Geometrical Insights into the Process of Antibody Aggregation

Kasra Manavi, Alan Kuntz, Lydia Tapia
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

Abstract

IgE antibodies bound to cell-surface receptors, FceRlI,
crosslink through the binding of antigens on the cell sur-
face. This formation of aggregates is what stimulates
mast cells and basophils in order to initiate degranu-
lation, resulting in an allergic response. Nearly 1,500
Americans die each year from anaphylactic shock pred-
icated by aggregation.

Experimental studies have shown the spatial orga-
nization of the aggregated IgE-FceRI complexes af-
fect transmembrane signaling that initiates allergic re-
sponse. There are many factors that can affect the shape
and size of aggregates. However, one critical factor may
be the conformational structure of the antigen (ligand).
This structure can affect the number of receptors that
can bind to a single ligand, e.g., the valency of the lig-
and. For example, a common hay fever antigen has a
valency of four where as the common shrimp antigen
has a valency of eighteen.

3-D simulation of hundreds of antibodies aggregating
can be computationally infeasible. However, we present
methods based on robotic representations of molecular
structures and Monte Carlo simulation that provide 3-D
details of aggregate formation. In this paper, we demon-
strate the utility of our methods on ligands of different
valences: a bivalent DCTz-cys (DCT) and a trivalent
fibritin trimer (DF3). We show that we can capture ex-
perimentally measured properties while enabling a de-
tailed look into the geometry of aggregation formation.

Introduction

It is predicted that nearly 40% of the world’s population suf-
fers from allergies (Pawankar et al. 2012) and each year in
the United States, about 1,500 people die from anaphylactic
shock (Sompayrac 2012). This is caused by a tyrosine kinase
cascade initiated by antigen-mediated crosslinking of IgE
antibodies, bound to FceRI receptors. This stimulates both
mast cells and basophils to then release histamine and other
mediators of allergic reactions (Rivera and Gilfillan 2006).
Previous studies suggest the spatial organization of clustered
IgE-FceRI complexes is what affects the transmembrane sig-
naling which initiates these responses (Fewtrell and Metzger
1980; Wilson et al. 2001; Wilson, Pfeiffer, and Oliver 2000;
Wilson, Oliver, and Lidke 2011). It has also been shown
that the size of aggregates plays a role in the strength of

transmembrane signaling (Posner et al. 1995). In theory,
the geometry and valency of a ligand will affect the size
and structure of resulting aggregates. Synthetic trivalent lig-
ands were revealed to play a major role in the structural
requirements for IgE aggregation, and experimentation has
been done regarding receptor signaling in Rat Basophilic
Leukemic (RBL) mast cells (Sil et al. 2007). However, there
exist other ligands which vary in valency and structure that
initiate the same response (Metzger 1992; Posner et al. 1995;
Xu et al. 1998).

We presented these methods in (Manavi, Wilson, and
Tapia 2012). In this paper we extend our previous results
with ligands of varied valency. The method works as fol-
lows. First, 3-D rigid-body representations are made of the
molecular structures involved in aggregation. These models
are used in a Monte Carlo approach with relaxed constraints
to study the aggregation process. Techniques based on ran-
dom configuration space sampling in robotic motion plan-
ning are used in order to find valid molecular placements
during the simulation. Projected 2-D graphs of molecules
(nodes) and bindings (edges) are used to analyze aggregates.

We show results on two synthetic ligands that have been
studied experimentally. These ligands are similar in size.
However, they vary in valency (bivalent and trivalent). We
show that our simulations are able to capture experimentally
derived results such as time to aggregate convergence and
the size of the resulting aggregates. We then look at the ef-
fects valency has on aggregate structure by analyzing result-
ing aggregates from each ligand.

Related Work

In this section, we review the related work in motion plan-
ning of molecules along with IgE aggregation studies, both
experimental and computational.

Motion Planning

Motion planning (Reif 1979), the problem of finding a valid,
collision-free path for a given robot and environment, is a
significant problem in robotics. Motion planning has been
studied extensively and been applied to a wide array of do-
mains, including molecular motions (Singh, Latombe, and
Brutlag 1999; Amato, Dill, and Song 2003).

In motion planning, a robot is decomposed into parame-
ters used to describe a pose, or configuration, of the robot in



an environment. These d parameters define the robot’s posi-
tion and the orientation of the robot’s joints, referred to as
degrees of freedom (DOFs). We view these d parameters as
d-dimensional continuous space and call this space config-
uration space, or Cspqc. (Lozano-Pérez and Wesley 1979).
Cspace can be divided into two regions, C'¢r.ce, the set of all
valid configurations and C;s¢, all invalid or infeasible con-
figurations. Finding a valid, collision-free path can be seen
as finding a path completely within C,.. from a specified
start configuration to a goal configuration. For our work, no
particular goal configuration is specified, instead we explore
C'tree until some convergence criteria is met.

A wide array of methods have been developed to study
molecular motions. A majority of these methods are based
on Monte Carlo simulations with discrete time intervals
(Covell 1992; Kolinski and Skolnick 1994). Problems such
as protein folding (Amato, Dill, and Song 2003; Thomas et
al. 2007; Tapia, Thomas, and Amato 2010), RNA folding
(Tang et al. 2008), and ligand binding (Singh, Latombe, and
Brutlag 1999; Bayazit, Song, and Amato 2001) have been
approached using motion planning techniques.

IgE Aggregation Experiments

Spatial/temporal studies of IgE aggregation require
nanoscale resolution imaging of cell membrane sheets.
Studies have shown that ligand size and valency impact
signalling in RBL mast cells (Huang et al. 2009). Gold
nano-particle labeled IgE-FceRI have been imaged on
cell membranes using Transmission Electron Microscopy
(TEM) techniques (Wilson, Oliver, and Lidke 2011). This
method provides the locations of IgE-FceRI on the mem-
brane, but does not provide temporal information. Temporal
properties such as molecule speed have been determined
using Quantum Dot tracking methods (Andrews et al.
2009). However, both of these experimental methods retain
no information about the binding patterns of aggregates.
This makes it difficult, if not impossible, to determine the
difference between simply proximal and aggregated IgE.

IgE Aggregation Models & Simulations

To model ligand-receptor interactions a wide array of mod-
els have been implemented (Goldstein and Perelson 1984;
Yang et al. 2008; Monine et al. 2010; Manavi, Wilson, and
Tapia 2012). Most of these models were designed to study
bivalent cell surface receptors interaction with trivalent lig-
ands in a well mixed system. Two assumptions made are:
1) ligand binds to receptors, no ligand-ligand or receptor-
receptor interactions, and 2) a single ligand cannot bind to
both sites of a receptor. One of the initial models developed
was the Goldstein-Perelson model (Goldstein and Perelson
1984). This model was based on thermodynamic equilib-
rium and only considers two interactions, those between
free ligands and receptors and the crosslinking of two re-
ceptors by a ligand. Only considering these two interactions
means structures such as cycles are not accounted for. The
TLBR models is a kinetics based version of the Goldstein-
Perelson model and includes a wider array of interactions
(Yang et al. 2008). The TLBR model takes into account
cyclic dimers and heximers which are generated using ideal

molecule placement of bound molecules. A simulation ver-
sion of the TLBR model was created that considered steric
constraints of the molecules in the system (Monine et al.
2010). Dynamic bond trees are a graph formulation of ag-
gregates (Chang and Yang 2011) which were intended for
accelerated bookkeeping, not aggregate analysis.

Ligand Structure and Valency

A lot of work has been done studying synthetic ligands.
Synthetic ligands such as the bivalent DCT, trivalent DF3,
and multivalent BSA,, have been constructed to study re-
ceptor aggregation (Posner et al. 1995; Sil et al. 2007;
Xu et al. 1998). The structures of these ligands are well
known and documented. All these structures use DNP, a hap-
ten used in molecular biology for their high immunogenic-
ity, to bind IgE antibodies. Each binding site is a DNP linker
bound to the base ligand. DCT is a synthetic bivalent ligand
(Figure 1 left) with 2 binding sites on opposite sides of the
molecule. DF3 is a newer synthetic ligand (Figure 1 right)
with 3 binding sites. BSA,, is a synthetic multi-valent (n be-
ing the valency) ligand used to analyze receptor aggregation.
The number of DNP linkers bound to BSA,, can vary (2-25
binding sites). However, there is no control of spatial distri-
bution of the binding sites on BSA,,, so there is no guarantee
of binding site uniformity.

Figure 1: Synthetic ligands used in our simulations. Bivalent
DCT (left) and trivalent DF3 (right).

Experimental Methods

In this section, we address the methods used for model con-
struction, simulation techniques, and analysis techniques.

Model Construction

Our simulation is performed using three dimensional mod-
els of the receptor complex molecules and ligand molecules.
We use constructed all-atom models (Mahajan et al. 2012)
as well as generate our own. The construction of these mod-
els use a combination of motif binding geometries, molec-
ular dynamics, and homology modeling. In (Mahajan et al.
2012), available molecular PDB structures were used to con-
struct the model of the receptor complex (PDBs: 10AU,
2VWE, 100V, 1F6A). The IgE structure is modeled bound
to FceRI and consists of 1.532 amino acids (11,850 atoms).

We use two ligands in our experiments with varying struc-
ture. The bivalent ligand we use is DCT and the trivalent lig-



and is a fibritin trimer (PDB: 1RFO). To create DCT, DNP
linkers were coupled to the alpha amino groups of a pair
of bound L-tyrosine. To create DF3, the N-terminus of each
fibritin of the trimer was extended with a DNP linker.

It would be computationally prohibitive to use all-atom
models for the size of simulations we are pursuing, so we
reduce model complexity. We compute the iso-surface of the
molecules, constructing a high resolution structure of the
molecule’s occupied volume. Iso-surface construction was
done using Chimera, a molecular modeler. We end up with
high-resolution object files which contain large amounts of
detail. This detail hinders performance, such as collision de-
tection, when simulating hundreds of molecules.

To make the models more computationally feasible, we
further reduce the complexity by applying a polygonal re-
duction algorithm using the Maya modeling tool. This de-
creases the ammount of detail in the model while still main-
taining the occupied volume. These simplified structures are
what we use as molecular models in our simulation. The pro-
cess for model construction is shown in Figure 2.

Because we are modeling molecules as rigid bodies, a
method had to be created to account for DNP linker flexi-
bility. We model the DNP linkers with a structure half of the
length of a linker. During the simulation we model a sphere
with diameter the length of the DNP linker and it’s origin at
the end of the partial-length linker. This sphere is treated as
the binding area, any outside molecule with a binding site
inside this sphere will be a binding candidate.

Figure 2: The process of polygonal reduction of the initial
all-atom molecular structure in three steps: A.) Iso-surface
of the original model. B.) Reduced polygon model overlay-
ing the iso-surface. C.) Final reduced polygon model.

Simulation Methods

To model interactions between molecules, we implemented
a Monte Carlo simulation using a motion planning founda-
tion. We use a graph-based structure to model the state of the
system. In this graph, there are two classes of molecules, lig-
and and receptor, which are represented as vertices. Recep-
tors have two binding sites and ligand binding site counts
vary with type. If a receptor binds to a ligand, it forms an
edge in the graph to represent the bond that was made. This
graph-based representation allows us to encode properties
of the aggregates to analyze the aggregation process and the
structures produced.

We initialize our simulations by placing receptors and lig-
ands in random locations on a grid inside a bounding volume

in a collision-free state. The simulation contains no bind-
ings at the start state, and as such the graph, G, begins with
no edges. The molecules are simulated with 3 DOFs per
molecule, movement in the XY plane, and rotation about the
Z axis. The receptors are restricted to movement along the
surface of a cell since they are bound to the cell membrane,
but are free to rotate. Ligands are placed at ideal heights and
orientations for binding to receptors. The simulation com-
plexity (total DOFs) is directly dependent on the number of
simulated molecules. For example, 10 molecules in simula-
tion requires exploration of a 30 DOF Cjpqce.

The algorithm outlined in our previous paper (Manavi,
Wilson, and Tapia 2012) is the method used to simulate lig-
and/receptor aggregation. First, the simulation is initialized
with the molecules being placed randomly on a uniform grid
of the space. At each time step of the simulation, a Monte
Carlo step is made and the position and orientation of each
molecule is updated. We determine the new position and
orientation of each molecule using random sampling, a fre-
quently used technique when solving high-dimensional mo-
tion planning problems (Kavraki et al. 1996). The random
sampling step is restrained by biological constraints such
as molecular movement speed. In addition to moving ev-
ery molecule, at each time step every pair of molecules that
present binding sites within the radius of the modeled linker
will be evaluated for potential binding. This is a simple prob-
abilistic calculation based on experimental association rates.
Dissociation rates are handled by evaluating every bond in
the simulation at each time step for dissociation based on ex-
perimental dissociation rates. As bonds are formed and bro-
ken, the graph G is updated with the addition and removal
of edges respectively.

Over time, the ligands and receptors bind to form aggre-
gates. An aggregate is simulated as a single body and moves
slower depending on its size. Simulations are run for a pre-
defined time, chosen to be well beyond the time stable graph
formation is determined. Figure 3 shows a small scale exam-
ple of our experiments.

Aggregate Model and Analysis

We analyze our results using a variety of techniques based
on state of the graph GG. We define the system as a graph
G{V, E} where V is the set of all molecules in the simula-
tion, and F is the set of edges in the graph and e{v,, v, }¢F
iff v, is bound to v. We note that since ligand only bind to
receptors and vice versa, this is a bipartite graph.

This graph represents the structure of all aggregates in
the system and can be analyzed using standard graph met-
ric tools. For example, the number of edges in GG should sta-
bilize when the simulation reaches a stable state. Another
example is the number of connected components in G mea-
sures the number of aggregates and singletons in the simula-
tion. Each aggregate is represented by a connected compo-
nent, g, in G. Each g can be individually analyzed in order
to quantify important characteristics.

Results

For each ligand, we simulate a variety of ratios of ligand
to receptor. Receptor count is consistent at 90 and we var-



Figure 3: Small simulation example showing 20 ligands (or-
ange) interacting with 15 receptors (blue).

ied the ligand count, setup to match experimental analysis
(constant receptor concentration, varied ligand concentra-
tion). We ran counts of 30, 45, 90, and 180 for both ligands.
We simulated the molecules on a 400nm by 400nm mem-
brane patch. A fixed time interval of 10.0ms was used for
all simulations. The association and dissociation rates used
were 1.0 and 0.01, respectively, and were determined exper-
imentally (Xu et al. 1998). The speed for all molecules is s,
0.09.:m?/s, based on the speed of IgE-FceRI. Recent exper-
imental evidence suggests unbound molecules move faster
than bound molecules (Andrews et al. 2009). To account for
this, as molecules aggregate, the speed of the aggregate ¢
is reduced to s/|v;|, v; being the number of molecules in
1. Multiple (10) runs of each experiment were performed.
Simulations were created using PMPL, a motion planning
library developed at Texas A&M University. Experiments
were run on single cores of a super computer at UNM with
Intel Xeon E5645 processors and 4GB RAM per processor.

Equilibrium of Aggregate Formation

The metrics developed in (Manavi, Wilson, and Tapia 2012)
can be applied at anytime during the experiment. However,
aggregates are the most interesting and complex when they
have had time to stabilize. To analyze the stability of the
system, we look at the number of edges in the graph G. As
the number of edges in G stabilizes, aggregates structures
don’t change significantly. The average number of edges in
G over the course of the experiments are shown in Figure 4.

As can be seen in Figure 4, the number of edges initially
grows quickly in all of the experiments. At around the 2
minute marker, the rate at which edges are being added to
G starts to slow down and we see a leveling off of the edge
count. We infer this as the aggregates becoming stable and
fully formed. This result is found to be consistent with ob-
servations seen in IgE-FceRI, where changes in mobility are
associated with aggregation. IgE-receptor aggregation slow
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Figure 4: To estimate when the experiment has reached a
stable state, we record the number of connections at each
time step. The x-axis is simulation time (minutes) and the
y-axis is the number of edges in G

down has been observed experimentally within 20 secs of
ligand addition and are typically complete within 60-90 secs
(Andrews et al. 2009). We also see that in Figure 4 DF3 pro-
duces more edges than DCT for the same ratio of ligand to
receptor. This is expected due to the valency of the ligand,
DF3 has 50% more binding sites accessible per molecule.

Aggregate Size

The TEM approach has shown that large FceRI “signaling
patches” form within 1-2 minutes of the addition of ligand.
One limitation of this technique is that it is not possible to
estimate aggregate sizes within these patches. In this section,
we show how using a graph based approach can be used to
understand the differences in aggregate sizes.

Results are shown in Figure 5. Aggregate size was mea-
sured for every connected component in G. Since experi-
mental studies are only able to distinguish receptor position,
we measure aggregate size as the cardinality of the vertices
labeled receptors. After the simulations were run, aggregate
size counts were collected and averaged for each ligand, ag-
gregate sizes of two or larger were reported.

We see two trends in Figure 5, the first being the relation
between ratios and the second between the ligands. If we
look at different ratios for both ligands, the middle ratios
(45 and 90 ligand counts) produce more aggregates of any
given size relative to the extreme ratios (30 and 180 ligand
counts). Not only that, but these median ratios also produce
larger aggregates compared to the extreme ratios.

In Figure 5 there are clear aggregate size differences de-
pending on the ratio of ligand to receptor, and the results are
consistent across both ligands. Looking at low ligand ratio,
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Figure 5: Aggregate sizes and number of occurrences. Ag-
gregate sizes (number of receptors) were enumerated at the
end of run and averaged. The x-axis is the size of aggregate
and y-axis is the averge number of aggregates of that size.

ligands have a hard time binding already bound receptors
since there are so few. Because of this aggregates tend to
stay small. Looking at high ligand ratio, we see a saturation
of ligand making for smaller aggregates. This is attributed
to the receptor binding sites quickly filling up with unbound
ligands. We see the more moderate ratios produce more ag-
gregates and larger aggregates as well. Starting from a re-
ceptor saturated (low ligand ratio) and increasing the ligand
count, aggregate count of a particular size increases. This
trend continues until ligand saturation occurs and we see a
decline in the number of aggregates of a particular size. This
trend is seen in the bell shape curve in the number of occur-
rences of any given aggregate size and molecule counts.

We also see in Figure 5 that there are differences in ag-
gregate size dependent on the ligand. We see that the triva-
lent DF3 produces larger aggregates than the bivalent DCT.
We account this to the valency difference, trivalent DF3 has
more accessible binding sites and can produce more com-
plex structures (cycles, chains and trees) than bivalent DCT
(cycles and chains).

Resulting Aggregates

Ligands with different valences can produce different aggre-
gate formations. The resulting aggregates seen in Figure 6
were constructed during our simulation. We see that triva-
lent ligands are capable of generating aggregates that cannot
be made using bivalent ligands i.e. trees.

Details of aggregate structures (Figure 6) are interesting
because aggregate binding patterns are difficult to see using
experimental imaging techniques. For example, notice the

Figure 6: Aggregates produced during our simulations. A.)
DCT Aggregate (Size 4) B.) DF3 Aggregate (Size 6). Note
aggregate size is dependent on receptor (blue) count, ligands
DCT (cyan) and DF3 (orange) are disregarded.

compactness of Figure 6 (A). Even though the DCT ligand is
only able to produce simple structures, the receptor positions
are compact, similar to the DF3 aggregate (Figure 6 (B)).

Conclusion

In this paper, we analyze aggregate formation from the
cross-linking of an antibody to bivalent and trivalent lig-
ands. By developing simplified models based on experimen-
tally derived data, we are able to study aggregate formation
under biologically-relevant conditions. This is particularly
helpful since experimental techniques report proximity of
clustered receptors but fail to provide a measurement of ag-
gregate sizes within a complex topography. Our 3-D simula-
tions have provided insight into the aggregation process by
reporting both realistic timescales and by providing detailed
information on receptor aggregates and ligand binding.
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