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Abstract— In this paper, we present a problem where a
suspended load, carried by a rotorcraft aerial robot, performs
trajectory tracking. We want to accomplish this by specifying
the reference trajectory for the suspended load only. The aerial
robot needs to discover/learn its own trajectory which ensures
that the suspended load tracks the reference trajectory. As a
solution, we propose a method based on least-square policy
iteration (LSPI) which is a type of reinforcement learning
algorithm. The proposed method is verified through simulation
and experiments.
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I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are flexible platforms
with an increasing role in assisting humans in tasks that are
deemed too risky or in some cases impractical for humans.
Examples of such missions are search and rescue, environ-
mental monitoring, surveillance, and cooperative manipula-
tion. The agility and speed of rotorcraft UAVs (RUAVs) allow
them not only to take off and land in a very limited area,
but also to carry and manipulate payloads more precisely
and efficiently. Therefore, they can be well suited for use
in urban environments, canyons, caves, and other cluttered
environments for example in assistive roboticscarrying and/or
transporting a load.

RUAV existing applications vary from basic hovering [1]
and trajectory tracking [2], to formation control [3], surveil-
lance [4], aggressive maneuvering [5], aerobatic flips [6] and
aerial manipulators [7]. Trajectory tracking for helicopters
based on reinforcement learning resulted in autonomous
aggressive helicopter flights. This work was summarized by
Abbeel et al. [8]. This line of research relies on apprentice-
ship learning to achieve aggressive autonomous maneuvers
such as as flips, rolls, loops, chaos, tic-tocs, and auto-rotation
landings. An expert pilot demonstrates the target trajectory
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Fig. 1. Hummingbird quadrotor with a suspended load at MARHES Lab
- University of New Mexico.

and the cost function is learned from the target trajectory.
Parameters for an initial linear model are learned from
observing an expert flying non-aggressive maneuvers. Then,
the trajectory is broken down into small segments, so that
each one can be learned separately using a linear dynamics
model.

Quadrotors, a type of RUAV, are inherently unstable sys-
tems with highly nonlinear dynamics. The task of load car-
rying puts additional strain on the controller. The reason for
this is because the suspended load alters quadrotor dynamics
with forces and torques transferred through the suspension
cable. Furthermore, maneuvering with a suspended load
can be a hazardous task, especially in cluttered and hardly
accessible environments. Reducing the residual oscillations
of the suspended load is one of the methods to achieve better
control over the system. Another method is to control the
trajectory of the suspended load directly. In this paper we
focus on the problem where a suspended load, carried by
a rotorcraft aerial robot, performs trajectory tracking. The
solution to this problem has a broad spectrum of applications
ranging from motion planning and aerial robotics to control
of cranes and robotic manipulators [9], [10].

In order to solve this problem we propose a method based
on least square policy iteration (LSPI), that is a type of a re-
inforcement learning algorithm. One of the main advantages
of this method is that it is model free, meaning that in the



Fig. 2. Load trajectory tracking.

design process we did not use any explicit knowledge about
the system model. This makes the method robust to model
uncertainties and noise, as it is demonstrated in our results.
Another advantage is that it can be implemented as an online
learning algorithm which brings us a step further towards
fully autonomous UAV transportation system. Online least
square policy iteration has been successfully implemented in
order to solve benchmark control problems of balancing an
inverted pendulum and balancing and riding a bicycle [11],
[12]. The method shows promising convergence properties
[13] and algorithmic stability [12].

The rest of the paper is organized as follows: in Section
II, we formally state the problem, Section III discusses the
algorithm and methodology in detail including algorithm
convergence, Section IV shows the simulation and experi-
mental results implemented on a quadrotor with suspended
load, while Section V presents the closing remarks.

II. PROBLEM STATEMENT

In our previous work [14] we used a dynamic pro-
gramming approach in order to generate trajectories which
ensured swing-free maneuvers of a suspended load carried
by a quadrotor in an open-loop fashion. By open-loop we
mean that there was no feedback involved in order to control
the swing of the load, just the profile of the trajectory was
shaped based on the model of the system. Since this approach
was a model-based method, the experimental results showed
sensitivity with respect to model uncertainties. In this paper
we move a step further, as we focus on trajectory tracking
of a suspended load as depicted in Figure 2 and defined as:

Definition 1: Given a reference trajectory Pref (t) =
[xLref (t) yLref (t) zLref (t)]T , the position of the sus-
pended load PL(t) = [xL(t) yL(t) zL(t)]T and a small
positive constant εL > 0, we say that the suspended load
performs trajectory tracking if |eL(t)| ≤ εL where eL(t) =
[xLref (t)− xL(t) yLref (t)− yL(t) zLref (t)− zL(t)]

T .
We want to achieve this goal by specifying the reference
trajectory for the suspended load only. The quadrotor needs
to learn its own trajectory and at the same time to en-
sure that the suspended load tracks the reference trajectory.
Therefore we are faced with an optimal control problem
again. Since the quadrotor should learn it’s trajectory from

the interaction between a learning algorithm and the aerial
load manipulation system, we choose least-square policy
iteration (LSPI), a reinforcement learning algorithm, as the
basis of our approach. The implementation is depicted in
Figure 3. The inputs to the LSPI algorithm are the vector
of the tracking error and the vector of the suspended load
displacement angles. There variables are obtained by the
sensors like an on-board camera or an indoor positioning
system. The output from the LSPI algorithm are three control
signals which are sent to the quadrotor. These signals are
additional control inputs to the quadrotor control system.
Since they are bounded, which is defined by the algorithm
[11], the quadrotor will remain stable.

III. SUSPENDED LOAD TRAJECTORY TRACKING USING
LEAST SQUARE POLICY ITERATION

Model-free reinforcement learning (RL) algorithms can be
divided into three categories:
• value iteration algorithms that iteratively construct op-

timal value function from which the a greedy policy is
derived,

• policy iteration algorithms which construct value func-
tions that are then used to construct new, improved
policies,

• policy search algorithms that use optimization tech-
niques to directly search for an optimal policy.

Offline RL algorithms use data collected in advance while
online RL algorithms learn a solution by interacting with
the process. Online RL algorithms must balance the need to
collect the informative data (exploration) with the need to
control the process well (exploitation).

Policy iteration (PI) algorithms iteratively evaluate and
improve control policies. Least-squares techniques for policy
evaluation are sample-efficient and have relaxed convergence
requirements.

The quadrotor with a suspended load can be represented as
a deterministic Markov Decision Process (MDP) (X,U, f, ρ)
where X is the state space of the process, U is the action
space of the controller, f : X × U → X is the transition
function of the process

xk+1 = f(xk, uk)

and ρ : X × U → R is the reward function

rk+1 = ρ(xk, uk)

The controller chooses actions according to its policy h :
X → U

uk = h(xk).

The goal is to find an optimal policy that maximizes the
return from any initial state x0. The return R is a cumulative
aggregation of rewards

Rh(x0) =

∞∑
k=0

γkρ(xk, h(xk))



Fig. 3. Block scheme for load trajectory tracking using LSPI.

where γ ∈ [0, 1] is the discount factor. State-action value
function (Q-function) Qh : X × U → R of a policy h is

Qh(x, u) = ρ(x, u) + γRh(f(x, u))

The optimal Q-function is

Q∗(x, u) = max
h

Qh(x, u)

The optimal policy (greedy policy in Q∗)

h(x) ∈ argmax
u

Q(x, u)

Policy iteration evaluates policies by iteratively constructing
an estimate of state action value function. This estimate is
then used to construct a new, improved policy. The policy
improvement step is done at every iteration l by minimizing
the least square error in the Bellman equation [15]

Qhl(x, u) = ρ(x, u) + γQhl(f(x, u), hl(f(x, u)))

for Qhl of the current policy hl. The new policy is a greedy
policy with respect to the state action value function:

hl+1(x) ∈ argmax
u

Qhl(x, u).

The sequence of Q-functions produced by policy iteration
converges asymptotically to Q∗ as l → ∞. In continuous
spaces, policy evaluation cannot be solved exactly, and the
value function has to be approximated. Linearly parametrized
Q-function approximator Q̂ consists of n basis function
(BFs) φ1, . . . , φn : X×U → R and n dimensional parameter
vector θ

Q̂ =

n∑
l=1

φl(x, u)θl = φT (x, u)θ

where φ(x, u) = [φ1(x, u), . . . , φn(x, u)]
T . Control action u

is a scalar which is bounded to an interval U = [uL uH ].
In this paper we use state-dependent basis functions and

orthogonal polynomials of the action variable which sepa-
rates approximation over the state space from approximation
over the action space. Orthogonal polynomials are chosen
because it is simple to solve the maximization problem over
action variables and orthogonality ensure better conditioned
regression problem at the policy improvement steps. As

approximators over the state-action space we use Chebyshev
polynomials of the first kind which are defined as

ψ0(ξ̄) = 1,

ψ1(ξ̄) = ξ̄, (1)
ψj+1(ξ̄) = 2ξ̄ψj(ξ̄)− ψj−1(ξ̄),

where

ξ̄ = −1 + 2
ξ − ξL
ξH − ξL

. (2)

and ξ is any variable for which we build the Chebyshev
polynomial. These polynomials are defined on the interval
[−1 1]. The approximator over the state-action space is
given as

φ(x, u) = Φ(u)⊗Ψ(x), (3)

where Φ(u) ∈ RN×1 is the vector of Chebyshev polynomials
in action space, Ψ(x) ∈ RM×1 is the vector of Chebyshev
polynomials in the state space, N and M are dimensions
of Chebyshev polynomials and ⊗ is the Kronecker product.
Chebyshev polynomials are good approximators because
they show uniform convergence as approximators which is
shown in [13] and [16]. The online least square policy itera-
tion algorithm is described by algorithm (1). The difference
between an offline and an online variation of LSPI is that
the online algorithm interacts with the system directly at
every iteration (line 10). Since we do not want the algorithm
to get stuck in local minima, exploration and exploitations
actions have to be balanced (line 9). To be able to converge
quickly, the algorithm needs to exploit the interaction with
the environment. On the other hand, in order to find the
global minimum, it has to explore the actions space with
probability εk. As the time passes, the algorithm is relying
more on the current policy than on exploration, so εk decays
exponentially as the number of steps increases. Instead of
waiting until many samples are passed, the online LSPI
improves the policy by solving for the Q-function parameters
every Kθ iterations using the current values of the Γ, Λ and z.
When Kθ = 1 then the policy is improved at every iteration
step and is called fully optimistic. Usually Kθ should be a
number greater than zero but not too large. In our case Kθ =
7 which we picked based on the algorithm performance.
Changing this parameter the performance of the algorithm



Algorithm 1 Online LSPI with ε - greedy exploration
1: Input: discount factor γ,
2: BFs φ1, . . . φn : X × U → R,
3: policy improvement interval Kθ, exploration {εk}∞k=0,
4: a small constant βΓ > 0
5: l← 0, initialize policy h0,
6: Γ0 ← βΓIn×n, Λ0 ← 0, z0 ← 0
7: measure initial state x0

8: for every time step k = 0, 1, 2, . . . do

9: uk ←

{
hl(xk) : with prob.1− εk (exploit)
uni. rand. ac. in U : with prob.εk (explore)

10: apply uk, measure next state xk+1 and reward rk+1

11: Γk+1 ← Γk + φ(xk, uk)φT (xk, uk)
12: Λk+1 ← Λk + φ(xk, uk)φT (xk+1, hl(xk+1))
13: zk+1 ← zk + φ(xk, uk)rk+1

14: if k = (l + 1)Kθ then
15: θl ← solve 1

k+1Γk+1θl = 1
k+1Λk+1θl + 1

k+1zk+1

16: hl+1(x)← arg maxuφ
T (x, u)θl,∀x

17: l← l + 1
18: end if
19: end for

changes. The reward function vector rk ∈ R3×1 at step k is
defined as

rk = −cu |uLk| − eTLkceeLk − δTLkcaδLk, (4)

where uLk ∈ R3×1 is the action vector at step k, eLk ∈ R3×1

is the vector of the load tracking error at step k and δLk ∈
R3×1 is the load displacement angle vector, cu ∈ R3×1 is a
vector with positive entries, ce ∈ R3×3 and ca ∈ R3×3 are
diagonal positive definite matrices. With this reward function
we penalize the tracking error, load swing angles and actions.
Since in LSPI the action and the reward are scalar, in order to
implement a 2D or a 3D trajectory tracking, we develop three
distinct functions that run three LSPI algorithms in parallel
providing us with three control actions for the quadrotor uLx,
uLy and uLz , as depicted in Figure 3. Control actions are
bounded to the interval [ulo uhi].

[13, Theorem 4.2 (Mean convergence of an API algo-
rithm), Corollary 4.1 (Mean convergence of RLSAPI)] and
[17, Theorem 7.1 (Mean convergence of LS/RLSAPI with
exact Chebyshev polynomials)] ensure mean convergence
of the approximate policy iteration algorithm with Cheby-
shev approximators. This guarantees that the solution of
the optimal control problem solved using Chebyshev based
LSPI generates a sequence of policies that asymptotically
converges to the optimal performance in the mean.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The algorithm described in the previous section is an
online LSPI. This means that during every simulation step,
one iteration of the algorithm is performed while interacting
with the system. Therefore, the algorithm provides an action
at every simulation step, based on the previous outcome of
the action or based on exploration. We use the nonlinear
model of the quadrotor and the suspended load described
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Fig. 4. Simulation results for online LSPI used for suspended load tracking
the straight line.
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Fig. 5. Simulation results for online LSPI used for suspended load tracking
the straight line multiple simulation trials.

in [14] for building the simulation environment. The model
provides feedback to the LSI algorithm in form of the load
tracking error eLk and the load displacement angle θLk
and φLk for the LSPI algorithm as depicted in Figure 3.
The algorithm and simulations were written and executed in
Matlab and Simulink 2011, on a Windows machine. In order
to check the execution time of the proposed algorithm we
ran the algorithm for 10000 steps which took 0.562 seconds.
Therefore, the average time for execution of one iteration
step k of the LSPI algorithm is 5.62 · 10−5 seconds. This
shows that the algorithm is suitable for real-time implemen-
tation. In the algorithm described in the previous section,
we use three LSPI algorithms in parallel. In order to be able
to execute these algorithms in parallel, we used the Parallel
Computing Toolbox from Matlab.

For our first simulation, we have a load tracking a straight
line in the xy plane going back and forth. Red lines in
Figure 4(c) show the targeted trajectory.We tracked the
performance of the algorithm for 800 steps and these results
are presented in Figure 4 in blue lines. Figure 4(a) shows
the quadrotor trajectory resulting from the learning. Figure
4(c) presents the load trajectory and displacement from the
targeted trajectory. Figure 4(b) depicts load tracking error
that the agent is trying to minimize. The error is bounded
which shows stability of the algorithm over 800 iteration
steps. To additionally confirm the convergence and stability
of the LSPI algorithm we refer to the Figure 5 which shows
simulation results for 3 simulation trials. We can see that
the load starts tracking the reference trajectory very fast
in each of the simulation trials. Furthermore, we can see
that the load closely follows the reference trajectory after
15 seconds, not diverging more than few centimeters from
the reference trajectory in all three trials. Figure 6 shows
simulation results of the performance of the algorithm with
respect to noisy measurements of the displacement angle ΦL
and tracking error exL. Additionally, at time t = 20s there is a
change in the length of the suspension cable of the load. We
can see that the algorithm is robust and that the load tracks
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Fig. 6. Simulation results for online LSPI. It shows the algorithm
performance with respect to noisy measurements and to variable length of
the suspension cable.

the reference trajectory. To verify that the simulation results
are sound and that the produced LSPI trajectories are valid,
we performed experiments using an AscTec Hummingbird
quadrotor (see Figure 1). The experimental results were per-
formed in MARHES lab at University of New Mexico. The
weight of the load is 45g and the length of the suspension
cable is 62cm. More detailed description of the experimental
testbed can be found in [18]. We generated trajectories for the
quadrotor by learning in simulation, and tested them on a real
quadrotor with suspended load. We measured trajectories of
the quadrotor and the load as well as the load displacement
angles using VICON indoor motion tracking system. We
compare the experimental results with simulation predictions.
To show that with LSPI algorithm the system is able to
perform more complex trajectories, we chose a Lissajeou
curve as a second trajectory to track. Figure 7(a) compares
the actual quadrotor trajectory as flown (in blue) with the
trajectory predicted by simulation (in red). The differences
between them are negligible, never exceeding more than 15
cm. Figure 7(b) compares the load trajectory recorded in the
experiment (in blue) with the simulation predicted trajectory
(in red) and target trajectory (in black).

Videos of simulations and experiments can be found on
[19].

V. CONCLUSIONS

Tracking and controlling the position of a suspended load
can be critical to mission success. In this paper we present
a model-free approach to solving this problem involving
a reinforcement learning algorithm. This method converges
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Fig. 7. Experimental results using the trajectory generated in simulation
using LSPI.

quickly to learn the policy function that minimizes the
tracking error of the load with respect to the reference
trajectory. We show results in simulation of this policy on a
variety of trajectories from a simple straight line to a more
complex Lissajeou curve. In both cases, the error is bounded
to centimeters. In order to further validate the simulation,
experiments were run on a experimental testbed. In these
experiments, we see that the load is able to follow a Lissajeou
curve trajectory closely.

The proposed method is designed so it can be easily
implemented on an off-the-shelf UAV system with minimal
prerequisites regarding extra sensors, computational power
or additional knowledge of the system’s model.

The reinforcement learning methods presented are flexible
and can be used both offline and online for trajectory

tracking. This flexibility makes it highly appropriate for
quadrotor policy learning.
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