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Westerns »
Wide-open spaces ,..J

-plic struggles

Borrow from many sources
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Byzantine Agreement

—ach node starts with a bit

Goals: 1) all good nodes output same bit; 2)
this bit equals an input bit of a good node

t = # bad nodes controlled by an adversary




Group Decisions

Periodically, components unite in a decision

ldea: components vote. Problem: Who counts votes?




Taking Majority Is Fragile




Byzantine Agreement
fixes this




Recent Applications

Bitcoin

“Bitcoin is based on a novel Byzantine agreement protocol in which

cryptographic puzzles keep a computationally bounded adversary from
qaining too much influence”

Secure Multiparty Computation

“Such protocols strongly rely on the extensive use of a broadcast channel,
which is in turn realized using authenticated Byzantine Agreement.”

Game Theory (Mediators)

“... deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement”



Previous Work

Leslie Lamport ‘13 Barbara Liskov ‘08

Two Turing Awards

Tens of thousands of papers
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Classic Mode|

Full Information: Adversary knows state of
all nodes

Adaptive Adversary: takes over nodes at
any time up to t total

Asynchronous: Adversary schedules
message delivery



Previous Work - Classic Mode|

solve

[Ben-Or '83] gave first randomized algorithm to

BA In this model

[FLP '85] showed BA impossible for deterministic
algorithms even when t=1

Ben-0r’'s algorithm is exponential expected

communication time

Communication Time = maximum length of any
chain of messages



Recent Work [KS '13,'14]

Valerie King
University of Victoria

Faster Agreement Via a Spectral Method for Detecting Malicious Behavior

by Valerie King and Jared Saia, Symposium on Discrete Algorithms
(SODA), 2014.

'‘Byzantine Agreement in Polynomial Expected Time" by Valerie King and
Jared Saia, Symposium on Theory of Computing (STOC), 2013.



Recent Work [KS '13,'14]

Las Vegas algorithm that solves Byzantine
agreement in the classic model

We tolerate t = 6(n)

-xpected communication time is O(n3)

Computation time and bits sent are
polynomial in expectation
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Byzantine Agreement
Algorithms use a Global Coin

Global coin is generated from random bits
of individual nodes

In each round, there Is a correct direction

It global coin is in that direction, algorithm
succeeds



Coin Game

:

Nodes Server



Nodes, Server, and Adversary

Good nodes generate random bits

Server wants to generate a random bit (global coin)
but can’t generate randomness itself

Adversary can take over nodes
These nodes will generate adversarial bits

Adversary wants to thwart goal of server



Coin Game

Nn nodes; 1 server
every round:

each node sends a random bit

server recelves bits and outputs global
colin
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Coin Game

Adversary takes over up to t=6(n) nodes
every round:

each node sends a random Dit

bad nodes send adversarial bits

server receives bits and outputs global
colin

Goal: Global coin is in correct direction



Single Round Coin Games

"‘Boolean functions always r
dominant sets of variables”

Let f be a boolean monotone !

ave SlTa

KKL '88

‘uncti

Onn

over n variables, where Pr(t=1) i1s not o(1)

hen, almost surely, there are o(n)

variables that can make f equal 1



Single Round Coin Games

"‘Boolean functions always r
dominant sets of variables”

Let f be a boolean monotone !

ave SlTa

KKL '88

‘uncti

Onn

over n variables, where Pr(t=1) i1s not o(1)

hen, almost surely, there are o(n)

variables that can make f equal 1

Result uses harmonic analys

Spawned work on influence

1S



Multiround Global Coin

Goal: In all but X rounds, global coin has
constant probability of correct outcome

Want small X



Summing Bits

With constant probability, sum of bits of
good nodes will be in correct direction

BSad nodes must generate bad deviation in
opposite direction to foil this good event

If the few bad nodes generate large
deviation repeatedly, we can find them



Bad Deviation
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Generate and send
truly random bits.

The Good




The Bad

Generate and send Generate

The Good
truly random bits.

adversarial bits.
Want to bias

the global colin.

Constant fraction

of nodes.




The Server

Unable to generate
randomness on Its
own. Uses bits
received from good
and bad nodes to
output global coin.

The Good
Generate and send
truly random bits.

The Bad
Generate
adversarial bits.
Want to bias

the global colin.
Constant fraction
of nodes.
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Problem
Spectral Approach Related Work

Our Algorithm

Analysis



Terminology

epoch is m = 6(n) rounds

deviation of a set of nodes in an epoch
IS absolute value of sum of all nodes’ bits

direction of a set of nodes in a round IS
sign of the sum of the nodes’ bits



Vatrix

After every epoch, there is a matrix M
M is a m by n matrix
M(1,]) = for round i, node j's bit

Use M to detect “suspicious” behavior



Good rounds

In each epoch, expect a constant fraction
of rounds to be good: deviation of good
nodes is y/n in correct direction




Good rounds

In each epoch, expect a constant fraction
of rounds to be good: deviation of good
nodes is y/n in correct direction

Bad nodes have deviation = vn in a good
round



Bad deviation

In every epoch, there is a constant fraction
of rounds, R, and at most t nodes, B, such
that:

The sum over all rounds in R, of the
deviation of all nodes in B is QQ(n'-5)




Matrix as a grapn

Sum of edge
weights is = v/n

\C

.....@....

O‘QQ‘@Q‘QQQQ

nodes rounds



Prior Work

Yojimbo, 1961



Prior Work - Spectral

Page Rank

—igentrust

Hidden Clique



Page Rank

Google’s $300 billion “secret sauce”

M is a stochastic matrix (giving a random
walk over the web graph)

r1s top right eigenvector of M (and
stationary distribution of M's walk)

For a web page, |, r[i] = "authority” of |



Eigentrust [KSG '03]

M(i,]) represents amount party I trusts party |
r 1s top right eigenvector of M
rli] = "trustworthiness” of party |

Intuitively, party 1 is trustworthy it it is trusted
by parties that are themselves trustworthy




Differences with Coin Game

—igentrust and PageRank: Want to identity

good nodes based on feedback from other

nodes

Coin Game: Want to ide

Ntity bad nodes

based on deviation from

random behavior



Hidden Clique [AKS 98]

A random G(n,1/2) graph is chosen

A k-clique is randomly placed in G



Hidden Clique [AKS 98]

A random G(n,1/2) graph is chosen

A k-clique is randomly placed in G

[AKS '98] give an algorithm for k = v'n
1.v is second eigenvector of ad|. matrix of G
2.W is top k vertices sorted by abs. value inv
3.Returns all nodes with 3k/4 neighbors in W



Differences with Hidden Cligue

Hidden Clique:
Want to find sub-matrix that is all 1’s
Coin Game:

Want to find sub-matrix where sum of
each row has high absolute value



Our Algorithm
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Distrust




Distrust

—ach node starts with a distrust value of O

After each epoch, server increases the distrust
value of each node by the square of its entry in
the top right eigenvector

Whe
blac
[elgle

N distrust value of a node is 1, that node Is
Klisted - subsequent messages from it are

red



Algorithm
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Algorithm

1. Run an epoch; Let M be the epoch’'s matrix
2. It IM[ is “sufficiently large”
|. Compute the top right eigenvector, r, of M
Il. Increase distrust value of node i1 by r[i]?

3. Blacklist a node If its distrust value reaches 1
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Overview

Coin Game

Spectral Approach

Mg VS Mb

Analysis
rg VS rb

Distrust & Blacklisting



Mb aﬂd Mg

M Is the m by n epoch matrix
Mpb is bad columns of M

Mg Is good columns of M

Assume M = [Mp Mg]



Fact 1: |[Mg| = OV n) (whp)



Fact 1: |[Mg| = OV n) (whp)

Proof:

—ach entry of Mg is an independent
random variable with expectation O;

range [-1,+1]; and o = O(1).

—act 1 then follows from classic results
on stochastic matrices




Fact 2: [Mp| = Q(V n)



Fact 2: [Mp| = Q(V n)

Proof:



Fact 2: |My| = Q(V n)

Proof:

X 1S a unit vector with entries O for good
nodes and entries 1/t for bad nodes
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Mp| = Q(V n)

X 1S a unit vector with entries O for good
nodes and entries 1/t for bad nodes

V IS a unit vector with entries O
for good
'S direction of bad deviation)
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Fact 2:

Proof:

Mp| = Q(V n)

X 1S a unit vector with entries O for good
nodes and entries 1/t for bad nodes

V IS a unit vector with entries O
for good
'S direction of bad deviation)

rou
rou

nds and e

Nds (sign

ntries + 1/ (cm)

hen yT Mp x = Q(/ n)

‘or bad




Lemma 1: |My|> C |My
for any constant C

Proof:
Fact 1: [Mg| = O(¥ n) (independence)

Fact 2: M| =Q(¥ n) (to bias good rounds)



'b and rq

r: top right eigenvector of M
b . entries for bad nodes

rol1] = r[i] for 1<i<t; all other entries are O
rq . entries for good nodes

rqll] = rli] for t+1<i<n; all other entries are O



rp| is large

Mbp o

Mg rg




rp| is large

Mbp o

Mg rg




rp| is large

Mg rg




Lemma 2: |rg|2 < |rp|2 /2

Proof: Assume not. Then |rp|2 < 2/3
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Proof: Assume not. Then |rp|2 < 2/3
Mp| < £7(Mr)

< [€]|Mr

< Mol|ro] + [Mg|lr|
M| (Iro] + 1/C rg)
IMp| (V' (2/3) + 1/C)

VAN

VAN



Lemma 2: |rg|2 < |rp|2 /2
Proof: Assume not. Then |rp|2 < 2/3
Mp| < £7(Mr)

< 1o/ Mr
< IMollro] + Mellrg
< IMo| (Jro] + 1/C [rg)

< [Mp| (V(2/3) + 1/C)
< ‘Mb‘



Lemma 2: |rg|2 < |rp|2 /2
Proof: Assume not. Then |rp|2 < 2/3
Mp| < £7(Mr)

< 1o/ Mr
< IMollro] + Mellrg
< IMo| (Jro] + 1/C [rg)

< [Mp| (V(2/3) + 1/C)

< [Mp
Last line holds if C > 5.45 (i.e. t < .004n)



Algorithm

1. Run an epoch; Let M be the epoch’'s matrix
2. It IM[ is “sufficiently large”
|. Compute the top right eigenvector, r, of M
Il. Increase distrust value of node i1 by r[i]?

3. Blacklist a node If its distrust value reaches 1
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Distrust values for bad nodes increase at twice the rate
as distrust values for good nodes (by Lemma 2)

Thus we blacklist no more than t good nodes



Distrust reveals bad nodes

Distrust values for bad nodes increase at twice the rate
as distrust values for good nodes (by Lemma 2)

Thus we blacklist no more than t good nodes

Distrust of all nodes increases by 1 in any epoch
where adversary foils the good rounds

Thus have at most O(n) such epochs before all bad
nodes are blacklisted



summary

First expected polynomial time algorithm
for classic Byzantine agreement

Previous best algorithm (Ben-0Or’s) was
expected exponential time

New technique: coin game - forces
attackers into statistically deviant ana
detectable behavior
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Coin Game

No Country for Old Men, 2007



Coin Game

Adversary takes over up to t=6(n) nodes
every round:

each node sends a random Dit

bad nodes send adversarial bits

server receives bits and outputs global
colin

Goal: Global coin is in correct direction



Coin Game

1) Reduce X
2) Other Applications

Adversary must engage In statistically
deviant behavior to attack system

Secure Multiparty Computation,

Threshold cryptography, Wisdom of
crowds, Page rank
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Epic Struggles  »

-Ocus on least understood problems
Modern life contrives against this

Takes eftort



BOrrow From
Many Sources
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Wide-Open B
Spaces Y

CS is young

—asy to find new problems

Shouldn’t forget the old ones!
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‘Sake. I'll think while | drink.”
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Noisy Channel

Coding Theorems for a Discrete Source
With a Fidelity Criterion*

Claude E. Shannon**

Abstract

Consider a discrete source producing a sequence of message letters from a finite alphabet.

A single-letter distortion measure is given by a non-negative matrix (d;j). The entry d;j

measures the “‘cost’” or ‘‘distortion’’ if letter i is reproduced at the receiver as letter j. The

average distortion of a communications system (source-coder-noisy channel-decoder) is taken

obed =¥ P;;d;; where P is the probability of i being reproduced as j. It is shown that
i

there is a fu::ctinn R(d) that measures the ‘‘equivalent rate’’ of the source for a given level of
distoruon. For coding purposes where a level d of distortion can be tolerated, the source acts
like one with information rate R(d). Methods are given for calculating R(d), and various
properties discussed. Finally, generalizations to ergodic sources, to continucus sources, and to
distortion measures involving blocks of letters are developed.




Noisy Channel

How can we compute over a noisy
channel? [S ‘96]

Coding Theory fails

[H "14] gives conjectured optimal
communication rate w/ known noise rate

What about unknown noise rate”



PROBABTLISTIC LOGICS AND THE SYNTHESIS OF RELIABLE
ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumann

1. INTRODUCTION

The paper that follows 1s based on notes taken by Dr. R. S. Plerce
on five lectures given by the author at the California Institute of
Technology in January 1952. They have been revised by the author but they
reflect, apart from minor changes, the lectures as they were delivered.
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NOISYACEIER

|deal gates: never fall

Noisy gates: flip output independently with
some small probability

Takes n ideal gates to compute a function f

How many noisy gates does it take to
compute f with probability approaching 17



NeISYACEIEES

B(nlogn) noisy gates are required

Problem: log n multiplicative blowup even if
no gates fall

Q: Can we tune the cost overhead to
depend on the number of gates that fail”?



Co \aborators |
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Varsha Dani (UNI\/I) Mahnush Mohavedi (UNM),
Mahdi Zamani (UNM), Maxwell Young (Drexel University)



Questions?
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Ben-0r's algorithm

Consists of rounds

Uses private random bits to create a global coin
with probability 1/2" in each round

For each round there I1s a correct direction

If there is a global coin and it is in this direction,
agreement is reached



Ben-0r's algorithm

Consists of rounds

Uses private random bits to create a global coin
with probability 1/2" in each round

For each round there I1s a correct direction

If there is a global coin and it is in this direction,
agreement is reached

Our goal: Get a good global coin after polynomial
rounds using private random bits



‘Easy’ Problems

Equivocation: Bad nodes send different coins to different
nodes

Missing messages: Adversary delays messages so that
different nodes receive different coins
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‘Easy’ Problems

Equivocation: Bad nodes send different coins to different
nodes
Bracha's Reliable Broadcast: It a good node receives
a message from a bad node, g, all other good nodes

that receive a message from g will eventually receive
the same message

Missing messages: Adversary delays messages so that
different nodes receive different coins

Common coins: coins known to most nodes

No more than 2t coins from good nodes, no
more than 2 per node that are not common.

Common coins are known to n-4t good nodes.



Hard Problem

Bad nodes create biased bits



Reliable Broadcast (Bracha)

All bits sent using reliable broadcast

Ensures it a message is “received” by a good node,
same message is eventually “received” by all nodes

Prevents equivocation
Doesn't solve BA

It a bad player reliably broadcasts, may be case
that no good player “receives” the message




When to upaate distrust

Some good nodes may not receive the
coinflips of the bad nodes in a given epoch



When to upaate distrust

Some good nodes may not receive the

coinfl

ips of the bad nodes in a given epoch

f IM|< (mn)1/2 /(2¢+) then don't do
distrust updates (t = c1n)

If there iIs no agreement, a linear

g

umber of good nodes will perform

updates



Motivation: Wisdom ot crowds

Average estimate Is quite accurate

Why? People have independent
‘noise” [S '04]

|dea: Coin game can create a robust

means 1o

narness wisdom of crowds




Motivation: Threshold
Cryptography

A group of nodes want to generate a public
key

Requires creation of string of random bits
Group may contain malicious nodes

|[dea: Coin game robustly generates key



