
Automatic Generation of Polynomial Loop

Invariants for Imperative Programs?

Enric Rodŕıguez Carbonell, Deepak Kapur
November 2003

Technical University of Catalonia, Barcelona
erodri@lsi.upc.es

University of New Mexico, Albuquerque
kapur@cs.unm.edu

Abstract. A general framework is presented for automating the discov-
ery of loop invariants for imperative programs. Theoretical results about
the correctness and completeness of the proposed method are given. More
importantly, it is shown how this abstract approach can be used to auto-
matically infer polynomial invariants. The method has been implemented
in Maple. Evidence of its practical interest is shown by means of several
non-trivial examples, for which the polynomial loop invariants gener-
ated are directly applicable for proving correctness by means of a simple
verifier.

1 Introduction

The decade of the seventies saw considerable focus on research related to
program verification based on Floyd-Hoare-Dijkstra’s axiomatic semantics ap-
proach, using pre/postconditions and loop invariants. The framework has now
become an integral part of CS curriculum, where students are typically taught to
practise such techniques by hand. Mechanization of the approach did not catch
on partly due to the lack of automated reasoning tools then available1, and also
partly due to the huge effort required in program annotation.

Regarding automated reasoning there has been considerable progress, which
has led to variants of the approach in the form of static analysis of programs (type
checking, type inference, extended static checking, other properties of variables
based on abstract interpretations), model checking of computational structures
(especially hardware) as well as software and hardware verification using auto-
mated theorem proving. For example, type inference (with the types of program
variables being weaker forms of invariants) is now widely considered a useful
feature supported in many functional and logical languages such as ML.

? This research was partially supported by an NSF ITR award CCR-0113611, the
Prince of Asturias Endowed Chair in Information Science and Technology at the
University of New Mexico and a FPU grant from the Spanish Secretaŕıa de Estado
de Educación y Universidades.

1 See however some recent attempts to use automated theorem provers in teaching
program verification in introductory programming classes [WS03].

However, the annotation burden remains. While input/output specifications
also work as useful documentation, loop invariants do not provide comparable
benefits. Completely specifying invariants in loops is tedious, due to the sub-
stantial amount of detail it requires; and also redundant, since the invariants
repeat information that can be inferred from the program. In this paper we aim
at reducing this annotation overhead, along the lines of the Houdini annotation
assistant [FL01] or the Daikon tool [NE96].

We present a general framework for finding invariants of loops in imperative
programs with conditional statements and assignments. A generic procedure
based on forward propagation for computing loop invariants as fixed points is
shown. We give conditions on the domains manipulated by the programs and
on the language used to express the invariants so that the procedure can be
implemented. Proofs of correctness and completeness are shown.

This abstract framework is then instantiated to consider programs in which
loop invariants can be formulated as polynomial equations. It is shown that
if assignments are invertible and their powers have polynomial structure, as is
the case with invertible affine assignments, then polynomial loop invariants can
be automatically generated using Gröbner bases (see [CLO98] or [AL94] as an
introduction to Gröbner basis algorithm, commutative algebra and algebraic
geometry, or to [BW93] for a more comprehensive treatment). It can be shown
that the procedure for computing polynomial loop invariants terminates in 2m+1
or fewer iterations, wherem is the number of variables changing in the loop. This
technique has been implemented in the mathematical tool Maple and has been
applied to numerous programs, some of which are used for illustration. Moreover,
the results obtained with our method have been used for automatically proving
the correctness of the programs with a verifier.

The rest of the paper is organized as follows. In next subsection, related work
is briefly reviewed. Section 2 introduces the general framework for computing
loop invariants: the programming model is presented and necessary properties
of the language for expressing invariants are studied. In Section 3 we instantiate
this abstract framework to the case of polynomial equalities and obtain a proce-
dure for finding polynomial invariants. Section 4 focuses on the use of algebraic
geometry and commutative algebra in the implementation of the procedure. In
Section 5 we give some illustrative examples. Section 6 is devoted to the appli-
cation of polynomial invariant inference to program verification. Finally Section
7 concludes with a discussion of the advantatges and drawbacks of the approach
and an overview on further research.

1.1 Related Work

The techniques presented here build upon the difference equations method
([EGLW72]), which proceeds in two steps: first, by means of recurrence equations
(also called difference equations), an explicit expression is found for the value of
each variable as a function of the number of loop iterations s, other variables
that remain constant in the loop, and the input values; then the variable s is
eliminated to obtain invariant predicates. Our work overcomes the difficulties in

dealing with loops with conditionals, for which traditionally only heuristics were
available under this approach.

In a different direction, Karr showed in [Kar76] an algorithm for finding linear
equalities between variables at any program point. Later on this work was ex-
tended by Cousot and Halbwachs ([CH78]), who applied the model of abstract in-
terpretation (see [CC77]) to finding linear inequalities. Like our techniques, both
are based in forward propagation and fixed point computation (see [Wei75]). But
whereas Karr obtained termination directly, Cousot and Halbwachs had to in-
troduce a widening operator ∇ which computes an upper approximation of the
set of states. Our method can be regarded as computing also an upper approxi-
mation, which however is fine enough to guarantee completeness. Furthermore,
the results that it yields complement the linear inequalities obtained by means
of these other techniques.

More recently, in [CSS03] Colón et al. have used non-linear constraint solv-
ing and quantifier elimination to attack the same problem of linear inequalities.
Although we also have to eliminate existentially quantified variables in our ap-
proach, since we are dealing with polynomial equalities we can apply Gröbner
bases and elimination theory, which are not as costly as the general methods for
quantifier elimination like cylindrical algebraic decomposition (CAD).

Another extension of Karr’s ideas has been carried out by Müller-Olm and
Seidl ([Mar03]), who find interprocedural polynomial equalities of bounded de-
gree in programs with affine assigments using backward propagation and weak-
est preconditions, instead of forward propagation and strongest postconditions.
When they can be applied, our techniques have the advantatge that no bound
on the degree is necessary, and that polynomial assignments whose powers have
polynomial structure are allowed.

2 General Framework

2.1 Programming Model

In this section we present our programming model and the way we abstract
information from the original loops.

Let x1, x2, ..., xm be the variables which change their value during the
execution of the loop. We denote by x̄ the tuple of these variables. Let Σ ′ be
the set to which the variables belong according to their type declaration. For
instance, if we had two integer variables and a rational variable it would be
Σ′ = Z2 × Q.

The only instructions we allow in loops are assignments and non-deterministic
conditionals. As assignments can be composed and nested conditionals can be
merged, using the notation of Dijkstra’s guarded command language ([Dij76])
we can assume that loops have the form:

while E′(x̄) do

if C ′
1(x̄) → x̄ :=f ′

1(x̄);
...

[] C ′
i(x̄) → x̄ :=f ′

i(x̄);
...
[] C ′

n(x̄) → x̄ :=f ′
n(x̄);

end if

end while

where E′, C ′
i : Σ′ → {true, false} and f ′

i : Σ′ → Σ′ for 1 ≤ i ≤ n.
Given such a loop, we will apply our techniques to an abstraction of it.

Let Σ ⊇ Σ′ be a superset of the original state space Σ ′ and let E,Ci : Σ →
{true, false} and fi : Σ → Σ (1 ≤ i ≤ n) be such that

i) E′(x̄) ⇒ E(x̄).
ii) ∀i : 1 ≤ i ≤ n : E′(x̄) ∧ C ′

i(x̄) ⇒ Ci(x̄) ∧ f ′
i(x̄) = fi(x̄).

Notice that if the E,Ci are just true and fi = f ′
i , then these conditions are

immediately satisfied.
Our method will find invariants for the abstracted loop, which has the fol-

lowing simple structure:

while E(x̄) do

if C1(x̄) → x̄ :=f1(x̄);
...
[] Ci(x̄) → x̄ :=fi(x̄);
...
[] Cn(x̄) → x̄ :=fn(x̄);
end if

end while

In order to motivate this abstraction process, let us consider the next pro-
gram, which is a product variant of a well-known algorithm for exponentiation:

function product (X , Y : integer) returns z: integer
{ Pre: X ≥ 0 ∧ Y ≥ 0}
var x, y: integer end var

〈x, y, z〉:=〈X, Y, 0〉;
while y 6= 0 do

if y mod 2 = 1 then 〈x, y, z〉:=〈2 ∗ x, (y − 1) div 2, x+ z〉;
[] y mod 2 = 0 then 〈x, y, z〉:=〈2 ∗ x, y div 2, z〉;
end if

end while

{ Post: z = X · Y }
end function

As we will see later on, when looking for polynomial invariants we ignore the
guards in the if and while statements, and require that the variables lie in a
field, like Q. If we have integer variables like in this case, we may consider the
variables as rational numbers. However, all operations between variables must

be then operations in Q. The only problem in this case is integer division div,
which is not defined in Q. The solution is to replace the integer divisions div

by rational divisions /, which is correct provided no integer division truncation
in the original program occurs. Therefore in the abstraction process we have to
guarantee that whenever a division takes place in the original loop the division
is exact, which is ensured by the conditions i) and ii). Thus, after taking Q as
the type of the variables in this case our loop would be abstracted as follows:

var x, y: rational end var

〈x, y, z〉:=〈X, Y, 0〉;
while true do

if true→ 〈x, y, z〉:=〈2 ∗ x, (y − 1)/2, x+ z〉;
[] true→ 〈x, y, z〉:=〈2 ∗ x, y/2, z〉;
end if

end while

It is clear that conditions i) and ii) are indeed satisfied for this example.

2.2 Invariants of Abstracted Loops

In this section we study the invariants of the abstracted loops and their
properties.

We start with the language used to express invariants, which we denote by R.
For simplicity, we use (many-sorted) first-order predicate calculus with equality
as such a language. Later on when we instantiate this abstract framework, we
will further restrict this language. Of course, our goal is to capture the semantics
of the body of the loop using the strongest possible invariant expressible in R.
We characterize properties of such a strongest invariant as well as the languages
expressive enough to admit such strong invariants.

Typically a formula serving as an invariant has two sets of free variables:
• those that represent program variables that change their value during the

execution of the loop, denoted by x̄.
• those that represent initial, usually unknown values of the variables before

entering the loop, denoted by x̄∗.
To make this explicit, in general formulas in the language R are written as

R(x̄, x̄∗). Then we say that R(x̄, x̄∗) holds if R(ᾱ, ᾱ∗) is valid ∀ᾱ, ᾱ∗ ∈ Σ (i.e.,
is true for every possible interpretation of the free variables).

We next define the class of invariants our method is aimed at:

Definition 1. Let R0(x̄
∗) ∈ R be a formula not depending on x̄. A formula

R ∈ R is R-invariant with respect to R0 if:
i) R0(x̄

∗) ⇒ R(x̄∗, x̄∗)
ii) ∀i : 1 ≤ i ≤ n, R(x̄, x̄∗) ∧ E(x̄) ∧ Ci(x̄) ⇒ R(fi(x̄), x̄

∗).

In this definition R0 represents a a precondition for the loop, i.e. a formula
which is satisfied by the initial values of the variables before entering the loop:

∀ᾱ∗ ∈ Σ initial value before entering the loop R0(ᾱ
∗) is valid. For example,

in the case of polynomial equalities and the product function in the previous
section, z∗ = 0 would be such a formula. If no formula is known to hold for the
initial values, we can always take true.

It is easy to see that if R is an R-invariant of the abstracted loop, then R is
also an invariant of the original loop.

Lemma 1. If R(x̄, x̄∗) is R-invariant with respect to R0, then R is an invariant
of the original loop.

Proof. As ∀ᾱ∗ ∈ Σ′ ⊆ Σ initial state before executing the loop we have R0(ᾱ
∗)

and R0(x̄
∗) ⇒ R(x̄∗, x̄∗) by R-invariance, we have that R(ᾱ∗, ᾱ∗) holds.

Now we have to prove that

∀ᾱ, ᾱ∗ ∈ Σ′ ∀i : 1 ≤ i ≤ n R(ᾱ, ᾱ∗) ∧ E′(ᾱ) ∧ C ′
i(ᾱ) ⇒ R(f ′

i(ᾱ), ᾱ∗)

But this is a consequence of ∀ᾱ, ᾱ∗ ∈ Σ′ ⊆ Σ, ∀i : 1 ≤ i ≤ n:
R(ᾱ, ᾱ∗) ∧ E(ᾱ) ∧ Ci(ᾱ) ⇒ R(fi(ᾱ), ᾱ∗)
E′(ᾱ) ⇒ E(ᾱ)
E′(ᾱ) ∧ C ′

i(ᾱ) ⇒ Ci(ᾱ) ∧ f ′
i(ᾱ) = fi(ᾱ).

�

To capture the semantics of the body of the loop, our goal is to compute the
strongest possible invariant expressible in the language under consideration.

Definition 2. The language R is expressive for a given loop if ∃R∞ ∈ R such
that

1. R∞ is R-invariant.
2. ∀R R-invariant, R∞(x̄, x̄∗) ⇒ R(x̄, x̄∗).

Notice that, if it exists, R∞ is unique modulo equivalence.
In subsequent sections, we show examples of programs and languages which

are expressive for writing strong invariants for these programs.

2.3 Fixed-Point Procedure for Computing Invariants

In this section we give a procedure for computing the strongest R-invariant
R∞ of loops of the form described in Section 2.1 such that the language R is
expressive for them.

Assume that E, the loop test, as well as the Ci, the tests in the conditional
statements, are expressible in the language. Furthermore, assume that the as-
signments fi are functions also expressible in the language. Let R0 stand for the
formula expressing a relation satisfied by the initial values of the variables.

The General Procedure computes successive approximations of the strongest
R-invariant R∞ based on forward propagation until reaching a fixed point. The
objective is to have computed R∞ if the procedure terminates.

Forward Propagation Semantics If a formulaR(x̄, x̄∗) holds at the beginning
of the body of the loop, the loop test E(x̄) is true and the i-th conditional branch
is executed, then the strongest postcondition at the end of the body of the loop
is

{∃ȳ(x̄ = fi(ȳ) ∧ R(ȳ, x̄∗) ∧ E(ȳ) ∧ Ci(ȳ))}
Such a single step of forward propagation leads to a new approximation of

the property held at the beginning of the loop.

{

R(x̄) ∨
(n∨

i=1

∃ȳ(x̄ = fi(ȳ) ∧ R(ȳ, x̄∗) ∧E(ȳ) ∧ Ci(ȳ))
)}

Now, assuming that the s-th power of an assignment function fi is also
expressible in the language, if the i−th branch is executed s-times, then the
strongest postcondition is:

{

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
}

Given that the number of iterations s is undetermined we have to take an
infinite disjunction (which is not a formula anymore in the language unless ex-
istential quantifiers are used)

{ ∞∨

s=1

(

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))))}

Finally, in a non-deterministic loop body, each of the branches can be exe-
cuted and that too arbitrarily many times. This results in an “infinite” formula
capturing the program state at the beginning of the loop after an undetermined
branch has been executed arbitarily many times in the body of the loop.

{

R(x̄, x̄∗)∨
(n∨

i=1

∞∨

s=1

(

∃ȳ
(

x̄ = fs
i (ȳ)∧R(ȳ, x̄∗)∧

(
s−1∧

t=0

(
E(f t

i (ȳ))∧Ci(f
t
i (ȳ))

)))))}

And, furthermore, j-th assignment may be executed sj number of times af-
ter i-th assignment has been executed si number of times. In general, there is
intermixing. Thus, we keep on iterating until reaching a fixed point (or going
forever). Formulas expressing the program state corresponding to such execution
paths are computed using a procedure below.

In a highly expressive language, the above formula can perhaps be expressed
using existential quantifiers. If the language does not permit existential quanti-
fiers (as will be the case for concrete cases considered later), the language must
have some desired properties in order to express sufficiently strong approxima-
tion of the above formulas. This is discussed below.

Definition 3. The language R is disjunctively closed if
∀R,S ∈ R ∃T := R t S ∈ R such that

R(x̄, x̄∗) ∨ S(x̄, x̄∗) ⇒ T (x̄, x̄∗)

and ∀T ′ ∈ R such that

R(x̄, x̄∗) ∨ S(x̄, x̄∗) ⇒ T ′(x̄, x̄∗)

then T (x̄, x̄∗) ⇒ T ′(x̄, x̄∗).

Any first-order language is disjunctively closed, as we can take t = ∨. If the
language consists of polynomial equations as atomic formulas and conjunction
is the only boolean operation permitted, the language is disjunctively closed
since if R and S are each a conjunction of polynomial equations, there is an
equivalent conjunction of polynomial equations R t S with the above property,
as we will see. For the language of linear inequalities closed under conjunction
(which is the language considered by Cousot and Halbwachs in [CH78]) we also
have disjunctive closedness but not equivalence: given any R and S, which are
conjunctions of linear inequalities, R t S must be defined as the convex hull of
R and S, although in this case R t S is not equivalent to R ∨ S in general.

In the following, we impose additional requirements on the language so as to
be able to eliminate existential quantifiers.

For an i-th conditional branch, let us assume that ∃ϕi(R) ∈ R the strongest
formula in the language implied by

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

without any existential quantifiers or equivalent. As is obvious, two different
kinds of existential variables need to be eliminated: the variables ȳ, which are
related to the forward semantics of the assignment statement, and the loop
counter s.

Definition 4. R allows quantifier elimination if ∀R ∈ R, ∀i : 1 ≤ i ≤ n
∃T := ϕi(R) ∈ R such that

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒ T (x̄, x̄∗)

and ∀T ′ ∈ R such that

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒ T ′(x̄, x̄∗)

then T (x̄, x̄∗) ⇒ T ′(x̄, x̄∗).

For the case where E = Ci = true for 1 ≤ i ≤ n, R allows quantifier
elimination if ∀R ∈ R, ∀i : 1 ≤ i ≤ n ∃T := ϕi(R) ∈ R such that

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗)

)

⇒ T (x̄, x̄∗)

and ∀T ′ ∈ R such that

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗)

)

⇒ T ′(x̄, x̄∗)

then T (x̄, x̄∗) ⇒ T ′(x̄, x̄∗).
After replacing disjunction ∨ by t and eliminating existential quantifiers by

means of the ϕi’s, we get the following procedure. It starts assigning to the
variable R an initial formula satisfied by the initial values of the variables in
the loop. This variable R stores the formula corresponding to the successive
approximations of the invariant.

Input.

The mappings f1, ..., fn of the assignments
A formula R0 satisfied by the initial values

Output.

An R-invariant formula R with respect to R0

var R,R′ : formulas in R end var

R′ := false

R :=
(

∧m
j=1(xj = x∗j)

)

∧R0

while R′ 6⇔ R do

R′ := R
R := R t 2

(
⊔n

i=1 ϕi(R)
)

end while

return R

If the procedure terminates, then a fixed point of the formula mapping

R 7→ R t
(n⊔

i=1

ϕi(R)
)

is computed.
The correctness and completeness of the above procedure are proved in Ap-

pendix A. In particular, we show that the formula R satisfies that :

2 The use of t approximating ∨ here may not be sufficient to guarantee the termination
of the procedure computing the fixed point. Using a widening operator ∇ instead of
t (see Cousot and Halbwachs [CH78]) as a further approximation of ∨ can ensure
the termination of the procedure, probably at the cost of completeness

– if the procedure terminates, R is an R-invariant of the abstracted loop
– R ⇒ R∞ is an invariant of the procedure.

So if the procedure terminates R ⇒ R∞ and R∞ ⇒ R, which finally leads
to the result that the above procedure on termination indeed computes the
strongest R-invariant of the abstracted loop.

In summary, the language expressing loop invariants must satisfy the follow-
ing properties:

– the language should be expressive enough for the class of simple loops un-
der consideration in the sense that for each such loop, there should exist a
formula in the language R∞ that is invariant in the loop and furthemore,
every invariant of the loop expressible in the language is implied by it.

– the language should be disjunctively closed, i.e., given any two formulas R,S
in the language, it should be possible to compute a formula RtS in it such
that R t S is the strongest formula implied by the disjunction of R and S.

– the language must allow quantifier elimination in the sense that given R and
i there must exist a strongest formula ϕi(R) implied by

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

For termination, it is further necessary that the fixed point can be computed
in finitely many steps. For that, appropriate widening operators can be chosen to
speed up the computation of the R-invariant; literature on widening operations
introduced in the context of abstract interpretation [CC77] can be extremely
useful here.

3 Conjunctions of Polynomial Equations as Invariants

We consider the language of polynomial equations closed under conjunction
and show that it satisfies all the requirements discussed in the previous section.
Then we derive a procedure for finding polynomial invariants from the General
Procedure which under restrictions over the assignment mappings is guaranteed
to terminate.

3.1 Preliminaries

A mapping g : Qr → Qs is said to be affine if it is of the form g(x̄) = Ax̄+ b,
where A is an s× r matrix with coefficients in Q, and b ∈ Qs.

We denote by Q[z̄] = Q[z1, ..., zl] the set of polynomials with coefficients in Q

in the variables z1, ..., zl. Given a set of polynomials S ⊆ Q[z̄], the ideal spanned
by S is written as 〈S〉Q[z̄] or simply as 〈S〉, and the variety of S is defined as its

set of zeroes, V(S) = {ᾱ ∈ Ql| p(ᾱ) = 0 ∀p ∈ S}. Reciprocally, if A ⊆ Ql the
ideal I(A) = {p ∈ Q[z̄]| p(ᾱ) = 0 ∀ᾱ ∈ A} is the anihilator of A. If I ⊆ Q[z̄], we
will write IV(I) instead of I(V(I)).

3.2 The Language

From now on we will restrict ourselves to the case R = P = {∧p∈P p(x̄, x̄∗) =
0 | P ⊂ Q[x̄, x̄∗] finite}, that is to say, finite conjunctions of polynomial equations
with rational coefficients. As we pointed out in Section 2.1, we require that the
variables lie in a field so that we can use algebraic geometry. Assuming that the
variables in our original program are of type integer or rational, we can take
Σ = Qm, where m is the number of changing variables in the loop. Moreover,
we ignore the guards from the original program, that is to say, for 1 ≤ i ≤ n we
take Ci = E = true. For the time being we assume that the mappings of the
assignments fi are any polynomial mappings.

Now, let us denote by I the set of ideals of Q[x̄, x̄∗]. Then we can establish
the following correspondences between formulas in P and ideals in I:

φ : P −→ I,
∧

p∈P

(p = 0) 7−→ 〈P 〉

ψ : I −→ P , I 7−→
∧

p∈basis(I)

(p = 0)

where basis returns a finite basis of generators of a given ideal; by Hilbert’s basis
theorem, every ideal in Q[x̄, x̄∗] has a finite basis. It is clear then that both φ
and ψ are well-defined. Moreover, ∀R ∈ P we have that

R(ᾱ, ᾱ∗) holds ⇔ (ᾱ, ᾱ∗) ∈ V(φ(R))

and ∀R,S ∈ P ,
(

R(x̄, x̄∗) ⇒ S(x̄, x̄∗)
)

⇔

⇔ V(φ(R)) ⊆ V(φ(S)) ⇔

⇔ IV(φ(R)) ⊇ IV(φ(S))

3.3 Expressiveness

We must show that there exists for a given loop a polynomial invariant that
implies all other polynomial invariants. The idea is to take the basis of the
ideal generated by all polynomials appearing in the polynomial invariants of the
loop. By Hilbert’s basis theorem, such an infinite basis has an equivalent finite
basis. Then we can take R∞ as the conjunction of the polynomial equations
corresponding to each polynomial in such a basis.

More formally:

Lemma 2. P is expressive (for any given loop with polynomial assignments
after ignoring the guards).

Proof. We have to check that ∃R∞ ∈ P such that
i) R∞ is P-invariant.
ii) ∀R P-invariant R∞(x̄, x̄∗) ⇒ R(x̄, x̄∗)

In our case a formula R ∈ P is P-invariant if
• R0(x̄

∗) ⇒ R(x̄∗, x̄∗)
• ∀i : 1 ≤ i ≤ n R(x̄, x̄∗) ⇒ R(fi(x̄), x̄

∗)
First of all we define the ideal

P∞ =
〈 ⋃

{φ(R)| R is P-invariant with respect to R0}
〉

By Hilbert’s basis theorem, there exists a finite set of polynomials p1, ..., pk ∈
Q[x̄, x̄∗] such that 〈p1, ..., pk〉 = P∞. Therefore for any R formula P-invariant
w.r.t. R0 we have that φ(R) ⊆ 〈p1, ..., pk〉. But clearly this implies that ∀ᾱ, ᾱ∗ ∈
Qm

k∧

l=1

pl(ᾱ, ᾱ
∗) = 0 ⇒ R(ᾱ, ᾱ∗)

Therefore if we define R∞ :=
(∧k

l=1 pl(x̄, x̄
∗) = 0

)
we satisfy ii).

Now we have to prove that i) also holds, that is to say, that R∞ is P-invariant.
There exist P-invariant formulasQ1, ..., Qr such that ∀l : 1 ≤ l ≤ k ∃q1l ∈ φ(Q1),
...,qrl ∈ φ(Qr) satisfying

pl =

r∑

j=1

qjl

Using the P-invariance of the Qj and that φ(Qj) ⊆ 〈p1, ..., pk〉, it is straightfor-
ward to prove that

R0(x̄
∗) ⇒

k∧

l=1

pl(x̄
∗, x̄∗) = 0

and that ∀i : 1 ≤ i ≤ n we have

k∧

l=1

pl(x̄, x̄
∗) = 0 ⇒

k∧

l=1

pl(fi(x̄), x̄
∗)

�

3.4 Polynomial Equations Are Disjunctively Closed

Given two formulas R,S such that R as well as S is a conjunction of poly-
nomial equations, the values that satisfy R ∨ S satisfy either R or S, and so are
the union of the sets of zeroes of φ(R) and φ(S). But by duality the union of
the varieties of ideals is the variety of their intersection. We have the following
result:

Lemma 3. P is disjunctively closed.

Proof. Given R,S ∈ P we define R t S as the formula obtained after equating
to 0 a finite basis of φ(R) ∩ φ(S), ψ(φ(R) ∩ φ(S)). Then V(φ(R)) ∪ V(φ(S)) =
V(φ(R) ∩ φ(S)) = V(φ(R t S)) implies that

R(x̄, x̄∗) ∨ S(x̄, x̄∗) ⇔ (R t S)(x̄, x̄∗)

Since we have equivalence, R t S thus defined is enough.
�

3.5 Existential Quantifier Elimination

In this section we show that in theory we can eliminate the quantifiers and
the infinite disjunction in the following formula

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗)

)

using operations on polynomial ideals. Namely, for i : 1 ≤ i ≤ n and R we can
compute a basis B of the ideal

Q[x̄, x̄∗]
⋂

(∞⋂

s=1

〈

(−x̄+ f s
i (ȳ))

⋃ (⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
)〉)

where −x̄+ f s
i (ȳ) denotes a set of m polynomials, one for each of the m compo-

nents. Then we can define ϕi(R)(x̄, x̄∗) := (
∧

p∈B p(x̄, x̄∗) = 0).
In Appendix B we show that the ϕi’s defined this way satisfy all the required

conditions. Unfortunately, the proof is not constructive. How to find such for-
mulas (or how to approximate them) is another issue which will be dealt with
later on in Section 4.

3.6 Procedure for Conjunctions of Polynomial Equalities

As we have seen in the previous sections, P satisfies all conditions to apply the
abstract framework. Our goal now is to translate the General Procedure, which
manipulates formulas, into a procedure manipulating ideals, because operations
on the latter are easier to implement. In order to do that we will use the corre-
spondences φ and ψ, defined in Section 3.2. Notice that ∀R ∈ P , ∀ᾱ, ᾱ∗ ∈ Qm

we have that

R(ᾱ∗, ᾱ∗) ⇔ (ᾱ, ᾱ∗) ∈ V(φ(R)) ⇔

⇔ (ᾱ, ᾱ∗) ∈ V(basis(φ(R)) ⇔ ψ ◦ φ(R)(ᾱ, ᾱ∗)

So if we apply φ to the formula variables R and R′ in the General Procedure
in order to compute with ideals and apply ψ to recover the output formula on
termination, we still get the strongest polynomial invariant since equivalence is
preserved.

Furthermore, it is not difficult to see that φ(R∧S) = 〈φ(R)∪φ(S)〉. Therefore
the initial assignment

R :=
(m∧

j=1

(xj = x∗j)
)

∧ R0

is translated into

φ(R) :=

〈(m⋃

j=1

{xj − x∗j}
)

∪ φ(R0)

〉

= 〈{x̄− x̄∗} ∪ φ(R0)〉

where φ(R0) is an ideal of polynomials satisfied by the initial values, and x̄− x̄∗

denotes the m polynomials that correspond to the projections over each of the
m coordinates.

It is also easy to prove that ∀R,S ∈ P ,

(

R(x̄, x̄∗) ⇔ S(x̄, x̄∗)
)

⇔ IV(φ(R)) = IV(φ(S))

Thus the test while R′ 6⇔ R do in the General Procedure becomes while

IV(φ(R′)) 6= IV(φ(R)) do in the new one.
Before finally showing the procedure in terms of ideals we need to introduce

new notation in order to represent

⋃

p∈IV(φ(R))

p(ȳ, x̄∗)

appearing in

Q[x̄, x̄∗]
⋂

(∞⋂

s=1

〈

(−x̄+ f s
i (ȳ))

⋃ (⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
)〉)

Given an ideal I ∈ Q[x̄, x̄∗] and a polynomial mapping g ∈ Q[z̄, x̄]m, where the
z̄ are auxiliary variables (for example, ȳ) we define the ideal in Q[x̄, x̄∗, z̄]

subs(g, I) = 〈p(g(z̄, x̄), x̄∗) ∈ Q[x̄, x̄∗, z̄] | p(x̄, x̄∗) ∈ I〉Q[x̄,x̄∗,z̄]

that is to say the result of composing the x̄ variables with g. In our case we have
that 〈 ⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
〉

= subs(ȳ, IV(φ(R))

Then, taking into account the definition of t and the ϕi’s in the proofs of
expressiveness and quantifier elimination and the remarks above, the procedure
is

Input.

The polynomial mappings f1, ..., fn of the assignments
An ideal I0 of polynomials satisfied by the initial values

Output.

The strongest P-invariant formula R∞ with respect to ψ(I0)

var I, I ′ : ideals in Q[x̄, x̄∗] end var

I ′ := Q[x̄, x̄∗]
I :=

〈{
x̄− x̄∗

}
∪ I0

〉

while IV(I ′) 6= IV(I) do

I ′ := I
I := I ∩ Q[x̄, x̄∗] ∩

(
⋂n

i=1

⋂∞
s=1

〈

{−x̄+ f s
i (ȳ)}⋃

subs(ȳ, IV(I))
〉)

end while

return ψ(I)

where the relation with the General Procedure is given by I = φ(R), I ′ = φ(R′),
I0 = φ(R0).

3.7 Eliminating Existential Quantifiers: Invertible Polynomial

Mappings

Given a polynomial mapping g, we say that g is an invertible polynomial
mapping if ∃g−1 polynomial mapping. Now assume that ∀i : 1 ≤ i ≤ n fi is
an invertible polynomial mapping. Then x̄ = f s

i (ȳ) implies ȳ = f−s
i (x̄), and

therefore we can eliminate ȳ and replace the assignment

I := I ∩ Q[x̄, x̄∗] ∩
(n⋂

i=1

∞⋂

s=1

〈

{−x̄+ f s
i (ȳ)}

⋃

subs(ȳ, IV(I))
〉)

by

I := I ∩
(n⋂

i=1

∞⋂

s=1

subs(f−s
i , IV(I))

)

Moreover, we can get rid of the IV(·) operator in the procedure under certain
hypotheses on the ideal I0. Namely, if I0 is such that I0 = IV(I0) then it can be
proved that I = IV(I) is an invariant of the procedure for finding polynomial
invariants, and therefore we can replace IV(I) by I under this hypothesis. The
proof (see [CK]) is based on three facts:

• If I0 ∈ Q[x̄∗] is an ideal such that I0 = IV(I0), then

〈{
x̄− x̄∗

}
∪ I0

〉
= IV(

〈{
x̄− x̄∗

}
∪ I0

〉
)

• If I is an ideal such that I = IV(I) and g is an invertible polynomial
mapping, then

∞⋂

s=0

subs(g−s, I) = IV(
∞⋂

s=0

subs(g−s, I))

• If I, J are ideals such that I = IV(I) and J = IV(J) then I∩J = IV(I ∩ J)

The first result proves that the equality I = IV(I) holds at the beginning
of the procedure, and the other two guarantee that at each step I = IV(I) is
preserved.

So assuming that I0 = IV(I0) we can further simplify the procedure, which
finally becomes

Input.

The invertible polynomial mappings f1, ..., fn of the assignments
An ideal I0 of polynomials satisfied by the initial values such that
I0 = IV(I0)

Output.

The strongest P-invariant formula R∞ with respect to ψ(I0)

var I, I ′ : ideals in Q[x̄, x̄∗] end var

I ′ := Q[x̄, x̄∗]
I :=

〈{
x̄− x̄∗

}
∪ I0

〉

while I ′ 6= I do

I ′ := I
I :=

⋂n
i=1

⋂∞
s=0 subs(f

−s
i , I)

end while

return ψ(I)

Notice that the assignment I := I ∩ (
⋂n

i=1

⋂∞
s=1 subs(f

−s
i , I)) is equivalent to

I :=
⋂n

i=1

⋂∞
s=0 subs(f

−s
i , I). We will refer to this as the Polynomial Procedure.

3.8 Eliminating Existential Quantifiers: Solvable Mappings

Unfortunately, there exists no general formula for the powers f−s
i when fi

is any invertible polynomial mapping. We have to restrict the set of treatable
assignments to those for which we can compute the powers of their right-hand
sides fi. For this reason we introduce the concept of solvable mapping. Intuitively,
a solvable mapping g is a polynomial mapping such that the recurrence xs+1 =
g(xs) can be solved effectively and such that its solution (which is the general
power gs) has a polynomial structure.

Before giving the formal definition we need some notation. Given U ⊆ x̄ a
subset of the variables we denote by gU : Qm → Q|U | the mapping consisting in
the (sorted) tuple of the j-th components of g such that xj ∈ U . For instance,
for the mapping

g(a, b, p, q) = (a− 1, b, p, q + bp)

we would have
g{a}(a, b, p, q) = g{a}(a) = a− 1

g{a,b,p}(a, b, p, q) = g{a,b,p}(a, b, p) = (a− 1, b, p)

g{q}(a, b, p, q) = q + bp

Definition 5. Let g ∈ Q[x̄]m be a polynomial mapping. We say that g is solvable
if there exists a partition of x̄, x̄ = U1 ∪ · · · ∪Uk, Ui ∩Uj = ∅ if i 6= j, such that
∀j : 1 ≤ j ≤ k we have

gUj
(x̄) = MjU

T
j + Pj(U1, ..., Uj−1)

where Mj ∈ Q|Uj |×|Uj | is a matrix and Pj is a vector of |Uj | polynomials with
coefficients in Q and depending on the variables in U1, ..., Uj−1 (P1 must neces-
sarily be a constant vector).

Moreover, we define the eigenvalues of g as the union of the eigenvalues of
the matrices Mj , 1 ≤ j ≤ k.

Finally, an assignment x̄ := g(x̄) is said to be solvable if the mapping g is
solvable.

Notice that any affine mapping g(x̄) = Ax̄+ b is solvable, since we can take
U1 = x̄, M1 = A, P1 = b, and then the eigenvalues of g are the eigenvalues of A.
For example, the affine mappings

f1(x, y, z) = (2x, y/2− 1/2, x+ z)

f2(x, y, z) = (2x, y/2, z)

are solvable and in both cases the eigenvalues are {2, 1/2, 1}.
Let us consider an example of solvable mapping which is not affine. For

instance the non-linear mapping

g(a, b, p, q) = (a− 1, b, p, q + bp)

is solvable. Indeed, we can take U1 = {a, b, p}, M1 = diagonal(1, 1, 1), P1 =
(−1, 0, 0), since

g{a,b,p}(a, b, p, q) = g{a,b,p}(a, b, p) = (a− 1, b, p);

and then U2 = {q}, with M2 = (1) and P2 = bp, as g{q}(a, b, p, q) = q + bp.
Moreover, in this case the eigenvalues of g are just {1}.

In order to motivate the name, let us compute gs. Equivalently, we can solve
the recurrence equation (as+1, bs+1, ps+1, qs+1) = g(as, bs, ps, qs), whose solution
is gs(a0, b0, p0, q0). We first solve the recurrence for as, bs, ps:







as+1 = as − 1
bs+1 = bs
ps+1 = ps

It is easy to see that






as = a0 − s
bs = b0
ps = p0

Now as qs+1 = qs + bsps, plugging in the solution for the variables that have
already been solved we get the recurrence

qs+1 = qs + b0p0

This equation can be easily solved, and finally we get that

qs = q0 + b0p0s

and
gs(a, b, p, q) =

(

a− s, b, p, q + bps
)

Notice that gs(x̄) is a vector of polynomials; this “polynomial structure” will be
very important when eliminating the loop counter s in the implementation in
Section 4.

Now, consider the following program, that computes the product of two in-
teger numbers:

function product (A, B: integer) returns q: integer
{ Pre: A ≥ 0 ∧ B ≥ 0}
var a, b, p: integer end var

〈a, b, p, q〉:=〈A, B, 1, 0〉;
while (a 6= 0) ∧ (b 6= 0) do

if (a mod 2 = 0) ∧ (b mod 2 = 0)
→ 〈a, b, p, q〉 := 〈a/2, b/2, 4p, q〉;

[](a mod 2 = 1) ∧ (b mod 2 = 0)
→ 〈a, b, p, q〉 := 〈a− 1, b, p, q + bp〉;

[](a mod 2 = 0) ∧ (b mod 2 = 1)
→ 〈a, b, p, q〉 := 〈a, b− 1, p, q + ap〉;

[](a mod 2 = 1) ∧ (b mod 2 = 1)
→ 〈a, b, p, q〉 := 〈a− 1, b− 1, p, q + (a+ b− 1)p〉;

end if

end while

{ Post: q = A · B}

By applying the same construction as above, it is easy to see that all the
assignments in this program are solvable.

3.9 Termination of the Procedure

The Polynomial Procedure is shown to be terminating under two cases:

– if the assignment mappings fi’s are solvable and the associated eigenvalues
are positive. In that case, it can be shown that the procedure terminates in
at most 2m+1 iterations, where m is the number of variables changing value
in the body of the loop.

– if the assignment mappings fi’s are polynomial and commute, i.e. fi ◦ fj =
fj ◦fi for 1 ≤ i, j ≤ n. In that case it is shown that the procedure terminates
in at most n+ 1 iterations, where n is the number of branches in the body
of the loop.

Solvable Mappings with Positive Eigenvalues In [CK], it is proved using
algebraic geometry arguments that for the case when the assignments fi’s are
invertible solvable mappings and furthemore, the associated eigenvalues are pos-
itive, then the above procedure terminates in at most 2m+ 1 steps, where m is
the number of changing variables in the loop. Every iteration of the procedure is
shown to increase at least by 1 the dimension of all those irreducible components
of the variety of the computed ideal which are not invariant for the loop yet. In
practice the dimension of the variety itself usually increases too, as we will see
with some examples.

The formal statement of termination is the following:

Theorem 1. If the mappings fi are solvable and
⋃n

i=1 eigenvalues(fi) ⊆ R+,
then the Polynomial Procedure terminates in at most 2m+ 1 iterations.

The proof is given in [CK].

Commuting Polynomial Mappings We first prove a more general result,
namely, that in the N -th iteration of the Polynomial Procedure, the effect of all
possible compositions of assignment mappings of length ≤ N has been consid-
ered. Using this general result we show that if the assignment mappings com-
mute, then a fixed point is reached in n + 1 iterations, where n is the number
of branches in the conditional statement of the body of the loop. In particular
if n = 1, i.e. there are no conditional statements, the procedure takes at most 2
iterations to generate the fixed point.

Let us consider the set of strings over the alphabet [n] = {1, ..., n}, which
we denote by [n]∗. We also write f = {f1, ..., fn}. For every string σ ∈ [n]∗ we
inductively define [f]σ as

[f]λ(x̄) = x̄, [f]σ.i(x̄) = fi([f]σ(x̄))

where λ denotes the empty string. Moreover, given σ ∈ [n]∗ we also define ν(σ),
the number of alternations of σ as:

• ν(λ) = −1 (λ is the empty string)
• ν(i) = 0
• ν(i.j.σ) = ν(j.σ) if i = j
• ν(i.j.σ) = 1 + ν(j.σ) if i 6= j
(1 ≤ i, j ≤ n)

Finally, for N ∈ N we also define =N as the ideal stored in the variable I in
the Polynomial Procedure at the end of the N -th iteration. Then we have the
following result:

Lemma 4. ∀N ∈ N

=N =
⋂

σ∈[n]∗

ν(σ)≤N−1

subs(([f]σ)−1,=0)

Proof. Let us prove it by induction on N . If N = 0, then the only σ ∈ [n]∗ such
that ν(σ) ≤ −1 is σ = λ, the empty string. Since subs(([f]λ)−1,=0) = =0, our
claim is true.

Now let us assume that N > 0. By definition of =N we have that

=N =

n⋂

i=1

∞⋂

s=0

subs(f−s
i ,=N−1)

Applying the induction hypothesis,

=N =
n⋂

i=1

∞⋂

s=0

subs(f−s
i ,

⋂

σ∈[n]∗

ν(σ)≤N−2

subs(([f]σ)−1,=0))

As the mappings f−s
i are invertible, it can be proved that subs distributes with

respect to ∩. Then

=N =

n⋂

i=1

∞⋂

s=0

⋂

σ∈[n]∗

ν(σ)≤N−2

subs(f−s
i , subs(([f]σ)−1,=0))

Given f, g ∈ Q[x̄]m and an ideal I ⊆ Q[x̄], subs(f, subs(g, I)) = subs(g ◦ f, I).
So

=N =

n⋂

i=1

∞⋂

s=0

⋂

σ∈[n]∗

ν(σ)≤N−2

subs(([f]σ)−1 ◦ (fs
i)−1,=0) =

=

n⋂

i=1

∞⋂

s=0

⋂

σ∈[n]∗

ν(σ)≤N−2

subs((f s
i ◦ [f]σ)−1,=0) =

=

n⋂

i=1

∞⋂

s=0

⋂

σ∈[n]∗

ν(σ)≤N−2

subs(([f]σ.

s

︷ ︸︸ ︷

i. · · · .i)−1,=0) =

=
⋂

σ∈[n]∗,ν(σ)≤N−1

subs(([f]σ)−1,=0)

which is what we wanted to show.

�

Finally, we have the result of termination if the mappings fi commute:

Theorem 2. If the mappings fi commute, i.e. fi◦fj = fj◦fi ∀i, j : 1 ≤ i, j ≤ n,
then the procedure terminates in at most n+ 1 iterations.

Proof. If the fi’s commute then ∀σ ∈ [n]∗ we can build, by rearranging the
mappings fi and collapsing them in a single power, τ ∈ [n]∗ such that ν(τ) ≤ n−1
and [f]σ = [f]τ . Then, by Lemma 4

=n =
⋂

σ∈[n]∗

ν(σ)≤n−1

(

subs(([f]σ)−1,=0)
)

=

=
⋂

σ∈[n]∗

ν(σ)≤n

(

subs(([f]σ)−1,=0)
)

= =n+1

Therefore the procedure terminates in at most n+ 1 iterations.
�

4 Implementation of the Polynomial Procedure

4.1 Approximating the Infinite Intersection: Powers of Solvable

Mappings

For the sake of a clear presentation we have not shown yet the procedure that
has actually been implemented. The problem with the Polynomial Procedure as
given in Section 3 is that the assignment

I :=

∞⋂

s=0

n⋂

i=1

subs(f−s
i , I)

is not directly implementable, due to the infinite intersection. In this section we
show how to approximate it by means of algebraic geometry methods without
losing completeness.

The basic idea is to consider the parameter s as a new variable s and compute
the general expression of the powers f−s

i for 1 ≤ i ≤ n; for that reason we
need the mappings fi to be invertible and solvable. For the time being let us
assume that f−s

i (x̄) ∈ Q[s, x̄]. Then given a basis for I ⊆ Q[x̄, x̄∗] we get a
basis for subs(f−s

i , I) ⊆ Q[s, x̄, x̄∗] by substituting the x̄ variables by f−s
i (x̄). By

using standard Gröbner bases techniques, the finite intersection ∩n
i=1subs(f

−s
i , I)

can be computed. What remains to be done is the infinite intersection. The
approximation consists in taking an elimination monomial order for s and then
eliminate this auxiliary variable from ∩n

i=1subs(f
−s
i , I).

Nevertheless, there is another problem with this approach. The hypothesis
f−s

i (x̄) ∈ Q[s, x̄] does not necessarily hold in general; exponential terms might
appear, like in the example from Section 2.1:

〈x, y, z〉:=〈X, Y, 0〉;
while true do

if true→ 〈x, y, z〉:=〈2 ∗ x, (y − 1)/2, x+ z〉;
[] true→ 〈x, y, z〉:=〈2 ∗ x, y/2, z〉;

end if

end while

f1(x, y, z) = (2x, y/2− 1/2, x+ z)

f2(x, y, z) = (2x, y/2, z)

fs
1 (x, y, z) = (2sx, (1/2)sy + (1/2)s − 1, z + (2s − 1)x)

fs
2 (x, y, z) = (2sx, (1/2)sy, z)

The eigenvalues of the fi’s in this case are {1/2, 2, 1}.
In general we have the following result concerning the powers of solvable

mappings:

Theorem 3. Let g ∈ Q[x̄]m be a solvable mapping with rational eigenvalues.
Then for 1 ≤ j ≤ m gs

j (x̄), the j-th component of gs(x̄), can be expressed as

gs
j (x̄) =

kj∑

l=1

Pjl(s, x̄)(γjl)
s, 1 ≤ j ≤ m, s ≥ 0

where for 1 ≤ j ≤ m, 1 ≤ l ≤ kj , Pjl ∈ Q[s, x̄] and γjl ∈ Q. Moreover, the γjl

are products of the eigenvalues of g.

The proof (see Appendix C) is based on the fact that a matrix M ∈ Qr×r

with rational eigenvalues can be decomposed as M = S−1JS, with S, J ∈ Qr×r,
det(S) 6= 0 and J the Jordan normal form of M ([Nom66]); and that a sequence
(ws)s∈N is of the form

ws =

k∑

j=1

Pj(s)λ
s
j , s ≥ 0

with Pj polynomial for 1 ≤ j ≤ k if and only if its generating function W (z) =
∑∞

s=0 wsz
s is a rational function (see [Sta97] for an introduction to generating

functions).
A way to sort this problem out is to introduce more auxiliary variables to

replace the exponential terms γs
jl and then eliminate them with a suitable elim-

ination order. From now on let us assume that
⋃n

i=1 eigenvalues(fi) ⊆ Q+ (no-
tice that by Theorem 1 termination is guaranteed in this case). It is clear that

∀γ ∈ Q+ there exists a unique prime decomposition of the form γ =
∏k

i=1 λ
αi

i

where the λi are primes for 1 ≤ i ≤ k and αi ∈ Z. So we can compute a “base”
Λ = {λ1, ..., λk} ⊂ N of prime numbers such that ∀γ ∈ ⋃n

i=1 eigenvalues(fi) we

have γ =
∏k

i=1 λ
αk

i for certain αi ∈ Z. Then

γs =

k∏

i=1

(λαk

i)s =

k∏

i=1

(λ
s·Σ(αk)
i)|αk |

where Σ(·) is the sign function.

Now we can introduce the variables ui to replace λs
i and the variables vi to

replace λ−s
i . By Theorem 3 for 1 ≤ i ≤ n there exists a polynomial mapping

Fi = Fi(s, ū, v̄, x̄) : Q1+2k+m → Qm such that ∀t ∈ N,

f t
i (x̄) = Fi(t, λ̄

t, λ̄−t, x̄)

and
f−t

i (x̄) = Fi(−t, λ̄−t, λ̄t, x̄)

where λ̄t = (λt
1, ..., λ

t
k).

For instance, in our previous example we can take Λ = {2} and then we have:

f1(x, y, z) = (2x, y/2− 1/2, x+ z)

f2(x, y, z) = (2x, y/2, z)

fs
1 (x, y, z) = (2sx, (1/2)sy + (1/2)s − 1, z + (2s − 1)x)

fs
2 (x, y, z) = (2sx, (1/2)sy, z)

F1(s, u, v, x, y, z) = (ux, vy + v − 1, z + (u− 1)x)

F2(s, u, v, x, y, z) = (ux, vy, z)

where the variables u, v represent 2s and (1/2)s respectively.
So far we have not considered the possible polynomial relations between t,

the λt
i and the λ−t

i , which may be important in order to eliminate the auxiliary
variables. Let L = {l ∈ Q[s, ū, v̄] | l(t, λ̄t, λ̄−t) = 0 ∀t ∈ N} be this set of
polynomials. Let us also define L = {u1v1 − 1, ..., ukvk − 1}. Then it can be
shown that 〈L〉Q[s,ū,v̄] = L (see Appendix D for the proof), and therefore we
have a precise characterization of L.

For instance, since in the example we have Λ = {2} and the variables u, v
represent 2s and (1/2)s respectively, in this case L = {uv − 1}.

4.2 Implementation Using Gröbner bases

In the implementation of the Polynomial Procedure the operations between
ideals have been replaced by operations between sets of polynomials:

Input.

The solvable mappings with positive rational eigenvalues f1, ..., fn of
the assignments

A set S0 of polynomials satisfied by the initial values such that
〈S0〉 = IV(〈S0〉)

Output.

The strongest P-invariant formula R∞ with respect to
(∧

p∈S0
p = 0

)

var

S′, S : sets of polynomials in Q[x̄, x̄∗]
Saux : set of polynomials in Q[s, ū, v̄, x̄, x̄∗]

end var

1: compute f s
1 , ..., f

s
n, F1, ..., Fn, L

2: S′ := {1}
3: S := {x∗1 − x1, ..., x

∗
m − xm} ∪ S0

4: while S′ 6= S do

5: S′ := S
6: Saux :=gröbner basis(

⋂n
i=1〈subs(Fi(−s, v̄, ū, ·), S)〉Q[s,ū,v̄,x̄,x̄∗], >)

7: Saux :=gröbner basis(Saux ∪ L,�)
8: S := { polynomials in Saux without s, ū, v̄}
9: end while

10: return
(∧

p∈S p = 0
)

At line 1 the f s
i ’s are computed by means of linear algebra or generating

functions, using partial fraction decomposition. The command rsolve in Maple
can be used for this purpose. For computing the Fi’s from the f s

i , the eigen-
values of the f ′

is are factorized and auxiliary variables ū and v̄ are introduced
to substitute the exponentials. These can be done efficiently using commands
supported in most mathematical packages.

The function subs in line 6 substitutes polynomials for variables in a given
basis; this is the way the function subs applied to ideals is implemented. The
intersection of ideals at the same line is performed by using Gröbner bases meth-
ods. The function gröbner basis computes the unique reduced Gröbner basis
of the ideal generated by a finite set of polynomials with respect to a specified
monomial order. In this case > is arbitrary

At line 7 the order� on monomials for computing a Gröbner basis is chosen so
that it eliminates the variables s, ū, v̄ (typically using block-order or lexicographic
ordering). At line 8 polynomials not containing any of the auxiliary variables as
well as s are selected from the Gröbner basis, so that the result is a set of
polynomials S such that

〈S〉Q[x̄,x̄∗] = Q[x̄, x̄∗] ∩
〈

L ∪
(n⋂

i=1

subs(Fi(−s, v̄, ū·), 〈S〉)
)〉

Q[s,ū,v̄,x̄,x̄∗]

Moreover, S is the reduced Gröbner basis for this ideal with respect to the
restriction of the order � to the variables x̄, x̄∗.

The equality test on ideals is easily implemented by computing their reduced
Gröbner basis using the same ordering on monomials since every ideal has a
unique reduced Gröbner basis once the ordering is fixed. From the second iter-
ation on, both S and S′ are the reduced Gröbner bases of the respective ideals.

The following result ensures that the above procedure is still correct and
complete:

Theorem 4. If the Polynomial Procedure terminates with output I∗, the imple-
mentation terminates in at most the same number of iterations and with output
S∗ such that 〈S∗〉Q[x̄,x̄∗] = I∗.

See Appendix E. If we write P∞ = φ(R∞) as we did in Section 3.3, the proof
is based on the fact that P∞ ⊆ 〈S〉 is kept invariant during all the execution, and
so in particular on termination P∞ ⊆ 〈S∗〉; and is based also on the fact that
at any iteration the ideal I computed by the Polynomial Procedure includes the
ideal 〈S〉 generated by the polynomials obtained in the implementation. So if the
Polynomial Procedure terminates we have I∗ = P∞ ⊆ 〈S∗〉 ⊆ I∗, and therefore
all are equalities and the implementation terminates with a set of polynomials
generating P∞.

For the product function example discussed earlier, the algorithm works as
follows:

iteration 0 −→ {z∗, x− x∗, y − y∗, z − z∗}
This states that x, y, z start with some unknown values x∗, y∗, z∗, respectively,
except that z is initialized to be 0. That is why z∗ = 0. The dimension of this
ideal is 2.

iteration 1 −→ {z∗, xz− z− zx∗,−x∗y∗ + z+xy, yz+ zyx∗− zx∗y∗ + z}
The dimension of this ideal is 3.

iteration 2 −→ {z∗,−x∗y∗ + z + xy}
The dimension of this ideal is 4.

iteration 3 −→ {z∗,−x∗y∗ + z + xy}
The fixed point is computed.

Thus, in only 3 iterations, the algorithm terminates. The polynomial equation
z∗ = 0 is the equation satisfied by the input. Substituting x∗ and y∗ in −x∗y∗ +
z + xy by their initial values X and Y , an invariant −X · Y + z + x · y = 0, i.e.
z + x · y = X · Y , is generated which suffices to prove the postcondition in the
original program:

{ Pre: X ≥ 0 ∧ Y ≥ 0}
var x, y: integer end var

〈x, y, z〉:=〈X, Y, 0〉;
while y 6= 0 do

if y mod 2 = 1 then 〈x, y, z〉:=〈2 ∗ x, (y − 1) div 2, x+ z〉;
[] y mod 2 = 0 then 〈x, y, z〉:=〈2 ∗ x, y div 2, z〉;
end if

end while

{ Post: z = X · Y }

Example 1. Consider the following function, which is a version of the program
in [Knu69] that finds a factor of a positive odd number N with only addition
and subtraction. Let us assume that it has been partially annotated with some
invariants which however are not enough to prove partial correctness:

function fermat (N , R: integer) returns x, y: integer
{ Pre: N ≥ 1 ∧N mod 2 = 1 ∧ (R+ 1)2 > N ≥ R2}
var r: integer end var

〈r, x, y〉:=〈R2 −N, 2 · R+ 1, 1〉;
{ Inv: N ≥ 1 ∧ x mod 2 = 1 ∧ y mod 2 = 1}
while r 6= 0 do

if r > 0 → 〈r, x, y〉:=〈r − y, x, y + 2〉;
[] r < 0 → 〈r, x, y〉:=〈r + x, x+ 2, y〉;
end if

end while

{ Post: x 6= y ∧ x mod 2 = y mod 2 ∧N mod ((x− y) div 2) = 0}
end function

Since there are no divisions in the algorithm, we may consider the variables
as rational numbers and apply the algorithm.

f1(r, x, y) = (r − y, x, y + 2)

f2(r, x, y) = (r + x, x+ 2, y)

fs
1 (r, x, y) = (r − sy − (s− 1)s, x, 2s+ y)

fs
2 (r, x, y) = (r + sx+ (s− 1)s, 2s+ x, y)

Therefore we just have to add one new variable s:

F1(s, r, x, y) = f s
1 (r, x, y) = (r − sy − (s− 1)s, x, 2s+ y)

F2(s, r, x, y) = f s
2 (r, x, y) = (r + sx+ (s− 1)s, 2s+ x, y)

Using S0 = {y − 1}, we get the following trace of the computation.

iteration 0−→ {y∗ − 1, r − r∗, x− x∗, y − y∗}
The dimension of this ideal is 2.

iteration 1−→ {y∗ − 1, xy− yx∗−x+x∗, x2 − (x∗)2 − y2 − 4r+ 4r∗− 2x+
2x∗ + 2y − 1, y3 + 4ry − 4yr∗ − 3y2 − 4r + 4r∗ + 3y − 1}
The dimension of this ideal is 3.

iteration 2−→ {y∗ − 1, x2 − (x∗)2 − y2 − 4r + 4r∗ − 2x+ 2x∗ + 2y − 1}
The dimension of this ideal is 4.

iteration 3−→ {y∗ − 1, x2 − (x∗)2 − y2 − 4r + 4r∗ − 2x+ 2x∗ + 2y − 1}

In this case, the algorithm terminates in 3 iterations as well. Substituting r
and x by their initial values in the program R2 −N and 2R+ 1 respectively, we
get that

{−4r − 4N + x2 − 2x− y2 + 2y = 0}

which is an invariant. This polynomial equation along with other nonpolynomial
formulas used as annotations in the program is sufficient to prove the correctness
of the program, using that x2 − 2x− y2 + 2y = (x− y)(x + y − 2).

4.3 Further Improvements

Gröbner bases are well known for their bad behaviour as far as complexity
is concerned (see [Huy86] for example). So an intelligent use of Gröbner bases
computations may lead to a drastic reduction in time. A possible improvement
when there are two or more branches is as follows.

Looking for polynomial invariants for all the branches together from the very
beginning requires computing a lot of intersections of ideals at the same time. In
order to avoid this, we can first find invariants for one branch; then find invariants
for two branches, the previous and another one; and so on, until considering all
possible branches. It is clear that the properties of correctness and completeness
of the method are preserved. The following procedure is the formal description
of what has been discussed above:

Input.

The solvable mappings with positive rational eigenvalues f1,...,fn of the
assignments

A set S0 of polynomials satisfied by the initial values such that
〈S0〉 = IV(〈S0〉)

Output.

A set of polynomials S that generates the strongest P-invariant ideal
with respect to

(∧

p∈S0
p = 0

)

var

S′, S : sets of polynomials in Q[x̄∗, x̄]
Saux : set of polynomials in Q[s, ū, v̄, x̄∗, x̄]
k : integer

end var

S := {x∗1 − x1, ..., x
∗
m − xm} ∪ S0

for k from 1 to n do

compute Fk

S′ := {1}
while S′ 6= S do

S′ := S

Saux :=gröbner basis(

k⋂

i=1

〈subs(Fi(−s, v̄, ū, ·), S)〉Q[s,ū,v̄,x̄∗,x̄], >)

Saux :=gröbner basis(Saux ∪ L,�)
S := { polynomials in Saux without s, ū, v̄}

end while

end for

return S

Although it requires more iterations to terminate, in practice this algorithm
is preferable because Gröbner bases computations are performed using less vari-

ables and less polynomials, and therefore more quickly than in the previous
version.

5 Examples

Below we show some of the programs whose polynomial invariants have been
successfully computed using the implementation described in Section 4.3.

The first of the programs has been introduced in Section 3.8

function product (A, B: integer) returns q: integer
{ Pre: A ≥ 0 ∧ B ≥ 0}
var a, b, p: integer end var

〈a, b, p, q〉:=〈A, B, 1, 0〉;
while (a 6= 0) ∧ (b 6= 0) do

if (a mod 2 = 0) ∧ (b mod 2 = 0)
→ 〈a, b, p, q〉 := 〈a/2, b/2, 4 · p, q〉;

[](a mod 2 = 1) ∧ (b mod 2 = 0)
→ 〈a, b, p, q〉 := 〈a− 1, b, p, q + b · p〉;

[](a mod 2 = 0) ∧ (b mod 2 = 1)
→ 〈a, b, p, q〉 := 〈a, b− 1, p, q + a · p〉;

[](a mod 2 = 1) ∧ (b mod 2 = 1)
→ 〈a, b, p, q〉 := 〈a− 1, b− 1, p, q + (a+ b− 1) · p〉;

end if

end while

{ Post: q = A · B}

In this case, {q + abp = AB} is automatically generated as an invariant in 7
iterations.

The second program has been extracted from [CC77]:

var i, j: integer end var

〈i, j〉:=〈2, 0〉;
while true do

if true→
〈i, j〉:=〈i+ 4, j〉;

[] true→
〈i, j〉:=〈i+ 2, j + 1〉;

end if

end while

For this loop no invariant is generated. Since our technique is complete, i.e. if
there is a polynomial equation which is invariant in the loop, the algorithm will
find the strongest possible conjunction of invariant polynomial equations, it can
be asserted that there are no invariant polynomial equations in the above loop.
This is consistent with the results obtained by Cousot and Halbwachs, who do
not find linear invariant equalities for this example.

The third example computes the floor of the square root of a natural number.
It can be easily shown that the polynomial invariants automatically discovered by
our procedure along with the partial annotations suffice to prove the correctness
of the program.

function sqrt (N : integer) returns a: integer
{ Pre: N ≥ 0}
var s, t: integer end var

〈a, s, t〉:=〈0, 1, 1〉;
{ Inv: s− t ≤ N}
while s ≤ N do

〈a, s, t〉 :=〈a+ 1, s+ t+ 2, t+ 2〉;
end while

{ Post: a2 ≤ N < (a+ 1)2}
end function

In this case, the conjunction {t = 2a + 1 ∧ s = (a + 1)2} is automatically
generated as an invariant in 2 iterations.

The fourth example, which has been extracted from [Dij76], also computes
the floor of the square root:

function sqrt (N : integer) returns p: integer
{ Pre: N ≥ 0}
var q, r, h: integer end var

p:=0; q:=1; r:=N ;
{ Inv: N ≥ 0 ∧ ∃k (k ≥ 0 ∧ q = 4k)}
while q ≤ N do

q:=4 ∗ q;
end while

{ Inv: r ≥ 0 ∧ r < 2p+ q ∧ ∃k (k ≥ 0 ∧ q = 4k)}
while q 6= 1 do

q:=q div 4; h:=p+ q; p:=p div 2;
if r ≥ h then

p:=p+ q; r:=r − h;
end if

end while

{ Post: p2 ≤ N ∧ (p+ 1)2 > N}
end function

For the first loop, {p = 0 ∧ r = N} is generated as an invariant. For the second
loop, {p2 + qr − qN = 0} is generated as an invariant in 4 iterations.

The fifth example, also taken from [Dij76], is a version of Euclid’s algorithm
that computes the least common multiple of two natural numbers instead of
its greatest common divisor. Since it is an extension of Euclid’s algorithm, we
know that {gcd(x, y) =gcd(a, b)} is invariant in the loop. However, this is not
enough to prove the (partial) correctness of the algorithm. The missing piece,

{xu + yv = 2ab}, crucial to show the correctness of the program, is obtained
automatically using our procedure in 4 iterations.

function lcm (a, b: integer) returns z: integer
{ Pre: a > 0 ∧ b > 0}
var x, y, u, v: integer end var

〈x, y, u, v〉:=〈a, b, b, a〉;
{ Inv: gcd(x, y) =gcd(a, b)}
while x 6= y do

if x > y →
〈x, y, u, v〉:=〈x− y, y, u, u+ v〉;

[] x < y →
〈x, y, u, v〉:=〈x, y − x, u+ v, v〉;

end if

end while

z := (u+ v)/2;
{Post : z = lcm(a, b)}

end function

The last program is yet another version of Euclid’s algorithm that computes
the greatest common divisor of two natural numbers together with Bezout’s
coefficients:

function euclid extended (x, y: integer) returns a, p, r: integer
{ Pre: x > 0 ∧ y > 0}
var b, q, s: integer end var

〈a, b, p, q, r, s〉:=〈x, y, 1, 0, 0, 1〉;
{ Inv: gcd(x, y) =gcd(a, b)}
while a 6= b do

if a > b→
〈a, b, p, q, r, s〉:=〈a− b, b, p− q, q, r − s, s〉;

[] x < y →
〈a, b, p, q, r, s〉:=〈a, b− a, p, q − p, r, s− r〉;

end if

end while

{ Post: gcd(x, y) = px+ ry}
end function

For this example our procedure yields the conjunction:

{1+qr−sp = 0∧rb−sa+x = 0∧sy+qx−b = 0∧bp−aq−y = 0∧yr+xp−a = 0}
as an invariant in 5 iterations.

6 Application of Polynomial Invariant Inference to

Program Verification

We have used the polynomial invariants obtained with our algorithm to prove
automatically the (partial) correctness of all the examples shown in this paper.

Our verifier is still at a very early stage of development. The programming
language it accepts is a sub-language of C, featuring integer variables, the usual
arithmetic operations (+, ∗, div, mod, etc.) and function calls. Programs are
annotated with pre-postconditions and loop invariants. The polynomial invari-
ants are obtained automatically with the implementation of the techniques here
presented and for the time being have to be inserted manually; other kind of
invariants, like linear inequalities or formulas involving exponentials and mod-
ulo operations, have to be supplied by the user. Additionally, given any program
point, the user can ensure properties that hold at that point via assume state-
ments, or check whether a certain property is true by means of the command
assert.

Basically the verifier consists of three components. The verification condi-
tion generator creates a list of conditions from the code and the annotations
that must be satisfied in order to ensure the partial correctness of the program.
The conditions are generated according to Floyd-Hoare-Dijkstra’s axiomatic se-
mantics formalism, so that each verification condition is associated to a fragment
of code.

The list of verification conditions is then given to a theorem prover, which
tries to check that the conditions are met. So far we have tried two theo-
rem provers: the first-order-logic general-purpose theorem prover SPASS (see
[WBH+02]), and a simple prover for the integers that we have implemented in
Prolog. Our first approach was to use SPASS taking a list of properties of the
integers as axioms; although for simple examples it would succeed, SPASS had
difficulties dealing with theorems that require algebraic manipulation and knowl-
edge of the properties of the integer numbers. Because the list of axioms was
growing exceedingly we decided to implement our own solver, which has given
overall good results so far. However, for some programs like the following one,
we are able to find polynomial invariants but not to prove correctness:

function divisor (N,D: integer) returns d, r: integer
{ Pre: N > 0 ∧N mod 2 = 1 ∧D mod 2 = 1 ∧D ≥ 2 3

√
n+ 1}

var t, q: integer end var

〈d, r, t, q〉:=〈D,N mod D,N mod (D − 2), 4 ∗ (N div (D − 2) −N div D)〉;
{ Inv: d mod 2 = 1 ∧ d(dq − 4r + 4t− 2q) + 8r = 8N}
while d ≤ b

√

(N)c ∧ r 6= 0 do

〈d, r, t, q〉:=〈d+ 2, 2r − t+ q, r, q〉;
if r < 0 then

〈r, q〉:=〈r + d, q + 4〉;
end if

if r ≥ d then

〈r, q〉:=〈r − d, q − 4〉;
end if

if r ≥ d then

〈r, q〉:=〈r − d, q − 4〉;
end if

end while

{ Post: d 6= 0 ∧ (r = 0 ⇒ N mod d = 0)}
end function

Finally a third component analizes the result of the theorem proving stage
and reports whether the conditions have been satisfied or not. Each fragment of
code is then tagged with “ok”(if the condition has been proved to hold), “error”
(if the condition has been proved not to hold) or “don’t know” (if the theorem
prover has run out of time before deciding the validity of the condition).

Our plans in the near future are the following:

– enrich the set of data structures admitted by the verifier so that it includes
records, arrays, lists and other recursive data structures.

– integrate completely in the verifier the algorithm presented in this paper
and other techniques for mechanically inferring loop invariants (like linear
inequalities, see [CH78] and [CSS03]), together with other theorem proving
components.

7 Conclusions and Further Research

An abstract framework for automatically discovering invariants of loops with
assignments and conditional statements is proposed. A general procedure for
that is given if the language used to express invariants is expressive, disjunctively
closed and allows quantifier elimination. It is shown that the procedure computes
the strongest possible invariant expressible in the language.

This generic framework is then instantiated for the theory of polynomial
equations closed under conjunction. It is proved that for this language, the
strongest invariant of a loop can be automatically computed provided the as-
signment statements in the loop are solvable. Furthermore, the procedure for
computing polynomial invariants is guaranteed to terminate if the eigenvalues
of the assignment mappings are positive. This algorithm has been implemented
in Maple using the Gröbner basis algorithm for computing intersection of ideals
as well as for eliminating variables. The algorithm has been applied to many
non-trivial programs and has successfully discovered invariants which turn out
to be essential when proving correctness.

In the literature there are a number of methods that have been proposed to
automate invariant generation. Due to the difficulty of the problem, most re-
searchers agree that different methods have different strengths and weaknesses,
and therefore a convenient combination of them is advisable. The aproach de-
scribed here should be considered as a further useful tool in the repertoire of
techniques that attempt to automate the inference of loop invariants. Nonethe-
less, our methods are promising when they can be applied. They do not depend
on execution traces and adequate test suites, like [ECGN01] and other dynamic
strategies. They do not need any pre-postconditions as in [Weg74] or [IS97].
However, if the precondition is available, it can be used to possibly speed up
the computation and find invariants using that hypothesis. Furthermore, our
techniques deal correctly with loops with conditionals, whereas in the difference

equations method ([EGLW72]) only heuristics could be applied. Moreover, while
Cousot and Halbwachs ([CH78]) had to introduce the widening operator ∇ in
order to get termination at the cost of completeness, our method is fine enough
to guarantee completeness. As regards the work in [CSS03], Colón et al. use
non-linear constraint solving and quantifier elimination, which is a much more
difficult problem than elimination of variables in polynomial equalities. Finally,
when they can be applied, our techniques have the advantatge over Müller-Olm
and Seidl’s ([Mar03]) that there is no bound on the degree of the polynomials,
and that polynomial solvable assignments are allowed.

For future work, we are interested in exploring the proposed research along
several directions:

– identify languages, possibly rich enough to specify properties of aggregate
data structures such as arrays, records, other recursive data structures, point-
ers, etc, to which the generic framework applies.

– enrich the programming model to consider nested loops as well as procedure
calls.

– explore the relationship between intermediate lemma speculation, needed
to mechanize theorem proving by induction of tail recursive programs, and
automatic inference of invariants of loops.

– extend our current prototype of verifier along the lines described in Section
6.

8 Acknowledgements

The authors would like to thank G.Godoy, R. Nieuwenhuis and A. Oliveras
for their help and wise pieces of advice in previous versions of this paper.

References

[AL94] William W. Adams and Philippe Loustaunau. An Introduction to Gröbner
Bases. American Mathematical Society, 1994.

[BW93] Thomas Becker and Volker Weispfenning. Gröbner Bases. A Computational
Approach to Commutative Algebra. Springer-Verlag, 1993.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, California, 1977. ACM Press, New York, NY.

[CH78] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
among Variables of a Program. In Conference Record of the Fifth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY.

[CK] Enric Rodŕıguez Carbonell and Deepak Kapur. Algegraic geometry for
finding polynomial loop invariants.

[CLO98] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algo-
rithms. An Introduction to Computational Algebraic Geometry and Com-
mutative Algebra. Springer-Verlag, 1998.

[CSS03] Michael A. Colón, Sriram Sankaranarayanan, and Henny B. Sipma. Linear
Invariant Generation Using Non-Linear Constraint Solving. In Computer-
Aided Verification (CAV 2003), volume 2725 of Lecture Notes in Computer
Science, pages 420–432. Springer Verlag, 2003.

[Dij76] E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[ECGN01] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically Dis-
covering Likely Program Invariants to Support Program Evolution. IEEE
Transactions on Software Engineering, 27(2):99–123, Feb 2001.

[EGLW72] B. Elspas, M. W. Green, K. N. Levitt, and R. J. Waldinger. Research in
Interactive Program-Proving Techniques. Technical report, Stanford Re-
search Institute, Menlo Park, California, USA, May 1972.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an Annotation As-
sistant for ESC/Java. In Proceedings of Formal Methods Europe (FME),
volume 2021 of LNCS, pages 500–517, 2001.

[Huy86] D.T. Huynh. A superexponential lower bound for Gröbner bases and
Church-Rosser commutative Thue systems. Information and Control, 68(1-
3):196–206, 1986.

[IS97] A. Ireland and J. Stark. On the Automatic Discovery of Loop Invariants.
In Proceedings of the Fourth NASA Langley Formal Methods Workshop,
NASA Conference Publication 3356, 1997.

[Kar76] M. Karr. Affine Relationships Among Variables of a Program. Acta Infor-
matica, 6:133–151, 1976.

[Knu69] Donald E. Knuth. The Art of Computer Programming. Volume 2, Seminu-
merical Algorithms. Addison-Wesley, 1969.

[Mar03] Markus Müller-Olm and Helmut Seidl. Computing Interprocedurally Valid
Relations in Affine Programs. Technical Report, University of Trier, to
appear in POPL 2004, 2003.

[NE96] Jeremy W. Nimmer and Michael D. Ernst. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java. In Proceed-
ings of RV’01, First Workshop on Runtime Verification, Paris, France, Jul
1996.

[Nom66] Katsumi Nomizu. Fundamentals of Linear Algebra. McGraw-Hill, 1966.

[Sta97] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge
University Press, 1997.

[WBH+02] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen,
Christian Theobald, and Dalibor Topic. SPASS version 2.0. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Au-
tomated Deduction (CADE-18), volume 2392 of Lecture Notes in Artificial
Intelligence, pages 275–279, Kopenhagen, Denmark, 2002. Springer.

[Weg74] Ben Wegbreit. The Synthesis of Loop Predicates. Communications of the
ACM, 17(2):102–112, Feb 1974.

[Wei75] Ben Weigbreit. Property extraction in well-founded property sets. IEEE
Transactions on Software Engineering, 1(3):270–285, Sep 1975.

[WS03] Christoph Walther and Stephan Schweitzer. Verification in the classroom.
To appear in Journal of Automated Reasoning - Special Issue on Automated
Reasoning and Theorem Proving in Education, pages 1–43, 2003.

A Correctness and Completeness of the General

Procedure

First of all we need the next lemma, which states that at any iteration of the
General Procedure the invariant candidate stored in the formula variable R is
implied by the initial formula:

Lemma 5.
(

∧m
j=1(xj = x∗j)

)

∧ R0(x̄
∗) ⇒ R(x̄, x̄∗) is an invariant of the Gen-

eral Procedure.

Proof. It trivially holds at the beginning of the General Procedure. And

(m∧

j=1

(xj = x∗j)
)

∧ R0(x̄
∗) ⇒ R(x̄, x̄∗)

implies

(m∧

j=1

(xj = x∗j)
)

∧ R0(x̄
∗) ⇒ R(x̄, x̄∗) ∨

(n⊔

i=1

ϕ(R, i)
)

(x̄, x̄∗)

and then

(m∧

j=1

(xj = x∗j)
)

∧ R0(x̄
∗) ⇒ R(x̄, x̄∗) t

(n⊔

i=1

ϕ(R, i)
)

(x̄, x̄∗)

�

The following proposition gives correctness, since the hypothesis is satisfied
on termination of the General Procedure:

Proposition 1. If the formula stored in the formula variable R (that we also
denote by R) is such that

R(x̄, x̄∗) ⇔ R t
(n⊔

i=1

ϕ(R, i)
)

(x̄, x̄∗)

then R is R-invariant with respect to R0.

Proof. First let us see that R0(x̄
∗) ⇒ R(x̄∗, x̄∗). Let us take ᾱ∗ ∈ Σ such that

R0(ᾱ
∗) holds. Now as

∧m
j=1(α

∗
j = α∗

j) also holds, by Lemma 5 we have that
R(ᾱ∗, ᾱ∗) holds.

Now let us take i : 1 ≤ i ≤ n and prove that R(x̄, x̄∗) ∧ E(x̄) ∧ Ci(x̄) ⇒
R(fi(x̄), x̄

∗). Taking s = 1 and ȳ = x̄:

R(x̄, x̄∗) ∧ E(x̄) ∧ Ci(x̄) ⇒

⇒
∞∨

s=1

∃ȳ
(

fi(x̄) = f s
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒

⇒ ϕ(R, i)(fi(x̄), x̄
∗) ⇒ R(fi(x̄), x̄

∗) ∨
(n∨

j=1

ϕ(R, j)(fi(x̄), x̄
∗)

)

⇒

⇒ R t
(n⊔

j=1

ϕ(R, j)
)

(fi(x̄), x̄
∗) ⇒ R(fi(x̄), x̄

∗)

�

In order to show the completeness of the procedure we need the following
lemma, which states that we always have a formula stored in R which is stronger
than the R-invariant R∞ that we are looking for:

Lemma 6. The implication R(x̄, x̄∗) ⇒ R∞(x̄, x̄∗) is an invariant of the Gen-
eral Procedure.

Proof. Let us see that it is true at the beginning of the loop. Indeed, (
∧m

j=1(xj =
x∗j)) ∧R0(x̄

∗) ⇒ x̄ = x̄∗ ∧R0(x̄
∗) ⇒ R∞(x̄, x̄∗) since R∞ is R-invariant.

Now we have to prove that R(x̄, x̄∗) ⇒ R∞(x̄, x̄∗) implies

R t
(n⊔

i=1

ϕ(R, i)
)

(x̄, x̄∗) ⇒ R∞(x̄, x̄∗)

In order to do that let us fix i : 1 ≤ i ≤ n and prove by induction that ∀s ∈ N

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R∞(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒ R∞(x̄, x̄∗)

For s = 0 we have to see that

∃ȳ(x̄ = ȳ ∧R∞(ȳ, x̄∗)) ⇒ R∞(x̄, x̄∗)

which is obviously true. Now let us assume that s ≥ 1. Given ᾱ, ᾱ∗ ∈ Σ, let
γ̄ ∈ Σ be such that

ᾱ = fs
i (γ̄) ∧ R∞(γ̄, ᾱ∗) ∧

(s−1∧

t=0

(
E(f t

i (γ̄)) ∧ Ci(f
t
i (γ̄))

))

We want to prove that then R∞(ᾱ, ᾱ∗) holds. By induction hypothesis we know
that

∃ȳ
(

x̄ = fs−1
i (ȳ) ∧ R∞(ȳ, x̄∗) ∧

(s−2∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒ R∞(x̄, x̄∗)

Then

R∞(γ̄, ᾱ∗) ∧
(s−2∧

t=0

(
E(f t

i (γ̄)) ∧ Ci(f
t
i (γ̄))

))

⇒ R∞(fs−1
i (γ̄), ᾱ∗)

Moreover, we notice that since R∞ is R-invariant,

R∞(x̄, x̄∗) ∧E(x̄) ∧ Ci(x̄) ⇒ R∞(fi(x̄), x̄
∗)

In particular,

R∞(fs−1
i (γ̄), ᾱ∗) ∧ E(f

(s−1)
i (γ̄)) ∧ Ci(f

(s−1)
i (γ̄)) ⇒ R∞(fs

i (γ̄), ᾱ∗)

Therefore

ᾱ = fs
i (γ̄) ∧ R∞(γ̄, ᾱ∗) ∧

(s−1∧

t=0

(
E(f t

i (γ̄)) ∧ Ci(f
t
i (γ̄))

))

⇒

ᾱ = fs
i (γ̄)∧R∞(γ̄, ᾱ∗)∧(

s−2∧

t=0

(E(f t
i (γ̄))∧Ci(f

t
i (γ̄))))∧E(f s−1

i (γ̄))∧Ci(f
s−1
i (γ̄)) ⇒

ᾱ = fs
i (γ̄) ∧ R∞(fs−1

i (γ̄), ᾱ∗) ∧ E(fs−1
i (γ̄)) ∧ Ci(f

s−1
i (γ̄)) ⇒

ᾱ = fs
i (γ̄) ∧R∞(fs

i (γ̄), ᾱ∗) ⇒ R∞(ᾱ, ᾱ∗)

So ∀s ∈ N

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R∞(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒ R∞(x̄, x̄∗)

As R(x̄, x̄∗) ⇒ R∞(x̄, x̄∗), we have

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗) ∧

(s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f
t
i (ȳ))

))
)

⇒ R∞(x̄, x̄∗)

By the properties of ϕ, since R∞ ∈ R we have that ∀i : 1 ≤ i ≤ n

ϕ(R, i)(x̄, x̄∗) ⇒ R∞(x̄, x̄∗)

Finally using induction, R∞ ∈ R and the properties of t it is easy to prove that

(n⊔

i=1

ϕ(R, i)
)

(x̄, x̄∗) ⇒ R∞(x̄, x̄∗)

and since R(x̄, x̄∗) ⇒ R∞(x̄, x̄∗) we have that

R t
(n⊔

i=1

ϕ(R, i)
)

(x̄, x̄∗) ⇒ R∞(x̄, x̄∗)

�

Finally, the following result summarizes both correctness and completeness:

Theorem 5. If the procedure terminates, then R(x̄, x̄∗) ⇔ R∞(x̄, x̄∗)

Proof. If the procedure terminates, then R(x̄, x̄∗) ⇔ R t (tn
i=1ϕ(R, i))(x̄, x̄∗).

By Proposition 1 R is an R-invariant and so R∞(x̄, x̄∗) ⇒ R(x̄, x̄∗). But on the
other hand, Lemma 6 implies that R(x̄, x̄∗) ⇒ R∞(x̄, x̄∗).
�

B P allows quantifier elimination

Lemma 7. P allows quantifier elimination.

Proof. For i : 1 ≤ i ≤ n and R we can compute a basis B of the ideal

Q[x̄, x̄∗]
⋂

(∞⋂

s=1

〈

(−x̄+ f s
i (ȳ))

⋃ (⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
)〉)

where −x̄+ f s
i (ȳ) denotes a set of m polynomials, one for each of the m compo-

nents. Then we can define ϕi(R)(x̄, x̄∗) := (
∧

p∈B p(x̄, x̄∗) = 0).
Let us check that the ϕi’s defined in this way satisfy that

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗)

)

⇒ ϕi(R)(x̄, x̄∗)

and that ∀T ∈ P such that

∞∨

s=1

∃ȳ
(

x̄ = fs
i (ȳ) ∧ R(ȳ, x̄∗)

)

⇒ T (x̄, x̄∗)

then ϕi(R)(x̄, x̄∗) ⇒ T (x̄, x̄∗).
First of all, we have to prove that

∞∨

s=1

∃ȳ
(
x̄ = fs

i (ȳ) ∧ R(ȳ, x̄∗)
)
⇒ ϕi(R)(x̄, x̄∗)

Indeed, let ᾱ, ᾱ∗ ∈ Qm be such that the above formula is true; that is to say,
∃s0 ∈ N, s0 ≥ 1 ∃γ̄ ∈ Qm satisfying ᾱ = f s0

i (γ̄) and R(γ̄, ᾱ∗), i.e. (γ̄, ᾱ∗) ∈
V(φ(R)). We have to see that then ϕi(R)(ᾱ, ᾱ∗) holds, or equivalently, that
(ᾱ, ᾱ∗) ∈ V(φ(ϕi(R))) = V(B). So given any polynomial p(x̄, x̄∗) ∈ B let us see
that p(ᾱ, ᾱ∗) = 0. If P1, ..., Pk is a basis for IV(φ(R)), as

p ∈ 〈B〉 ⊆
〈

(−x̄+ f s0

i (ȳ))
⋃ (⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
)〉

we can write for certain polynomials q1, ..., qm, p1, ..., pk ∈ Q[x̄, x̄∗, ȳ]

p(x̄, x̄∗) =

m∑

j=1

qj(x̄, x̄
∗, ȳ)(−xj + πj(f

s0

i (ȳ))) +

k∑

l=1

pl(x̄, x̄
∗, ȳ)Pl(ȳ, x̄

∗)

where πj : Qm −→ Q is the projection over the j-th coordinate. Then evaluating
at x̄ = ᾱ, x̄∗ = ᾱ∗, ȳ = γ̄

p(ᾱ, ᾱ∗) =
m∑

j=1

qj(ᾱ, ᾱ
∗, γ̄)(−ᾱj + πj(f

s0

i (γ̄))) +
k∑

l=1

pl(ᾱ, ᾱ
∗, γ̄)Pl(γ̄, ᾱ

∗) =

=
m∑

j=1

qj(ᾱ, ᾱ
∗, γ̄)(−ᾱj + ᾱj) = 0

since ᾱ = f s0

i (γ̄), (γ̄, ᾱ∗) ∈ V(φ(R)) and Pl ∈ IV(φ(R)) for 1 ≤ l ≤ k.
Now we have to check that ∀T ∈ P such that

∞∨

s=1

∃ȳ(x̄ = f s
i (ȳ) ∧ R(ȳ, x̄∗)) ⇒ T (x̄, x̄∗)

then ϕi(R)(x̄, x̄∗) ⇒ T (x̄, x̄∗). First, let us show that ∀p ∈ Q[x̄, x̄∗] such that

∞∨

s=1

∃ȳ(x̄ = f s
i (ȳ) ∧R(ȳ, x̄∗)) ⇒ p(x̄, x̄∗) = 0

we have p ∈ 〈B〉. Let us assume that p 6∈ 〈B〉 and we will get a contradiction. If
this is the case then ∃s0 ∈ N, s0 ≥ 1 such that

p 6∈
〈

(−x̄+ f s0

i (ȳ))
⋃ (⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
)〉

Let us consider any monomial ordering � such that xj � x∗j , yj for 1 ≤ j ≤ m,
for example lex(x1 > ... > xm > x∗1 > ... > x∗m > y1 > ... > ym). Let us consider
the set H = {−xj + πj(f

s0

i (ȳ)) | 1 ≤ j ≤ m}, where again πj : Qm −→ Q

is the projection over the j-th coordinate. Applying the division algorithm for
polynomials in multiple variables to p and H , we get certain polynomials r, qj

(1 ≤ j ≤ m) such that

p(x̄, x̄∗) = r(x̄∗, ȳ) +

m∑

j=1

qj(x̄, x̄
∗, ȳ)(−xj + πj(f

s0

i (ȳ)))

Since the leading monomial of −xj + πj(f
s0

i (ȳ)) with respect to � is xj , we can
guarantee that r does not depend on x̄.

Now let us take an arbitrary (γ̄, ᾱ∗) ∈ V(φ(R)). Then R(γ̄, ᾱ∗) holds, and
taking ȳ = γ̄ the formula

∃ȳ(fs0

i (γ̄) = f s0

i (ȳ) ∧ R(ȳ, ᾱ∗))

also holds. By definition of p, taking ȳ = γ̄ again

0 = p(f s0

i (γ̄), ᾱ∗) = r(ᾱ∗, γ̄) +

m∑

j=1

qj(f
s0

i (γ̄), ᾱ∗, γ̄)(−πj(f
s0

i (γ̄)) + πj(f
s0

i (γ̄))) =

= r(ᾱ∗, γ̄)

Then we have that r ∈ IV(φ(R)), since (γ̄, ᾱ∗) ∈ V(φ(R)) was arbitrary. So

p ∈
〈

(−x̄+ f s0

i (ȳ))
⋃ (⋃

p∈IV(φ(R))

p(ȳ, x̄∗)
)〉

which is a contradiction.
Now if T is such that

∞∨

s=1

∃ȳ(x̄ = f s
i (ȳ) ∧ R(ȳ, x̄∗)) ⇒ T (x̄, x̄∗)

then ∀p ∈ φ(T) p ∈ 〈B〉. And this clearly implies that ϕi(R)(x̄, x̄∗) ⇒ T (x̄, x̄∗).
�

C Powers of solvable mappings

First of all we need the following lemma, which describes the form of the
solutions of the recurrences that arise when computing powers of solvable map-
pings:

Lemma 8. Consider a recurrence






x
(s+1)
1
...

x
(s+1)
r




 = M






x
(s)
1
...

x
(s)
r




 +Q(s, ȳ)

where M ∈ Qr×r is a matrix with rational eigenvalues and Q is a vector of
r functions of the form

∑k
l=1 Ql(s, ȳ)µ

s
l , where for 1 ≤ l ≤ k, Ql ∈ Q[s, ȳ]

and µl ∈ Q (the ȳ variables represent parameters). Then the solutions of the
recurrence have the form:

x
(s)
j =

kj∑

l=1

Pjl(s, ȳ, x̄
(0))γs

jl

where for 1 ≤ j ≤ r, 1 ≤ l ≤ kj , Pjl ∈ Q[s, ȳ, x̄(0)] and the γjl ∈ Q are either
the eigenvalues of M or belong to the set of bases of exponentials in Q(s, ȳ).

Proof. If M ∈ Qr×r is a matrix with rational eigenvalues, then ∃S, J ∈ Qr×r

such that det(S) 6= 0 and J = S−1MS is the Jordan normal form of M . By
making a change of variables and splitting the variables in independent sets we
can assume without loss of generality that M has the structure of a Jordan
block, so that for a certain λ ∈ Q eigenvalue of M

M =







λ
1 λ

. . .

1 λ







Now we use the theory of generating functions, linear recurrences with con-
stant coefficients and rational functions (see [Sta97]). We denote by Fj(z) the

generating function of the sequence (x
(s)
j)s∈N. Since the components of Q(s, ȳ)

are linear combinations of exponentials with polynomial coefficients, the corre-
sponding generating functions are rational functions with rational coefficients
Gj(z, ȳ)/Hj(z) such that the roots of the Hj are in the set of bases of exponen-
tials in Q(s, ȳ).

From the recurrence we get the following system of equations for the Fj ’s:






F1(z)−x
(0)
1

z
...

Fr(z)−x(0)
r

z




 = M






F1(z)
...

Fr(z)




 +






G1(z,ȳ)
H1(z)

...
Gr(z,ȳ)
Hr(z)






The solution to this system is






F1(z)
...

Fr(z)




 = (I − zM)−1











x
(0)
1
...

x
(0)
r




 + z






G1(z,ȳ)
H1(z)

...
Gr(z,ȳ)
Hr(z)











where

(I − zM)−1 =








1
1−λz

z
(1−λz)2

1
1−λz

...
. . .

. . .
zr−1

(1−λz)r · · · z
(1−λz)2

1
1−λz








Therefore the generating functions Fj(z) are also rational functions with poles
either in the eigenvalues of M or in the set of bases of exponentials in Q(s, ȳ).
From the theory of rational generating functions we get that the solutions to the
recurrence have the form as in the statement of the lemma.
�

Now we are able to describe the form of the general powers of solvable map-
pings, using the equivalence of computing powers of mappings and solving re-
currences:

Theorem 3. Let g ∈ Q[x̄]m be a solvable mapping with rational eigenvalues.
Then for 1 ≤ j ≤ m gs

j (x̄), the j-th component of gs(x̄), can be expressed as

gs
j (x̄) =

kj∑

l=1

Pjl(s, x̄)(γjl)
s, 1 ≤ j ≤ m, s ≥ 0

where for 1 ≤ j ≤ m, 1 ≤ l ≤ kj , Pjl ∈ Q[s, x̄] and γjl ∈ Q. Moreover, the γjl

are products of the eigenvalues of g.

Proof. It is clear that the statement is equivalent to showing the following. Given
a solvable mapping with rational eigenvalues g ∈ Q[x̄]m, we have to prove that
the general solution of the recurrence x̄(s+1) = g(x̄(s)) has the form for 1 ≤ j ≤
m:

x
(s)
j =

kj∑

l=1

Pjl(s, x̄
(0))(γjl)

s, 1 ≤ j ≤ m, s ≥ 0

where for 1 ≤ j ≤ m, 1 ≤ l ≤ kj , Pjl ∈ Q[s, x̄(0)] and γjl ∈ Q; we also have to
show that the γjl are products of the eigenvalues of g.

Since g is solvable there exists a partition of the set of variables x̄, x̄ =
⋃k

i=1 Ui

with Ui ∩ Uj = ∅ if i 6= j, such that ∀i : 1 ≤ i ≤ k we have

gUi
(x̄) = MiU

T
i + Pi(U1, ..., Ui−1)

where Mi ∈ Q|Ui|×|Ui| is a matrix with rational eigenvalues and Pi is a vector
of |Ui| polynomials with coefficients in Q and depending on the variables in
U1, ..., Ui−1.

Let us prove the proposition by induction on i, the counter of the sets in the
partition. By renaming the variables we can assume without loss of generality
that there exist 0 = r0 ≤ r1 ≤ r2 ≤ · · · ≤ rk = m such that ∀i : 1 ≤ i ≤ k
Ui = {xri−1+1, xri−1+2, ..., xri

}.
For i = 0 we want to prove that ∀xj with 1 ≤ j ≤ r1, x

(s)
j has the form like

in the statement. For the first r1 variables we have the recurrence:






x
(s+1)
1
...

x
(s+1)
r1




 = M1






x
(s)
1
...

x
(s)
r1




 + P1

where M1 is a matrix with rational eigenvalues and P1 is a constant vector. By

Lemma 8, the x
(s)
j have the desired form for 1 ≤ j ≤ r1. Moreover, since P1 is

constant, for 1 ≤ j ≤ r1 the bases of exponentials in x
(s)
j are eigenvalues of M1,

and therefore eigenvalues of g.
Now for i > 0 we have the recurrence:






x
(s+1)
ri−1+1

...
x

(s+1)
ri




 = Mi






x
(s)
ri−1+1

...
x

(s)
ri




 + Pi(x

(s)
1 , ..., x(s)

ri−1
)

By induction hypothesis ∀j : 1 ≤ j ≤ ri−1, x
(s)
j has the form like in the state-

ment. Therefore, if ∀j : 1 ≤ j ≤ ri−1 we plug the solution x
(s)
j in Pi(x

(s)
1 , ..., x

(s)
ri−1)

we get that Pi(x
(s)
1 , ..., x

(s)
ri−1) is a vector of functions of the form

k∑

l=1

Ql(s, x
(0)
1 , ..., x(0)

ri−1
)µs

l

where for 1 ≤ l ≤ k, Ql ∈ Q[s, x
(0)
1 , ..., x

(0)
ri−1] and µl ∈ Q. Notice that the bases

of exponentials in Pi(x
(s)
1 , ..., x

(s)
ri−1) have to be products of eigenvalues of g, since

we know that the bases of exponentials in the solutions x
(s)
j for j : 1 ≤ j ≤ ri−1

are products of eigenvalues of g. By Lemma 8 again, for ri−1 < j ≤ ri the

x
(s)
j have the required form, and the bases of exponentials appearing in them

are either eigenvalues of Mi or bases of exponentials in Pi(x
(s)
1 , ..., x

(s)
ri−1); in any

case they are products of eigenvalues of g, which is what we wanted to see.
�

D Proof of 〈L〉 = L

Proposition 2. Let Λ = {λ1, ..., λk} ⊂ N be a finite set of prime numbers,
L = {l ∈ Q[s, ū, v̄] | l(t, λ̄t, λ̄−t) = 0 ∀t ∈ N} the set of polynomial relations
between the powers of these numbers, and L = {u1v1 − 1, ..., ukvk − 1}. Then
〈L〉Q[s,ū,v̄] = L

Proof. Let l ∈ L. Let us take any monomial ordering > and let us divide l into
L. Then we get polynomials r, p1, ..., pk ∈ Q[s, ū, v̄] such that

l(s, ū, v̄) = r(s, ū, v̄) +

k∑

i=1

pi(s, ū, v̄) · (uivi − 1)

We want to show that r = 0. Let us assume that r 6= 0 and we will get a
contradiction. We can write

r(s, ū, v̄) =
∑

α,β∈Nk

Pα,β(s)ūαv̄β

for certain polynomials Pα,β ∈ Q[s] such that at least one of them is not null,
and only finitely many of them are not null.

Then ∀t ∈ N we have that

0 = l(t, λ̄t, λ̄−t) = r(t, λ̄t, λ̄−t) =
∑

α,β∈Nk

Pα,β(t)

k∏

i=1

λ
(αi−βi)t
i

Given α, β ∈ Nk, let us define λα,β =
∏k

i=1 λ
αi−βi

i . Then the above equation can
be expressed as ∀t ∈ N

0 =
∑

α,β∈Nk

Pα,β(t)λt
α,β

Now let us see that if (α, β) 6= (γ, δ), then λα,β 6= λγ,δ. Let us assume the

contrary. Then we have that
∏k

i=1 λ
αi−βi−γi+δi

i = 1. As the λi are different
prime numbers, we necessarily have that αi − βi − γi + δi = 0 for 1 ≤ i ≤ k.
Moreover, since no monomial of r can be divided by the uivi by the properties
of the division algorithm, either αi = 0 or βi = 0, and either γi = 0 or δi = 0. If
αi = 0, then βi = δi − γi, and as βi ≥ 0 and either γi = 0 or δi = 0, we get that
0 = γi = αi and βi = δi. The case βi = 0 is symmetric. So λα,β = λγ,δ implies
(α, β) = (γ, δ).

Let α∗, β∗ ∈ Nk be such that

λα∗,β∗ = max{λα,β|Pα,β 6= 0}

Notice that α∗, β∗ are well defined, since r 6= 0 by hypothesis. By definition, and
as (α, β) 6= (γ, δ) implies λα,β 6= λγ,δ, we have that (α, β) 6= (α∗, β∗) implies
λα,β < λα∗,β∗ .

Now we divide into (λα∗,β∗)t and get that ∀t ∈ N

0 =
∑

α,β∈Nl

Pα,β(t)
(λα,β

λα∗,β∗

)t

Taking limits,
0 = lim

t→∞
Pα∗,β∗(t)

which is in contradiction with the fact that Pα∗,β∗ 6= 0.

�

E Correctness and Completeness of the Implementation

First of all we need the following technical lemma. It intuitively means that
Fi(−s, v̄, ū, ·) and Fi(s, ū, v̄, ·) are “inverses modulo 〈L〉”:

Lemma 9. For 1 ≤ i ≤ n and ∀q ∈ Q[x̄, x̄∗] we have that

q(x̄, x̄∗) − q(Fi(s, ū, v̄, Fi(−s, v̄, ū, x̄)), x̄∗) ∈ 〈L〉Q[s,ū,v̄,x̄,x̄∗]

Proof. We can write

q(x̄, x̄∗) − q(Fi(s, ū, v̄, Fi(−s, v̄, ū, x̄)), x̄∗) =

=
∑

α,β∈Nm

Rα,β(s, ū, v̄)(x̄)α(x̄∗)β

with only a finite number of the Rα,β different from 0. Then ∀t ∈ N

q(x̄, x̄∗) − q(Fi(t, λ̄
t, λ̄−t, Fi(−t, λ̄−t, λt, x̄)), x̄∗) =

= q(x̄, x̄∗) − q(f t
i (f

−t
i (x̄)), x̄∗) = q(x̄, x̄∗) − q(x̄, x̄∗) = 0

Therefore ∀t ∈ N we have
∑

α,β∈Nm

Rα,β(t, λ̄t, λ̄−t)(x̄)α(x̄∗)β = 0

which implies that ∀α, β ∈ Nm Rα,β ∈ L = 〈L〉Q[s,ū,v̄]. Thus

q(x̄, x̄∗) − q(Fi(s, ū, v̄, Fi(−s, v̄, ū, x̄)), x̄∗) ∈ 〈L〉Q[s,ū,v̄,x̄,x̄∗]

�

Let P∞ = φ(R∞). The following result intuitively means that we do not lose
invariant polynomials in our approximation and so maintain completeness:

Proposition 3. P∞ ⊆ 〈S〉Q[x̄,x̄∗] is invariant in the implementation.

Proof. Since by construction 〈S0〉Q[x̄∗] = IV(〈S0〉Q[x̄∗]), it can be proved that
then P∞ ⊆ 〈{x∗1 −x1, ..., x

∗
m −xm}∪S0〉Q[x̄,x̄∗], and therefore the inclusion holds

when entering the loop.
Now it remains to be seen that it is preserved at each iteration. From now

on the 〈·〉 means 〈·〉Q[s,ū,v̄,x̄,x̄]. It suffices to see that

P∞ ⊆
〈

L ∪
n⋂

i=1

subs(Fi(−s, v̄, ū, ·), P∞)
〉

since by definition P∞ ⊆ Q[x̄, x̄∗]. But

〈

L ∪
n⋂

i=1

subs(Fi(−s, v̄, ū, ·), P∞)
〉

=

n⋂

i=1

〈L ∪ subs(Fi(−s, v̄, ū, ·), P∞)〉

So for 1 ≤ i ≤ n we have to see that

P∞ ⊆ 〈L ∪ subs(Fi(−s, v̄, ū, ·), P∞)〉

Let P = {p1, ..., pk} ∈ P∞ be a Gröbner basis for P∞. Let q ∈ P∞. We want
to show that

q ∈ 〈L ∪ subs(Fi(−s, v̄, ū, ·), P∞)〉
First, let us see q(Fi(s, ū, v̄, x̄), x̄

∗) ∈ 〈L ∪ P∞〉. If we divide q(Fi(s, ū, v̄, x̄), x̄
∗)

into p1, ..., pk with respect to �, we get R,Q1, ..., Qk ∈ Q[s, ū, v̄, x̄, x̄∗] such that

q(Fi(s, ū, v̄, x̄), x̄
∗) = R +

k∑

j=1

Qjpj

We want to show that R ∈ 〈L〉.
Since q ∈ P∞, it is easy to see that ∀t ∈ N

q(Fi(t, λ̄
t, λ̄−t, x̄), x̄∗) = q(f t

i (x̄), x̄
∗) ∈ P∞

But the remainder obtained when dividing q(f t
i (x̄), x̄

∗) ∈ P∞ into p1, ..., pk is 0.
As p1, ..., pk is a Gröbner base, it can be proved that ∀t ∈ N

R(t, λ̄t, λ̄−t, x̄, x̄∗) = 0

Now if we write R(s, ū, v̄, x̄, x̄∗) =
∑

λ,µ∈Nm Rλ,µ(s, ū, v̄)x̄λ(x̄∗)µ (only a finite
number of the Rλ,µ are different from 0), we have that ∀t ∈ N

0 = R(t, λ̄t, λ̄−t, x̄, x̄∗) =
∑

λ,µ∈Nm

Rλ,µ(t, λ̄t, λ̄−t)x̄λ(x̄∗)µ

So ∀λ, µ ∈ Nm and ∀t ∈ N we get that Rλ,µ(t, λ̄t, λ̄−t) = 0, i.e Rλ,µ ∈ L =
〈L〉Q[s,ū,v̄]. Thus R ∈ 〈L〉 and q(Fi(s, ū, v̄, x̄), x̄

∗) ∈ 〈L ∪ P∞〉.
Since q(Fi(s, ū, v̄, x̄), x̄

∗) ∈ 〈L ∪ P∞〉 and L ⊂ Q[s, ū, v̄], substituting x̄ by
Fi(−s, v̄, ū, x̄) we have that

q(Fi(s, ū, v̄, Fi(−s, v̄, ū, x̄)), x̄) ∈
∈ 〈L ∪ subs(Fi(−s, v̄, ū, ·), P∞)〉

From Lemma 9 we know that

q(x̄, x̄∗) − q(Fi(s, ū, v̄, Fi(−s, v̄, ū, x̄)), x̄∗) ∈ 〈L〉
So q(x̄, x̄∗) ∈ 〈L ∪ subs(Fi(−s, v̄, ū, ·), P∞)〉, which is what we wanted to see.
�

Finally, the last theorem implies trivially that the implementation is correct
and complete:

Theorem 4. If the Polynomial Procedure terminates with output I∗, the
implementation terminates in at most the same number of iterations and with
output S∗ such that 〈S∗〉Q[x̄,x̄∗] = I∗.

Proof. Let us denote by =N the ideal stored in the variable I at the header
of the loop at the end of the N -th iteration in the Polynomial Procedure; and
analogously let SN be the ideal generated by the set of polynomials stored in
the variable S at the end of the N -th iteration in the implementation.

First of all we will prove that ∀N ∈ N we have SN ⊆ =N . Then the termina-
tion of the Polynomial Procedure will imply a chain of equalities that will yield
the proposition.

So let us prove that ∀N ∈ N, SN ⊆ =N by induction on N . If N = 0 there
is nothing to prove since by definition 〈S0〉Q[x̄∗] = I0 and so S0 = =0.

If N > 0, we have that

=N =

∞⋂

t=0

n⋂

i=1

subs(f−t
i ,=N−1)

SN = Q[x̄, x̄∗] ∩
〈

L ∪
(n⋂

i=1

subs(Fi(−s, v̄, ū, ·), IN−1)
)〉

Q[s,ū,v̄,x̄,x̄∗]

=

= Q[x̄, x̄∗] ∩
(n⋂

i=1

〈L ∪ subs(Fi(−s, v̄, ū, ·),SN−1)〉
)

Let q ∈ SN . For 1 ≤ i ≤ n and t ∈ N we have to show that q ∈ subs(f−t
i ,=N−1).

By induction hypothesis, it is enough to see that q ∈ subs(f−t
i ,SN−1).

Now, if p1, ..., pl ∈ Q[x̄, x̄∗] is a base for SN−1 and L = {u1v1−1, ..., ukvk−1}
as defined in Section 4.1, there exist polynomials Pr, Lj ∈ Q[s, ū, v̄, x̄, x̄∗] for
1 ≤ r ≤ l and 1 ≤ j ≤ k such that

q(x̄, x̄∗) =

l∑

r=1

Pr(s, ū, v̄, x̄, x̄
∗) pr(Fi(−s, v̄, ū, x̄), x̄∗)+

+

k∑

j=1

Lj(s, ū, v̄, x̄, x̄
∗) (ujvj − 1)

By taking an arbitrary t ∈ N and evaluating conveniently the auxiliar variables
we have that

q(x̄, x̄∗) =
l∑

r=1

Pr(t, λ̄
t, λ̄−t, x̄, x̄∗) pr(Fi(−t, λ̄−t, λ̄t, x̄), x̄∗)+

+
k∑

j=1

Lj(t, λ̄
t, λ̄−t, x̄, x̄∗) (λt

j · λ−t
j − 1) =

=

l∑

r=1

Pr(t, λ̄
t, λ̄−t, x̄, x̄∗) pr(f

−t
i (x̄), x̄∗)

So q(x̄, x̄∗) ∈ subs(f−t
i ,SN−1) indeed. Therefore ∀N ∈ N SN ⊆ =N .

Now if the Polynomial Procedure terminates in N iterations, then I∗ =
=N = =N−1 for a certain N ≥ 1, and we have that =N−1 = P∞. Then by
Proposition 3 SN−1 ⊆ =N−1 = P∞ ⊆ SN . But it is clear that SN ⊆ SN−1.
So SN−1 = SN = P∞ = S∗, and the implementation terminates in at most the
same number of iterations as the Polynomial Procedure.
�

