),£).

ii. Run the " round of a.e.BA-with-random-
source in parallel to decide the bin choice of
all contestants.

(c) Send Shares of Winners Up to Next Level:
Let W be the winners of the election decided from
the previous step (the lightest bin). Let S’ be the
subsequence of S from W; All processors in a node
at level £ use sendSecretUp(S’) to send S’ to its
parent node and erase S’ from memory.

3. Root Node Runs BA using Arrays of Winners:
All processes in the single node on level £* run a.e. BA-
with-random-source once using their initial inputs as
inputs to the protocol (instead of bin choices) and the
remaining block of each contestant. (Note that only
one bit of this block is needed.)

For rounds ¢ = 1,2,...,qw of a.e.BA-with-random-
source,

(a) sendDown(F;(1),1);

(b) sendOpen(F;(1),£).

(¢) Use F;(1) as the coin for this round of a.e. BA-with-
random-source.
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Figure 1: Left: Example run of Algorithm 1 on a small tree; Right: Communication in different phases of

Algorithm 1 for a fixed level /.

Recall from Lemma 4 there must be at least 5¢log® n con-
testants participating from S to ensure w.h.p. that the elec-
tion winners are representative of S. Recall (Theorem 4)
that a.e. BA-with-random-source succeeds w.h.p., if 2/3 + €
fraction of processors in the node are good and bits can be
generated so that at least clogn are random and for each
of these, there is a fraction of 1 — 1/logn fraction of good
processors which agree on it. Thus, an election is good,
w.h.p, if the following conditions hold (1) A is a good node;
(2) at least 5clog®n contestants are candidate arrays with
good paths from their assigned level 1 node to A so that that
secrets are correctly transmitted up the tree without the ad-
versary learning the secret until it it released; and (3) there
must be a 1/2 + € fraction of level 1 nodes in A’s subtree
which have good paths to A, so that, by properties of the
network, as described in Section 3.2.2, a 1 —1/logn fraction
of good processors in A learn the random bin selections and
random bits of the good arrays that are competing.

We now lower bound the fraction of arrays that remain
that are good.

LEMMA 6. In the a.e.BA algorithm, at least a 2/3—5¢/logn

fraction of winning arrays are good on every level £. In par-
ticular, the protocol can be used to generate a sequence of
random words, of length r = wq (one from each array at the
root of the tournament tree) of which a 2/3+¢—>5/loglogn
fraction are random and known to 1 — 1/logn fraction of
good processors.

Proor. With high probability, each good election causes
an increase of no more than a 1/logn in the fraction of
arrays that are bad. We now consider the number of good
arrays discarded because of bad elections.

A violation of Condition (1) (the election node is bad)
effects at most a 1/logn fraction of arrays per level since at
most a 1/logn fraction of nodes are bad per level.

A violation of Condition (2) (< clog®n good arrays par-
ticipating) cannot happen too often. Let r be the number
of contestants in an election at level . If there are f bad
arrays overall on level ¢ then the total number of such lop-
sided elections is less than f/(r—clog®n). In these lop-sided
elections, the fraction of good arrays is at most (clog®n)/r.
Since the number of candidates 7 = wq > log” n, the fraction
of good arrays lost this way is less than 1/log" n.

A violation of Condition (3) (< 1/2 + € fraction of level
1 nodes have good paths to the current node) also cannot
happen to often. In particular, a 1/logn fraction of bad
nodes can be responsible for making a 2/logn fraction of
elections bad in every level at above it , by making bad half
the paths of those elections, thus eliminating an additional
2/logn fraction of arrays that are good. Note that a bad
election at a good node does not make additional paths bad,
as information and secrets can still be passed through a good
node that held a bad election.

From the possible violation of these three conditions, we
lose no more than a 4/logn fraction of arrays that are good.
Adding in good arrays lost from good elections, we lose no
more than a total of 5/ logn fraction of arrays that are good
at any level.

Initially a 2/3 + ¢ fraction of the arrays are good. As we
have shown, at any given level, the fraction of arrays that
are good decreases by at most 5/logn. Thus, the fraction
of arrays that are good at level ¢* is at least 2/3 + ¢ —
50" /logn = 2/3 4+ € — 5/ loglogn.

Hence there are wq arrays at the top of the election tree
of which at least a 2/3 fraction were generated by good pro-
cessors, uniformly and independently at random. For each
array, there is a block which is secret shared among the pro-
cessors of the root node, so that for all but 1/logn fraction
of the £*-shares, at least a 2/3 fraction of ¢-shares are held by
good processors. Sequentially, the protocol exposes a word
from each of the arrays. By Lemma 3, each word generated
by a good processor is learned by a.e. processor in the root
(which contains all the processors). [

The sequential generation of the sequence of words in Lemma
6 (wq, 2wq/3) a.e.random-source which can be used as input
to a.e.BA-with-random-source. The correctness of a.e.BA
follows from Theorem 4. To generate a.e.random-source of
desired wordsize, it suffices to include a word of that word-
size in each array.

4. A.E.BYZANTINE AGREEMENT TO BYZAN-

TINE AGREEMENT

We call a processor knowledgeable if it is good and agrees
on a message m. Otherwise, if it is good, it is confused.



In this section, we assume that (1/2 + €)n, of the processors
are knowledgeable. We use the sequential (s, t) a.e.random-
source which generates a sequence of bits, with ¢ > clogn,
and s is polylogarithmic, described in Section 3.6. We as-
sume private channels. Here is the protocol. The constants
a, ¢, and € in this protocol will be specified in the proofs of
correctness.

Algorithm 3 a.e. BA-to-BA
Repeat s times:

1. Each processor p does the following in parallel:
Randomly pick a set of ay/nlogn processors without
replacement; for each of these processors j, randomly
pick ¢ € [1,...,4/n] (with replacement) and send a re-
quest label i to processor j.

2. Almost all good processors agree on the next number
kin [1,...,/n] generated by a.e.random-source.

3. For each processor p, if p receives request label ¢ from ¢
and ¢ = k then if p has not received more than y/nlogn
such messages (it is not overloaded), p returns a message
to gq.

4. Let k; be the number of messages returned to p by
processors sent the request label ¢. Let ¢mqr be an ¢
such that k; > k; for all j. If the same message m is
returned by (1/2 + 3¢/8)alogn processors which were
sent the request label 4,4, then p decides m.

4.1 Proof of correctness

LEMMA 7. Assume at the start of the protocol n/2 + en
good processors agree on a message m and can generate a
random bit. Let ¢ be any positive constant. Then after a
single execution of the loop:

1. With probability 4/(elogn) — 1/n°, this protocol results
n agreement on m.

2. With probability 1 — 1/n°, every processor either agrees
on m or is undecided.

To prove Lemma 7 we first prove two other lemmas.

LEMMA 8. Suppose there are (1/2 4+ €)n knowledgeable
processors. W.h.p., for any one loop, for every processor
p and every request label i, at least A = (1/2 4 €¢/2)alogn
processors which are sent i by p are knowledgeable and fewer
than B = (1/2 —€/2)alogn processors which are sent i by p
are corrupt or confused.

PROOF. Since there are private channels, the adversary
does not know p’s requests other than those sent to bad
processors. Hence the choice of the set of processors which
are not knowledgeable is independent of the queries, and
each event consisting of a processor querying a knowledge-
able processor is an independent random variable.

Let X be the number of knowledgeable processors sent a
value ¢ by processor p. X is a hypergeometric distribution
and E(X) = alogn(1/2 + ¢). By concentration bounds on
the hypergeometric distribution (see e.g. [15]), we know that:
Pr(X < BE(X) — ealogn) < e~ (c¢108™/2B(X)  Thjg is less
than n~2¢ for a = 2¢(1 + 2¢)(In2)/¢) Taking a union bound
over all ¢ and processors p, for all X, Pr(X < E(X) —
ealogn) is less than /n(n)n"2¢ < 1/n~°. The second part
of Lemma 8 is shown similarly. [J

Lemma 8 immediately implies statement (2) of Lemma 7.

We now show Lemma 7 (1). A knowledgeable processor
p which is sent ¢ = k will respond unless overloaded. Each
processor can receive no more than n — 1 requests, or the
sender is evidently corrupt. Then there can be no more than
v/n/logn values of i for which there are more than y/nlogn
requests labelled i. Then we claim:

LEMMA 9. The probability that more than en/4 knowl-
edgeable processors are overloaded in any one loop of the
algorithm 1is less than 4/(elogn).

ProOOF. We call a value i for a processor overloaded if
vnlogn request labels equal i. A processor is only over-
loaded if k = i and i is overloaded. Since k is randomly cho-
sen, each processor has at most a 1/logn chance of being
overloaded. Let X be a random variable giving the number
of overloaded knowledgeable processors and y be the number
of knowledgeable processors. Then E[X] = y/logn. Using
Markov’s Inequality, Pr[X > y(e/4)] < (y/logn)/(ye/4) =
4/(elogn). O

LEMMA 10. Repeating the protocol (¢'/3)elnn times, the
probability that all processors agree on m and no processor
outputs a different message is 1 —1/n° .

PROOF. Similar to the argument above, because the ad-
versary does not know the requests and request labels of
the requests sent to knowledgeable processors, the event of
choosing knowledgeable processors which are not overloaded
are independent random variables and Chernoff bounds ap-
ply. With probability 4/(elogn), there are (1/2 + 3¢/4n)
knowledgeable processors which are not overloaded. Setting
€ to 3¢/4 in Lemma 8, we have w.h.p., for every processor
and request label ¢ that at least A = (1/2 + 3¢/8)alogn
processors sent ¢ by p are knowledgeable and fewer than
B = (1/2 — 3¢/8)alogn processors sent i by p are corrupt
or confused. Therefore, with probability 4/(elogn) — 1 /ncl7
one loop of this protocol results in agreement on m. As
each repetitions of the loop is independent, the probability
that they all fail is the product of their individual failure
probabilities, implying the lemma statement. []

S. BYZANTINE AGREEMENT (B4)

Algorithm 4 BA

1. Run a.e.BA to come to almost everywhere consensus
on a bit b.

2. Run a.e. BA-to-BA to ensure that all processors output
b.

The execution of both a.e. BA and a.e. BA-to-BA take O(,/n)
bits per processor, while both of these algorithms have poly-
logarithmic latency.

6. CONCLUSION

We have described an algorithm that solves the Byzantine
agreement problem with each processor sending only O(v/n)
bits. Our algorithm succeeds against an adaptive, rushing
adversary in the synchronous communication model. It as-
sumes private communication channels but makes no other
cryptographic assumptions. Our algorithm succeeds with



high probability and has latency that is polylogarithmic in
n. Several important problems remain including the follow-

ing:

Can we use o(y/n) bits per processor, or alternatively

prove that 2(y/n) bits are necessary for agreement against
an adaptive adversary? Can we adapt our results to the
asynchronous communication model? Can we use the ideas
in this paper to perform scalable, secure multi-party com-
putation for other functions? Finally, can the techniques in
this paper be used to create a practical Byzantine agreement
algorithm for real-world, large networks?
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