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Abstract— Control of nonlinear systems is challenging in real-
time. Decision making, performed many times per second, mais
ensure system safety. Designing input to perform a task ofte
involves solving a nonlinear system of differential equatns,
a computationally intensive, if not intractable, problem. This
article proposes sampling-based task learning for contrehffine
nonlinear systems through the combined learning of both
state and action-value functions in a model-free approximge
value iteration setting with continuous inputs. A quadratic =
negative definite state-value function implies the existere of g
a unique maximum of the action-value function at any state. an
This allows the replacement of the standard greedy policy .
with a computationally efficient policy approximation that \ﬁ
guarantees progression to a goal state without knowledge of N, . i
the system dynamics. The policy approximation isconsistent, (a) Cargo delivery (b) Rendezvous
i.e., it does not depend on the action samples used to calctdat.  Fig. 1. Evaluated tasks, (a) swing-free cargo delivery anddndezvous.

This method is appropriate for mechanical systems with high

dimensional input spaces and unknown dynamics performing

constraint-balancing tasks. We verify it both in simulation and

experimentally for a UAV carrying a suspended load, and in ing many times per second, and must ensure system safety.
simulation, for th(_e rendezvous of he.terogengous robots.. ~ Yet, designing input to perform a task typically requires

Keywords:Reinforcement learning, policy approximation,system dynamics knowledge. Classical optimal control ap-
approximate value iteration, fitted value iteration, contius proaches, use combination of open-loop and closed loop
action spaces, control-affine nonlinear systems controllers to generate and track trajectories [1]. Anothe
technique, first linearizes the system and then applies LQR
) ] methods locally [2]. All classical methods for solving non-

Humans increasingly rely on robots to perform taskS§inear control problems require knowledge of the system
A particular class of tasks that interests us eemstraint-  gynamics [2]. On the other hand, we present a solution
balancing tasks These tasks have one goal state and ORg an optimal non-linear control problem when the system
posing constraining preferences on the system. Ba|anc”69namics is unknown.

the speed and the quality of the task are often seen aSgeinforcement learning (RL) solves control of unknown
two opposing preferential constraints. For example, meti - inyractable dynamics by learning from experience and
sensitive aerial cargo delivery task must deliver susp@nd@pseryations. The outcome of the RL is a control policy. Typ-
load to origin as soon as possible with minimal load disjc|y the RL learns the value (cost) function and derives a
placement along the trajectory (Figure 1a). The rendezvoyseeqy control policy with respect to the value. In contiasio
task (Figure 1b) requires cargo-bearing UAV and a groungyaces; the value function is approximated [3]. When astion
robot to meet without a predetermined meeting point. 18ye continuous, the greedy policy must be approximated as
these tasks the robot must manipulate and interact with {ga| The downside of RL is that its sampling nature renders

enyironment, Whil_e completing the task ir_l timely mannelgapility and convergence proofs challenging [3].
This article considers robots as mechanical systems withy,, rely on RL, to learn control policy foconstraint-

non-linear control-affine dynamics. Without knowing the”balacing taskawithout knowing the robot's dynamic. Given
exact dynan_1ics, we are intereste_d in producing motions thgle continuous state spadited value iteration(FVI) ap-
perform a giverconstraint _balancmg_task roximates a value function with a linear map of basis
Control of multl-d|men5|0!1al nonlinear systems, S.UCh nctions [4]. FVI learns the linear map parametrizati@n-it
robots and autonomous vehicles must perform decision maﬁﬁvely in an expectation-maximization manner [3], [5].€Th

basis function selection is challenging because the legrni
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uous action space to develgpntinuous action fitted value In continuous action RL, the decision making step, which
iteration (CAFVI). The novelty is a joint work with two selects an input through a policy, becomes a multivariate
value functions, state-value and action-value, to leamn tloptimization. The optimization poses a challenge in the RL
control. CAFVI learns, globally to the state space, statesetting because the objective function is not known. Robots
value function, which is negative of the Lyapunov. On thaneed to perform input selection many times per second. 50-
other hand, in the estimation step, it learns an actionevalll00 Hz is not unusual [19]. The decision-making challenges
function locally around a state to estimate its maximumbrought action selection in continuous spaces to the fonefr
This maximum is found using the newly developed policiesf current RL research with the main idea that the gradient
that divide-and-conquer the problem by finding the optimallescent methods find maximums for known, convex value
inputs on each axis separately and then combine thefiunctions [20] and in actor-critic RL [21]. Our method is
Not only are the policies computationally efficient, scglin critic-only and because the system dynamics is unknown,
linearly with the input's dimensionality, but they producethe value-function gradient is unavailable [21]. Thus, we
consistentear-optimal input; their outcome does not dependevelop a gradient-free method that divides-and-conquers
on the input samples used for calculation. Although probthe problem by finding the optimal input in each direction,
lem decomposition via individual dimensions is a commoind then combines them. Other gradient-free approaches
technique for dimensionality reduction [6], this articleosvs  such as Gibbs sampling [22] Monte Carlo methods [23],
that single-component policies lead to a stable systeraroff and sample-averages [24] have been tried. Online optanisti
three examples of such policies to turn the equilibrium int@ampling planners have been researched [25], [26], [27],
an asymptotically stable point, and characterizes systerf28]. Specifically, hierarchical optimistic optimization ap-
for which the technique is applicable. The reinforcementlied to trees(HOOT) [27], uses hierarchical discretization
learning agent is evaluated on a quadrotor with suspendgml progressively narrow the search on the most promising
load and a heterogeneous robot rendezvous task. areas of the input space, thus ensuring arbitrary small er-
From the practical perspective, the article gives methodsr.Our methods find a near-optimal action through sample-
to implement an FVI with linear map approximation for abased interpolation of the objective function and finding th
constraint-balancing task, on control-affine systems [ithw maximum in the closed-form on each axis independently.
unknown dynamics and in presence of a bounded drift. TheseDiscrete actions FVI has solved the minimal residual os-
tasks require the system to reach a goal state, while minimieillations task for a quadrotor with a suspended load and has
ing opposing constraints along the trajectory. The metlsod developed the stability conditions with a discrete actionm/
fast and easy to implement, rendering an inexpensive tool [39]. Empirical validation in [29] shows that the condit®n
attempt before more heavy-handed approaches are attempteald. This article characterizes basis vector forms forticdn
affine systems, defines admissible policies resulting in an
II. RELATED WORK asymptotically stable equilibrium, and analytically slsow
the system stability. The empirical comparison with [29] in
Efficient, near-optimal nonlinear system control is ansection IV-B shows that is both faster and performs the
important topic of research both in feedback controls anghsk with higher precision. This is because the decision
reinforcement learning. When the system dynamics is knowfaking quality presented here is not limited to the finite
[8] develops adaptive control for interconnected systemgction space and is independent of the available samples.
When the system dynamics is not known, optimal [9]we also show wider applicability of the methods developed
[10], [11] and near-optimal [12], [13], [14] control for here by applying them to a multi-agent rendezvous task.
interconnected nonlinear systems are developed for @rniour work currently under submission [30], extends [29]
the state-value function using neural networks. This lerticto environments with static obstacles specifically for @eri
addresses the same problem, we use linearly parametrizeggo delivery applications, and is concerned with geiregat

state-value functions with linear regression rather theural trajectories in discrete action spaces along kinematibspat
networks for parameter learning. Generalized HIB equation

for C(_)ntrol-aﬁlne systems can be approximately solved with lIl. M ETHODS

iterative least-squares [15]. Our method also learns the

value function, which corresponds to the generalized HBJ This section consists of four parts. First, Section IlI-A
equation solution, through iterative minimization of tleast specifies the problem formulation for a task on a control-
squares error. However, we learn from samples and lineaffine system suitable for approximate value iteration with
regression rather than neural networks. For linear unknowimear basis vectors. Based on the task, the system and
systems [16] gives an optimal control using approximatthe constraints, we develop basis functions and write -state
dynamic programming, while we consider nonlinear controlvalue function in Lyapunov quadratic function form. Second
affine systems. Convergence proofs exist for neural networkection IlI-B develops sample-efficient policies that téke
based approximate value iteration dynamic programming faystem to the goal and can be used for both planning and
linear [17] and control-affine systems [18], both with knowrearning. Third, Section 1lI-C places the policies into FVI
dynamics. Here, we are concerned with approximate valigetting to present a learning algorithm for the goal-ogent
iteration methods in the reinforcement learning setting tasks. Together they give practical implementation tools
without knowing the system dynamics. for solving constraint-balancing tasks through reinfoneat



learning on control-affine systems with unknown dynamicdhe stater. Therefore, the relation between the V and Q is

We discuss these tools in Section IlI-D. Q(z,u) =V o D(z,u). (4)
A. Problem formulation Both value functions devise a greedy poliby: X — U, at
Consider a discrete time, control-affine system with nstatex, as the input that transitions the system to the highest
disturbancesD : X x U — X, valued reachable state.
D: xe.— h@(x) = argmax Q(x, u) (5)
D Ty = fxw) + g(@r)ug. 1) wel

where states are, € X C R, input is defined on a closed A greedy policy uses the learned value function to produce
interval around originu, € U C R%, d, < d,, 0 € U, trajectories. We learn state-value functidr, because its
andg : X — R% x R%, g(x)" = [g1(zk) ... ga, (xx)] approximation can be constructed to define a Lyapunov
is regular forx;, € X \ {0}, nonlinear, and Lipschitz candidate function, and in tandem with the right policy ihca
continuous. Driftf : X — R, is nonlinear, and Lipschitz. help assess system stability. For discrete actions MDPss (5
Assume that the system is controllable [2]. We are intedeste brute force search over the available samples. When action
in autonomously finding control input:;, that takes the space is continuous, (5) becomes an optimization problem
system to its origin in a timely-manner while reducihdx|  over unknown functionD. We consider analytical properties
along the trajectory, wherd” = [a1, ...,aq,] € R% xR%,  of Q(x,u) for a fixed statex and knowingV’, but having
dg < d, is nonsigular. only knowledge of the structure of the transition functibn
A discrete time, deterministic first-order Markov decisiorThe key insight we exploit is that existence of a maximum
process (MDP) with continuous state and action spaces, of the action-value functio®(z,«), as a function of input
M: (X,U,D,p) (2) u, depends only on the learned parametrization of the state-

defines the problempn.: X — R is the observed state reward,Value functiony'.

and the system dynamid® is given in (1). We assume that Approximate value iteration algorithms with linear map
we have access to its generative model or samples, but tiproximators require basis vectors. Given the state con-
we do not knowD. In the remainder of the article, when Straint minimization, we choose quadratic basis functions
the time stepk is not important, it is dropped from the state Fij(x) = |aTx|? i=1,.., dg. (6)
notation without the loss of generality. so that state-value function approximatiéf,is a Lyapunov

A SOIUt.'Or.] to M.DP is an optimal POI'CW + X = U, candidate function. Consequently, is,
that maximizes discounted cumulative state reward. Thus,

the objective function to maximizstate-valuecost function

. i &
V:X =R, is V() = ZoiFi(m) _ (Am)TG(Am) — 2T Ax @)
i=1

o0
Viz)=> +px, ®)

o _ k=0 ) for a diagonal matrix® = diag(fy,0-,...,04,), and a
where p; is immediate reward observed at time Step symmetric matrixA. Let's assume that\ has full rank.
starting at stater, and0 < 7 < 1 a discount constant. Approximate value iteration learns the parametrizat®n
RL solves MDP without analytical knowledge of the systeMysing a linear regression. L&E = —A. Note, that if
dynamicsD, and reward,. Instead, it interacts with the g jg negative definite A is as well, whileT' is positive
system and iteratively constructs the value function. Ysingefinite, and vice versa. Let also assume that when 0
the Belllman equation [31], the state value functiorcan be e system drift is bounded witlx with respect toI'-
recursively represented as norm, f(x) T f(x) < a’Tz. This characterizes system

V(z) = p(x) + ymax V(D(xz,u)). drift, conductive to the task. We empirically demonstrase i

u

The state value function is an immediate state reward plusgfflmency in the robotic systems we consider.

discounted value of the state the system transitions fafigw ~ TO summarize the system assumptions used in the re-
greedy policy. Theaction-state functior : X x U — R is, ~minder of the article:

_ / ’oo ’
Q(z,u) = p(a')+ymaxV(D(z',u)), andz’ = D(z, ). 1) The system is controllable and the equilibrium is
Action-value function, Q, is the sum of the reward obtained reachable. In particular, we use,
upon performing action: from a statex and the value of 3i,1 < i <d,, such thatf(z)['g;(x) #0, (8)

the state that follows. Both value functions give an estimat

. . and that is regular outside of the origin,
of a value. Astate-value functionV, is a measure of state’s 9(z) 9 9

T
value, while anaction-value function@, assigns a value to g(x) Tg(z) >0,z e X\ {0} 9)
a transition from a given state using an input. Note, that RL 2) Input is defined on a closed interval around origin,
literature works with either astate-rewardp, or a related 0eU (10)

state-action rewardvhere the reward is a function of both 3) The drift is bounded
the state and the action. We do not consider a cost of action - o

itself, thus thestate-action rewards simply the reward of f(x)'Tf(x) <@ Iz, whenl' >0  (11)
the state that the agent transitions upon applying aeiiom  Table | presents a summary of the key symbols.



TABLE |

SUMMARY OF KEY SYMBOLS AND NOTATION. (Proposmon “I'l)

2) define admissible policies that ensure the equilibrium’s

%mb& —— ’E’A%S'gription asymptotic stability (Theorem I11.2), and
: » Yy P, 1 1 1
VX SR V(z)=aTAz | State-value function 3) f|.nd a samp_lln.g—based. method for palcula}tlng con-
Q:XxU—=R Action-value function sistent, admissible policies iD(d,) time with no
Az Constraints to minimize knowledge of the dynamics (Theorem 111.4).
A=AT®A Combination of task constraints and . . .

value function parametrization Smce__the gree_dy policy (5) de_pends on acnon'V'_a@Je
I'=-A Task-learning matrix Proposition I11.1 gives the connection between value fiomct
AQ(x, @) Policy h€ in statex (7) and corresponding action-value functign
en n'h axis unit vector
ueU Input vector _ Proposition 1Il.1. Action-value functionQ(x,w) (4), of
ueR Univariate input variable MDP (2) with state-value functio/ (7), is a quadratic
un €R Set of vectors in direction ofth axis f . fi f I h . .
@, € R Estimate in direction of the'h axis unction of inputu for all statesz € X. When® is negative
Up =1 4 Gine; Estimate over first n axes definite, the action-value functio is concave and has a
[ Estimate ofQ’s maximum with a policy maximum.
Qg’%(u) = Q(xz,p + uen) Univariate function in the direction ) )

of axis e, passing through poinp Proof. EvaluatingQ(z, ) for an arbitrary statec, we get

Q(x,u) =V (D(x,u)) = V(f(z) + g(x)u), from (1)
= (f(z) + g(x)u))"A(f(z) + g(x)u)

Thus, @ is a quadratic function of action at any stater.
To show thatQ) has a maximum, we inspe€l’s Hessian,

02Q(z,u) 02Q(x,u)
Ouy Ouy Ou10uq,, T
HQ(z,u) = =2g(x)" Ag(x).
) 9?Q(z,u) 0?Q(z,u)
Fig. 2. Example of two dimensional input and a quadratic @dluinction. ] - auduaul_ _a_udu Jug,, .
u* is the optimal inputu is the one selected. The Hessian is negative definite becayg$e) is regular for
all statesx and ® < 0, which means tha\ < 0 as well.
B. Policy approximation Therefore, the function is concave, with a maximum. O

This section looks into an efficient and a consistent policy The state-value parametrizati@ is fixed for the entire
approximation for (5) that leads the system (1) to a godtate space. Thus, Proposition Ill.1 guarantees that when
state in the origin. Here, we learn the action-value fumctiothe parametrizatio® is negative definite, the action-value
Q on the axes, and assume a known estimate of the stafgnction @ has a single maximum. Next, we show that the
value function approximatioi’. For the policy to lead the right policy can ensure the progression to the goal, but we
system to the origin from an arbitrary state, the origin mudirst define the acceptable policies.
be asymptotically stable. Negative of the state-valuetionc

:]/eecgg tt(;ebz iﬁ@;g?nv filjnn(t;itr';)g’ _?Qgt tgr?I V?llglgsfutrféwvcheif it transitions the system to a state with a higher valuenvhe
9 ' y ne exists, i.e., when the following holds fpolicy’s gain

the policy approximation makes an improvement, i.e., th o N .
policy needs to transition the system to a state of a higheF statez, AQ(:B’U) = Q@ a) - V(@)

value (/(z,41) > V(zn)). To ensure the temporal increase 1) AQ(z, @) >0, forz € X'\ {0}, and

of V, the idea is to formulate conditions on the system 2) AQ(z, @) =0, for z = 0.

dynamics and value functioW, for which @, considered as  Theorem III.2 shows that an admissible policy is sufficient
a function only of the input, is concave and has a maximunfgy the system to reach the goal.

In this work, we limit the conditions to a quadratic forgh .

When we establish maximum’s existence, we approximafgheorem 1ll.2. Let i = h®(z) be an admissible policy
it by finding a maximum on the axes and combining then@Pproximation. Whem\ < 0, and the drift is bounded with
together. Figure 2 illustrates this idea. To reduce the dime(11), the systen(1) with value function(7) progresses to an
sionality of the optimization problem, we propose a divide@symptotically stable equilibrium under polidy?.

and conquer approach. Instead of solving one multivarias,of. Consider W(z) = —V(z) = z'Tz. W is a

Definition Policy approximationi = h%(x) is admissible

optimization, we solvel, univariate optimizations on the Lyapunov candidate function becauEe> 0.
axes to_ﬁnd a highest v:';llueq point on eac.h axis, The . To show the asymptotic stability, @ needs to be mono-
composition of the axes’ action selections is the Selec“%nically decreasing in tmeV (zns1) < W(zn) with
— T H : H n = n
vectoru = [ug .. ug,]". This section develops the policy gqality holding only when the system is in the equilibrium,
approximation following these steps: x, = 0. Directly from the definition of the admissible
1) show thatQ is a quadratic form and has a maximumpolicy, for the statex,, # 0, W(xp+1) — W(z,) =



—Q(xn, h9(xn)) + V(xn) = V(zn) — Q(zn,@) < 0 Q's restriction on the first axis, then iteratively finds maxi-
Whenz, = 0, = x,4+1 = f(0) = 0, because of (11) mums in the direction parallel to the subsequent axes, [@Ssi
= W(zpnt1)=0. O through points that maximize the previous axis. The second
policy approximation, convex sum, is a convex combination
Theorem 1.2 gives the problem formulation conditionsof the maximums found independently on each axis. Unlike
for the system to transition to the goal state. Now, wéhe Manhattan policy that works serially, the convex sum
move to finding sample-based admissible policies by findingolicy parallelizes well. Third, axial sum is the maximum
maximums of @ in the direction parallel to an axis andof the convex sum policy approximation and nonconvex
passing through a point. Becau§ehas quadratic form, its axial combinations. This policy is also parallelizable.l Al
restriction to a line is a quadratic function of one variablethree policies scale linearly with the dimensions of theuinp
We use Lagrange interpolation to find the coefficientgQof O(d,). Next, we show that they are admissible.
on a line, and find the maximum in the closed form. We first

introduce the notation fa’s restriction in an axial direction, Theorem 1.4, The system(2) with value function(7),
and its samples along the direction. bounded drift(11), and a negative definit®, starting at

o _ o _ ) an arbitrary statex € X, and on a set/ (10), progresses
Definition Axial restriction of @ passing through poinb, to an equilibrium in the origin under any of the following
is a univariate functiorQ;’fg (u) = Q(z,p + ue;). policies:

If g = [QF (uin) QFy(uin) QF 5(uis)]”, are three

(p) . : 1) Manhattan policy:
samples onw’?i (u) obtained at pointSu;; w2 wu;s], then

s (0)
Q(x,p + ue;), is maximized at e zrfﬁi’f Qai (1)
ti; = min(max(u*;, ul),u?), where (12) ’
e a7 (uh udy wd] - uly wd )T hety © iy, = argmax Q.EZ,‘JZ‘I)(UL n e [2,..,dy,
Co2q]  ([wie wis wal = [ws win o ui))T K gugugn_l

on the intervalul < u < u¥. Equation (12) comes directly Up_1 = ) Ue;.
from Lagrange interpolation of a univariate second order =1 (13)
polynomial to find the coefficients of the quadratic function 2) Convex sum:
and then equating the derivative to zero to find its maximum. a4, a4,
In the stochastic case, instead of Lagrange interpolation, Q. &~ _ . (0) o
linear regression yields the coefficients. he s @ = ; Ases zr;giazx (1), ; Ai=1

A motivation for this approach is that maximum finding in (14)
a single direction is computationally efficient and coresist 3) Axial sum:
A single-component policy is calculated in constant tinre. | he(xz), Q(z,h%(x)) > Q(x, hQ(x))
addition, the input selection on an axis calculated with) (12 he: 4=
is consistenti.e. it does not depend on the sample points h(x), otherwise
u;; available to calculate it. This is direct consequence of (15)
guadratic function being uniquely determined with arbitra where
three points. It means that a policy based on (12) produces du
the same result regardless of the input samples used, which i he(x) = Z e; argmax ngz). (u)
important in practice where samples are often hard to obtain i=1 i Susuj

Lemma 1.3 shows single component policy character-
istics including that a single-component policy is stable
on an interval around zero. Later, we integrate the single- A consideration in reinforcement learning, applied to
component policies together into admissible policies. robotics and other physical systems, is balancing exploita
tion and exportation [32]. Exploitation ensures the safety
of the system, when the policy is sufficiently good and
yields no learning. Exploration forces the agent to perform
suboptimal steps, and the most often usegteedy policy
1) There is an input around zero that does not deperforms a random action with probability Although the

crease system’s state value upon transition, Heg € random action can lead to knowledge discovery and policy

The proof for the Theorem 111.4 is in Appendix II.

Lemma IIl.3. A single input policy approximatioiil12),
for an input component,, 1 < i < d, has the following
characteristics:

[ui,ui] such thatQ'?)(u) > Q(z, p). improvement, it also poses a risk to the system. The policies

2) Q;"Z(ﬁz—) ~ V(z) >0, whenz # 0 presented here fit \_/veII |n.onl|ne RL paradigm, bec_ause they
3) Q(f), dies) — V(0) =0 allow safe exploration. Given that they are not optlm_aly_th(_a

produce new knowledge, but because of their admissibility

The proof for Lemma 111.3 is in Appendix I. and consistency, their input of choice is safe to the physica

We give three consistent and admissible policies as examsystem. For systems with independent inputs, axial sum
ples. First, the Manhattan policy finds a point that maximizepolicy is optimal (see Appendix III).



C. Continuous action fitted value iteration (CAFVI) spaces, and the joint work with both state and action-value

We introduced an admissible, consistent, and efficief¢nctions (Lines 6 - 8), while FVI works with discrete, finite
decision making method for learning action-value functioff’Put sets and with one of the two functions [3], but not both.
Q locally, at fixed stater, and fixed learning iteration (when Although the outcome of the action-value function learning
@ is fixed) without knowing the system dynamics. Now, thdLine 8) is independent of the input samples, the stateevalu
decision making policies are integrated into a FVI framefunction learning (Line 12) depends on the state-samples
work [5], [3] to produce a reinforcement learning agent fofollected in Line 5, just like discrete action FVI [5].
continuous state and action MDPs tailored for control-affinD Discussion
nonlinear systems. The algorithm learns the parameterizat . ) ,
©, and works much like approximate value iteration [5] to Considering aconstraint-balancing taskwe proposed
learn state-value function approximatiéh but the action duadratic feature vectors, and determined sufficient eondi
selection uses sampling-based policy approximation on tfions for WhICh admissible policies presented in _Sectlcbn Il
action-value functior. Algorithm 1 shows an outline of the B transition the system to the goal state obeying the task
proposedcontinuous action fitted value iteratiptCAFVI.  eauirements. Finally, we presented a learning algoritha t
It first initializes @ with a zero vector. Then, it iteratively '€&rNs the parametrization. There are several points e n
estimates() function values and uses them to make a nep P& discussed, convergence of the CAFVI algorithm, usage
estimate of@. First, we randomly select a state, and of the quadratic basis functions, and determination of the

. ) 'S - .
observe its reward. Line 6 collects the samples. It unifgrmiconditions from Section IlI-A. o _
samples the state space for . Because we need three data Full conphtmps unde_r which FVI W|.th dlscr.ete actions
points for Lagrangian interpolation of a quadratic funcfio CONVErges s still an active research topic [3]. Itis knoh@tt
three input samples per input dimensions are selected. \W&Onverges when the system dynamics is a contraction [3].

also obtain, either through a simulator or an observatiof detailed analysis of the error bounds for FVI algorithms
the resulting stater’. when u,; is applied toz;.. Line 7 with finite [33] and continuous [24] actions, finds that the

estimates the action-value function locally, fey. andu; FVI error bounds scale with the difference between the basis

using the curren®; value. Next, the recommended action/Unctional space and the inherent dynamics of the MDP.
is calculatedzi. Looking up the available samples or using! "€ System's dynamics and reward functions determine
a simulator, the system makes the transition frem using the MDP’s dynamics. We choose quadratic basis functions,
action@. The algorithm makes a new estimate 16fz;_ ). because of the nature of the problem we need to solve and
After n, states are processed, Line 12 finds néwhat for stability. But, basis functions must fit reasonably well
S ’ . . . . .

minimizes the least squares error for the new state-valdfaio the true objective function (3) determined by the syste
function estimatesy,,. The process repeats until either dynamics and the reward, otherwise CAFVI diverges.

converges, or a maximum number of iterations is reached. 1N€ goal of this article is to present an efficient toolset for
solving constraint-balancing tasks on a control-affingesys

with unknown dynamics. Using quadratic basis functions,
Algorithm 1 learns the parametrizatién Successful learning
that converges to & with all negative components, produces
a controller based on Section IlI-B policies that is safedor

Algorithm 1 Continuous Action Fitted Value Iteration (CAFVI)

Input: X, U, discount factory
Input: basis function vecto#F

Olgtgut:o 0(_ Zero vector physical system and completes the task.
). Z‘L 11 In Section IlI-A, we introduced sufficient conditions for

successful learning. The conditions are sufficient but ect n
essary, so the learning could succeed under laxer conslition
Done in simulation prior to a physical system control, the
learning can be applied when we are uncertain if the system
satisfies the criterion. When the learning fails to succées,
controller is not viable. Thus, a viable controller is pbssi

3: while (I < max_iterations) and||@; — 0,_1|| > ¢ do

4. forily,=1,..,ns do

5: sample stater;, and observe its rewarg,

6: {1, wij, xli = 1,..,dy,j = 1,2,3} {obtain
system dynamics samples

_ . T ) . .
" 1]:3:132'0#}, gij < 0 F(=;;) {estimate action-value under laxer conditions verifiable through learning. so the
o @ « calculated with (12) toolset can be sgfely a_lnd easily attempted _flrst, before more
9: obtain {z;_, i x| ) computathnally intensive n_1e_t_hods are appl!ed. It can be al

’ o2 ks plj . used to quickly develop an initial value function, to be reéin
10: v, = pi, + 70, F(x),) {state-value function new later with another method
estimateé '
11:  end for IV. RESULTS
ii ?lill:frgmm@ (v, — 0T F(@))? This section evaluates the proposed methodology. We first

verify the policy approximations’ quality and computatidn
efficiency on a known function in Section IV-A, and then
we showcase the method’s learning capabilities in two case
studies: a quadrotor with suspended payload (Section |V-B)
The novelties of the Algorithm 1 are continuous inputand a multi-agent rendezvous task (Section IV-C).

14: end while
15: return,




TABLE Il
SUMMARY OF POLICY APPROXIMATION PERFORMANCE

== Discrete

MINIMUM AND MAXIMUM OF THE VALUE GAIN AND THE - © =HOOT "a‘
DISTANCE FROM THE OPTIMAL INPUT. Manhattan e
10° + Axial Sum -t -
Method min AQ maxAQ | minAu max Au = Convex Sum 2 PR
Manhattan 5.00 168.74 0.00 4.32 '
Axial Sum 3.40 163.76 0.00 4.37
Convex Sum 3.40 103.42 0.10 4.37

In all evaluations, the Convex Sum was calculated usin
equal convex coefficients; = d, . Discrete and HOOT [27]
policies are used for comparison. The discrete policy ust ! Input dimensionality, d
an equidistant grid with 13 values per dimension. HOO !
uses three hierarchical levels, each covering one tentheof tFig. 4. Policy approximation computational time per input dimen-
input size per dimension and maintaining the same numbgpnality. Comparison of discrete, HOOT, Manhattan, Axgaim,
of inputs at each level. All computation was performed usinanOI Convex Sum policies. Theaxis is logarithmic.

Matlab on a single core Intel Core i7 system with 8GB of . . -
RAM, running the Linux operating system. 30?' and anvex Sum (F|gure. 3d) pohues. .A.” pohugs_have
strictly positive gain ratio, which gives additional emipa

A. Policy approximation evaluation evidence to support the finding in Proposition Ill.4. Manhat
In Section 111-B we proposed three policy approximation tan an(_:i Axial Sum perf_orm similarly, wi_th the best resqlts f_o
and showed their admissibility. To empirically verify theshear—cwcular paraboloids, and degrading as the eccéntric
o | : Lo ‘increases. In contrast, the Convex Sum policy performs best
findings, we examine their behavior on known quadratuf:Or highly elongated elliptical paraboloids

functions of two variables, elliptical paraboloids with a Lastly, we consider the computationall efficiency of the

Rw)?imum.’;l'gble IIaiepligsnmeixglgrntﬁgdclrggrg?To\r/ligj\?e"?hree policies, and compare the running time of a single de-
. .Q(w’ (m)). @ rang . I cision making with discrete and HOOT [27] policies. Figure
elliptical paraboloids. Since tha( is always positive for 4 depicts the computational time for each of the policies
all three policies, the empirical results confirm our finding

from Proposition 111.4 that the policies are admissible. we™ 8 function of the input dimensionality. Both discrete

also see frommin Au that in some cases Manhattan anxﬁnd HOOT policies’ computational time grows exponentially

: . . - ith the dimensionality, while the three policies that are
Axial Sum make optimal choices, which is expected as wel ased on the axial maximums: Manhattan. Axial Sum. and
The maximum distance from the op_t|mal Input column Show&onvex Sum are linear in the input dimensionality, although
that the distance from the optimal input is bounded. Manhattan is slightly slower

To further evaluate the policies’ quality we measure the '
gain ratio between the policy’s gain and maximum gain oB. Cargo delivery task

the action-value functiom(" is optimal input): This section applies the proposed methods to the aerial

dne (@) = Q(z, h?(x)) — Q(,0) cargo delivery task [29]. This task is defined for a UAV

h Q(xz,u*) — Q(x,0) carrying a suspended load, and seeks acceleration on the

Non-admissible policies have negative or zero gain ratio fdJAV's body, that transports the joint UAV-load system to
some states, while the gain ratio for admissible policies 8 goal state with minimal residual oscillations. We show
strictly positive. The gain ratio of one signifies that pglie?  that the system and its MDP satisfy conditions for Theorem
is optimal, while a gain ratio of zero means that the selectdtl.2, and will assess the methods though examining the
input transitions the system to an equivalent state frodearning quality, the resulting trajectory charactecsstiand
the value function perspective. The elliptic parabolgidsimplementation on the physical system. We compare it to the
Q(z, [urua]”) = au? + buyug + cul + duy + eus + f, discrete AVI [29] and HOOT [27], and show that methods
isolines are ellipses, and the approximation error depends presented here solve the task with more precision.
the rotational angle of the ellipse’s axes, and its ecoahri To apply the motion planner to the cargo delivery task
Thus, a policy’s quality is assessed as a function of these tvior a holonomic UAV carrying a suspended load, we use the
parameters: the rotational angleand range of the parameterfollowing definition of the swing-free trajectory.
¢, while parameters, d, e, and f are fixed. Parametéris

icsal(;::l?(t:(:g dsi’ﬁcéli tS?e& 3:a (\/C\L/it; ?etrzngcoéer-:—trr]i?:itecrceenrtgcnyti minimal residual oscillationsf for a given constant > 0
P 9 ' Y TEpresEnll vore is a time) < t; < tq, such that for alk > ¢4, the load

a circle, and an eccentricity of one representing the @lips,. : :
degenerating into a parabola. The white areas in the he%{;placement 's bounded with(p(t) < ).

maps are areas where the function is either a hyperbolicThe MDP state space is the position of the center of the
paraboloid or a plane, rather than an elliptic paraboloid armass of the UAVp = [z y 2|7, its linear velocitie = [i ¢

has no maximum. Figure 3 displays the heat maps of thg”, the angular positiom = [¢) ¢|7 of the suspended load

gain ratios for the Manhattan (Figure 3b), Axial Sum (Figurén the polar coordinates originating at the quadrotor'steen

Definition A trajectory of durationt, is said to be with
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of mass, with the zenith belonging to the axis perpendicular
to Earth, and its angular velocities= [¢) ¢|”. The actuator

T
== Discrete .

. - ) T - - -
is the acceleration on thg quadrotor’s body;- [u.w uy_yz] . 400 | 2 8= Hoor PR
For the system’s generative model, we use a simplified mode Avial Sum -
< 300 (| —B— Convex Sum - o

-
-
-

of the quadrotor-load model described in [29], which satssfi

the form (1).
2

v = vg + Atu; p:po—i—Atvo—i—ATtu
. . . . Atz . Episode
1) = 1jo + Atij; = no + Atrjo + ——ij, where () Time to learn
sin 6y sin ¢q —cos¢pg L' cosbysin ¢ ,
— cos by cos ¢g 0 L~ cos ¢ sin 6y (u—g')
(16)

The system (16) satisfies the form (1). The reward function
penalizes the distance from the goal state, the load displac
ment, and the negative z coordinate. Lastly, the agent is
rewarded when it reaches equilibrium.

The value function is approximated as a linear com-
bination of quadratic forms of state subspadé&r) = ° Episode
0" x F(z) F(xz) = [|[pl* o> [0l [=9]*" where (b) Learning curve (logarithmic)
6 € R*, satisfies the form (7), and because the learninglg. 5. Learning results for Manhattan, and Axial Sum, andv@a Sum,
produces with all negative components, all conditions forcompared to discrete greedy, and HOOT policies averaged I trials.

ofi ; ; : Learning curves for Manhattan and Axial Sum are similar toan@x Sum
Theorem I11.2 are satisfied including the drift (11). and aregommed from (b) for better visibility

The time-to-learn is presented in Figure 5a. The axial
maximum policies perform an order of magnitude faster than

the discrete and HOOT policies. To assess learning WithoOT policies use the same setup described in Section IV.
Algorithm 1 using Manhattan, Axial Sum, and Convex SunThe planning occurs at 50Hz. We compare the performance
policies, we compare to learning using the greedy discrefghd trajectory characteristics of trajectories origingti3
policy and HOOT. Figure 5b shows the learning curvemeters from the goal state. Table IIl presents results of the
over number of iterations. After 300 iterations all pOlE:Ie Comparison_ Manhattan, Axial Sum’ and HOOT produce very
converge to a stable value. All converge to the same valugimilar trajectories, while Convex Sum generates slightly
but discrete learning that converges to a lower value. longer trajectories, but with the best load displacemeat<h
Finally, inspection of the learned parametrization vestoracteristics. This is because the Convex Sum takes a differen
confirms that all the components are negative, meeting alpproach and selects smaller inputs, resulting in smoother
needed criteria for Theorem 1ll.2. This means that theajectories. The Convex Sum method plans the 9 second
equilibrium is asymptotically stable, for admissible p@s, trajectory in 0.14s, over 5 times faster than the discrete
and we can generate trajectories of an arbitrary length.  planning, and over 3 times faster than HOOT. Finally%30
Next, we plan trajectories using the learned parametrizaf the discrete trajectories are never able to complete the
tions over the 100 trials for the three proposed policiemsk. This is because the terminal set is too small for the
and compare them to the discrete and HOOT policies. Waliscretization. In other words, the discretized policy & n
consider a cargo delivery task complete whigfjf < 0.010m, admissible. Examining the simulated trajectories in Fégur
[lv]| < 0.025 m/s, ||n| < 1°, and|n|| < 5°/s. This is a 6 reveals that Convex Sum indeed selects a smaller input,
stricter terminal set than the one previously used in [28F T resulting in a smoother trajectory (Figure 6a) and less gwin
input limits are—3 < w,; < 3, fori € 1,2,3. The discrete and (Figure 6b). HOOT, Manhattan, and Axial Sum, produce

Accumulated reward

Discrete
= = = Hoot

Convex Sum

100 200 300 400 500



TABLE Il
SUMMARY OF TRAJECTORY CHARACTERISTICS OVERLOOTRIALS. MEANS (1) AND STANDARD DEVIATIONS (o) OF TIME TO REACH THE GOAL, FINAL
DISTANCE TO GOAL, FINAL SWING, MAXIMUM SWING , AND TIME TO COMPUTE THE TRAJECTORYBEST RESULTS ARE HIGHLIGHTED

Method Percent t (s) || p (cm) 7] (°) max || n ] (°) | Comp. time (s)

completed w o w o w o m o w o
Discrete 70.00 10.81 3.12| 0.98 0.33| 0.16 0.14| 11.96 1.63| 0.81 0.23
HOOT 100.00 849 1.33| 083 0.27| 0.18 0.20| 12.93 1.49| 0.48 0.07
Manhattan 100.00 866 1.68| 0.89 0.19| 015 0.16| 12.24 1.58| 0.24 0.05
Axial Sum 100.00 855 156| 0.85 0.22| 020 0.18| 12.61 1.55| 0.17 0.03
Convex Sum| 100.00 961 1.62| 097 0.07]| 0.03 0.06] 9.52 1.29| 0.14 0.02

virtually identical trajectories, while the discrete &rajory state space (Section IV-B), and the ground robot’s position
has considerable jerk, absent from the other trajectories. velocity space. The input is 5-dimensional acceleraticthéo
Lastly, we experimentally compare the learned policiegquadrotor’s and ground robot’s center of masses. The ground
The experiments were performed on AscTec Hummingobot’s maximum acceleration is lower than quadrotor’s.
bird quadrocopters, carrying a 62-centimeter suspendsdl lo Applying Algorithm 1 with Convex Sum policy, the sys-
weighing 45 grams. The quadrotor and load position werem learns the state-value function parametrizaébthat is
tracked via a Vicon motion capture system at 100 Hmegative definite. Figure 8 shows both robots two seconds
Experimentally, HOOT and Axial Sum resulted in similarin the trajectory. The comparison of simulated trajectorie
trajectories, while Manhattan’s trajectory exhibited thest created with the Convex Sum and HOOT policies is depicted
deviation from the planned trajectory (Figure 7). The Convein Figure 9. Convex Sum finds an 8.54-second trajectory that
Sum trajectory is the smoothest. Table IV quantifies theolves the task in 0.12 seconds. HOOT policy fails to find a
maximum load swing and the power required to producsuitable trajectory before reaching the maximum trajgctor
the load’s motion from the experimental data. Convex Surduration, destabilizes the system, and terminates afteA40
policy generates experimental trajectories with the besmtl | seconds. The discrete policy yields similar results as HOOT
swing performance, and with load motion that requires clos€his is because the input needed to solve the task is smaller
to three times less energy to generate. The enclosed vidian the HOOT's setup, and the system begins to oscillate.
submission contains videos of the experiments. The rendezvous point produced with Convex Sum policy is
between the robots’ initial positions, closer to the slower
robot, as expected (Figure 9a). The quadrotor’s load swing
is minimal (Figure 9b). The absolute accumulated reward
collected while performing the task is smooth and steadily
making progress, while the accumulated reward along HOOT

TABLE IV
SUMMARY OF EXPERIMENTAL TRAJECTORY CHARACTERISTICS
MAXIMUM SWING AND ENERGY NEEDED TO PRODUCE LOAD
OSCILLATIONS. BEST RESULTS ARE HIGHLIGHTED

Method maz || n || (°) | Energy (J) trajectory remains significantly lower (Figure 9c). Endds
agg$te iggi 8-88;(7’ video submission contains an animation of the simulation.
Manhattan 15.95 0.0105 The rendezvous simulation shows that the proposed methods
Axial Sum 14.20 0.0086 are able to solve tasks that previous methods are unable to
Convex Sum 12.36 0.0031 because the convex policy is admissible.

C. Rendezvous task

The rendezvous cargo delivery task is a multi-agent varia
of the time-sensitive cargo delivery task. It requires ai
UAV carrying a suspended load to rendezvous in swing-fre = 1
fashion with a ground-bound robot to hand over the cargt ~
The cargo might be a patient airlifted to a hospital and the
taken by a moving ground robot for delivery to an operatin 0
room for surgery. The rendezvous location and time are n )
known a priori, and the two heterogeneous agents must pl. X(m')z 3
jointly to coordinate their speeds and positions. The twe o -
robots have no knowledge of the dynamics and each othegsy. 8. cargo-bearing UAV and a ground-based robot rendez\at 2
constraints. The task requires minimization of the distancseconds.
between the load’s and the ground robot’s location, the
load swing minimization, and minimization for the agents’
velocities, while completing the task as fast as possible. V. CONCLUSIONS

The quadrotor with the suspended load is modeled as in Control of high-dimensional systems with continuous ac-
Section IV-B, while a rigid body constrained to two DOF intions is a rapidly developing topic of research. In this
a plane models the ground-based robot. The joint state spgmper we proposed a method for learning control of non-
is a 16-dimensional vector: the quadrotor’s 10-dimendionéinear motion systems through combined learning of state-
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value and action-value functions. Negative definite quédra In all, we presented a solid first step for an optimal
state-value functions imply quadratic, concave actiolkva control framework for unknown control-affine systems for
functions. That allowed us to approximate policy as a conconstraint-balancing tasks. Despite the applied methad’s
bination of its action-value function maximums on the axesstrictive condition, the results demonstrated high aaoura
which we found through interpolation between observednd fast learning times on the practical applications. tark
samples. These policies are admissible, consistent, and ebrk, the methodology can be extended to stochastic MDPs.
ficient. Lastly, we showed that a quadratic, negative definit
state-value function, in conjunction with admissible p@s,

are sufficient conditions for the system to progress to the
goal while minimizing given constraints.

APPENDIX |
PROOF FORLEMMA [11.3

The verification on known functions confirmed the poli-Proof. First, to show that there iSuo € [u;, ;] such that
cies’ admissibility. A quadrotor carrying a suspended Ioad)i’?z(u) > Q(x,p), we picku = 0, and directly from the
assessed the method’s applicability to a physical system agefinition, we getQ;”z(O) = Q(x,p). As a consequence
a practical problem, and provided a comparison to two other ’(p) @)
methods demonstrating higher precision of the proposed Qg (0) < Q) () 17)
method as well. The rendezvous task tested the method dcond, to show tha'®)(a;) — V(z) > 0,
higher dimensional input spaces for a multi-agent system, ), - ) o -
and showed that it finds a solution where other two methods ~ @u.; (i) = Q@ ;(0), from (17)
do not. The results confirm that the proposed method outruns = f(x)'Af(z) > xAx, due to (11)
current state-of-the-art by an order of magnitude, while — V(x)
the experimental data revealed that the proposed method
produces trajectories with better characteristics.
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Third, we showQ(0, i;e;) — V(0) = 0. Since, the origin is
equilibrium, the dynamics i9(0, i,e;) = 0. Let's evaluate
the dynamics ati;e;, whenx = 0,
D(O, ﬁie,-) f(O) + g(O)ﬁiei
= f(0), because of (9)
= 0, because of (11)

AQ(x,0,) > 0, whered,, = Zﬂiei’ and

i=1 (18)
AQ(, tn) = 0 <

Flx)' Agi(x) =0,Vi <n, f(x)" Af(x) = 2" Ax
First note that at iteration < n < d,,,

D(@, tin—1 + uen) = f(x) + g(x) (dn-1 + uen)

= f(@) + g(x)in_1 + g(@)uen = fn(x) + gn(@)u

and
Q(z,un) = (fn(z) + gn(m)u)TA(fn (z) + gn(x)u)
= gn(w)TAgn(w)u2 + 2fn(w)TAgn(w)u
+ fu(@)T Afn(z)
= ppt® + @t + Tny Py Gn, T € R. (29)

BecauseA < 0, Q(x,u,) is a quadratic function of one
variable with a maximum in

* _ _gn(:c)TAfn(cc)
" gn(z)" Agn(z)
Applying the induction fom = 1, and using Lemma 111.3,
AQ(wa ’&'1) = Q(waalel) - V(w)
>Q(z,0) - V(z) = f(z)"Af(z) — =" Az
>0, when f(z)TAf(x) > 27 Ax. (21)
Given that,a, # 0 < AQ(z,4,) > AQ(x,0), and
assumingf(z)TAf(xz) = = Az, we evaluatei; = 0.
From (20),
_gi(@)"Af(x)
g1(x)"Ag:(x)
So, the induction hypothesis (18) far= 1 holds. Assuming
that (18) holds forl,..,n — 1, and using Lemma III.3,

AQ(x, Up) = Q(x, Up—1 + Uneyn) — V(x)
> Q(x, Up—1+0) - V(x)
= AQ(z, @yp—1) from ind. hyp. (18)
> 0. when f(z)"Af(x) > 2" Az.
Similarly, assumingf ()" A f(x) = =7 A=z,
AQ(z,tp) =0<
4 = gn(@)"Afn(z)

U

(20)

=0 gi(2) Af(x) =0 (22)

Uy =

n = m =0, andAQ(x, tpn—1) =0

Since AQ(x,tp—1) = 0 & 4,—1 = 0, means that
Thus, Q(0, 4,e;) — V(0) = 0. O folx) = f(x) + g(@)n_1 = f(x),
AQ(x,Uy) =0 &
APPENDIXII gn()TAf(x) =0, andAQ(x, tn—1) =0 &
PROOF FORTHEOREMII1.4 gi(x)TAf(@) =0, for 1 <i<n
Proof. In all three cases, it is sufficient to show that the For n = d,, the policy gainAQ(x,tq,) = 0 <

policy approximations are admissible.

Ff@)TAf(z) = 2TAx, and g;(z)TAf(z) = 0, for 1 <

Manhattan policy:To show that the policy approximation ¢ < d... But, that is contradiction with the controllability

(13) is admissible, fore # 0 we use induction by, 1 <
n < d,, with induction hypothesis,

assumption (8), thuAQ(x, i, ) > 0, whenx # 0.
When x 0, we get directly from Lemma I11.3,



AQ(0,4q,) = 0. This completes the proof that ManhattanDistributed Research Experience for Undergraduates. &rdris
policy (13) is admissible, and therefore the equilibrium isupported in part by NSF grant ECCS #1027775, and by the Army
asymptotically stable. Research Laboratory grant #W911NF-08-2-0004. P. Ruyrhgaar

) . . L. Tapia are supported in part by the National Institutes eflth
Convex sung14). Following the same reasoning as for the\ )" Grant P20RR018754 to the Center for Evolutionary and

first step of the Manhattan policy (21) and (22), we get th
foral 1 <n < d,, AQ(xz,une,) > 0, whereu, e, =
ATGMAX,n <y <yn Qgc%(u) and the equality holds only when
AQ(z, tpen) =0 <

f(x)" Agn(x) =0, f(z) Af(z) = 2" Aw
To simplify the notation, let);, = AQ(x, t,e,), andQy =
0. Without loss of generality, assume th@g < @ < ... <
Qa,, n=1,...,d,. The equality only holds when (23) holds
for all n = 1,...,d, which is contradiction with the (8).
Thus, there must be at least ohe< ng < d,, such that ]
Qno—1 < Qn,, and consequently < Q..

Lastly, we need to show that the combined inpiut
calculated with (14) is admissible, i.eAQ(z,4) > 0.
It suffices to show that: is inside the ellipsoidQ,
{ulQ(z,u) > Qo}. Similarly, Q4,...,Qq, define a set of
concentric ellipsoids®; = {u|Q(x,u) > Q;}, i
1,....d,. Since,Qy 2 Q1 D D Qq,, and Vi, i; €
Q;, = 1; € Qo. Because ellipsoid), is convex, the
convex combination of points inside it (14), belongs to it asl®]
well. Since, at least one ellipsoid must be a true subset of
Qo, which completes the asymptotic stability proof.

Axial sum policy approximationf15): is admissible be- [10]
cause (14) is admissible. Formally\Q(z, h%(x)) >
AQ(z,hQ(x)) > 0. O

(1]

(2]
(3]

(23)

(4

(6]
(7]
(8]

[11]
APPENDIXIII
OPTIMALITY CONDITIONS (2]

Proposition Ill.1. When g(x) is an independent input
matrix, A = I, and state-value function parameterization
O is negative definite, then Axial Sum poli@p) is optimal [13]
with respect to the state-value functi¢n).

Proof. The optimal inputu* is a solution to2@(.ui)

Bui
: . dQ‘® .
and is a solution toQ#(u) at statex with respect to the

state-value function (7). To show that the Axial Sum policy*>
is optimal, u* = 4, it is enough to show thaf@(®:u1) —

(© u . .
(’Q%j(). This is the case whe@ has the form of)(x, u)

=0, [14]

= [16]
Zii1 (pzluf + qu;uwi +1s;), fOr somep,,, q.,, 72, € R that
depend on the current state In the Proposition Ill.1 we [17]
showed thaQ(z, w) = (f(2)+g(a)u))” O (f(z)+g(z)u)
= Zf;l 0; (Z?;lgij(a:)uj —l—fi(m)) . Since there is a
single nonzero element in row i of matrix g, Q(x,u) = (18]

e 2 de

Dion (Oilgs, (®)uy, + fi,(x))” = 3757 (0ig7 (m)uf, +
20i f;,(x)g;, (x)uy, + f7(x)) After rearranging)(z,u) = 119
Zldil(pﬂhu% + G, Ui+ 7‘11)

O [0
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