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Abstract

Control of nonlinear systems is challenging in real-time. Decision making, performed many
times per second, must ensure system safety. Designing input to perform a task often in-
volves solving a nonlinear system of differential equations, a computationally intensive, if not
intractable, problem. This article proposes sampling-based task learning for control-affine non-
linear systems through the combined learning of both state and action-value functions in a
model-free approximate value iteration setting with continuous inputs. A quadratic negative
definite state-value function implies the existence of a unique maximum of the action-value
function at any state. This allows the replacement of the standard greedy policy with a com-
putationally efficient policy approximation that guarantees progression to a goal state without
knowledge of the system dynamics. The policy approximation is consistent, i.e., it does not
depend on the action samples used to calculate it. This method is appropriate for mechanical
systems with high-dimensional input spaces and unknown dynamics performing constraint-
balancing tasks. We verify it both in simulation and experimentally for a UAV carrying a
suspended load, and in simulation, for the rendezvous of heterogeneous robots.

Keywords: Reinforcement learning, policy approximation, approximate value iteration, fitted value
iteration, continuous action spaces, control-affine nonlinear systems

1 Introduction

Humans increasingly rely on robots to perform tasks. A particular class of tasks that interests us are
constraint-balancing tasks. These tasks have one goal state and opposing constraining preferences
on the system. Balancing the speed and the quality of the task are often seen as two opposing
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(a) Cargo delivery (b) Rendezvous

Figure 1: Evaluated tasks, (a) swing-free cargo delivery and (b) rendezvous.

preferential constraints. For example, the time-sensitive aerial cargo delivery task must deliver
suspended load to origin as soon as possible with minimal load displacement along the trajectory
(Figure 1a). The rendezvous task (Figure 1b) requires cargo-bearing UAV and a ground robot
to meet without a predetermined meeting point. In these tasks the robot must manipulate and
interact with its environment, while completing the task in timely manner. This article considers
robots as mechanical systems with non-linear control-affine dynamics. Without knowing their exact
dynamics, we are interested in producing motions that perform a given constraint balancing task.

Control of multi-dimensional nonlinear systems, such as robots and autonomous vehicles must
perform decision making many times per second, and must ensure system safety. Yet, designing
input to perform a task typically requires system dynamics knowledge. Classical optimal control
approaches, use combination of open-loop and closed loop controllers to generate and track trajec-
tories [19]. Another technique, first linearizes the system and then applies LQR methods locally
[14]. All classical methods for solving non-linear control problems require knowledge of the system
dynamics [14]. On the other hand, we present a solution to an optimal non-linear control problem
when the system dynamics is unknown.

Reinforcement learning (RL) solves control of unknown or intractable dynamics by learning from
experience and observations. The outcome of the RL is a control policy. Typically the RL learns the
value (cost) function and derives a greedy control policy with respect to the value. In continuous
spaces, the value function is approximated [5]. When actions are continuous, the greedy policy
must be approximated as well. The downside of RL is that its sampling nature renders stability
and convergence proofs challenging [5].

We rely on RL, to learn control policy for constraint-balacing tasks without knowing the robot’s
dynamic. Given the continuous state space, fitted value iteration (FVI) approximates a value func-
tion with a linear map of basis functions [2]. FVI learns the linear map parametrization iteratively
in an expectation-maximization manner [5, 9]. The basis function selection is challenging because
the learning convergence is sensitive to the selection of the approximation functional space [5]. Here,
we select the basis functions to both fit the task and define value function as a Lyapunov candidate
function.

We extend FVI, a discrete action RL algorithm, to continuous action space to develop continuous
action fitted value iteration (CAFVI). The novelty is a joint work with two value functions, state-
value and action-value, to learn the control. CAFVI learns, globally to the state space, state-value
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function, which is negative of the Lyapunov. On the other hand, in the estimation step, it learns
an action-value function locally around a state to estimate its maximum. This maximum is found
using the newly developed policies that divide-and-conquer the problem by finding the optimal
inputs on each axis separately and then combine them. Not only are the policies computationally
efficient, scaling linearly with the input’s dimensionality, but they produce consistent near-optimal
input; their outcome does not depend on the input samples used for calculation. Although problem
decomposition via individual dimensions is a common technique for dimensionality reduction [25],
this article shows that single-component policies lead to a stable system, offers three examples of
such policies to turn the equilibrium into an asymptotically stable point, and characterizes systems
for which the technique is applicable. The reinforcement learning agent is evaluated on a quadrotor
with suspended load and a heterogeneous robot rendezvous task.

From the practical perspective, the article gives methods to implement an FVI with linear
map approximation for a constraint-balancing task, on control-affine systems [17] with unknown
dynamics and in presence of a bounded drift. These tasks require the system to reach a goal
state, while minimizing opposing constraints along the trajectory. The method is fast and easy
to implement, rendering an inexpensive tool to attempt before more heavy-handed approaches are
attempted.

2 Related Work

Efficient, near-optimal nonlinear system control is an important topic of research both in feedback
controls and reinforcement learning. When the system dynamics is known [28] develops adaptive
control for interconnected systems. When the system dynamics is not known, optimal [22, 8, 26]
and near-optimal [21, 3, 23] control for interconnected nonlinear systems are developed for learning
the state-value function using neural networks. This article addresses the same problem, we use
linearly parametrized state-value functions with linear regression rather than neural networks for
parameter learning. Generalized HJB equation for control-affine systems can be approximately
solved with iterative least-squares [?]. Our method also learns the value function, which corresponds
to the generalized HBJ equation solution, through iterative minimization of the least squares error.
However, we learn from samples and linear regression rather than neural networks. For linear
unknown systems [13] gives an optimal control using approximate dynamic programming, while
we consider nonlinear control-affine systems. Convergence proofs exist for neural network-based
approximate value iteration dynamic programming for linear [1] and control-affine systems [7], both
with known dynamics. Here, we are concerned with approximate value iteration methods in the
reinforcement learning setting - without knowing the system dynamics.

In continuous action RL, the decision making step, which selects an input through a policy,
becomes a multivariate optimization. The optimization poses a challenge in the RL setting because
the objective function is not known. Robots need to perform input selection many times per second.
50-100 Hz is not unusual [16]. The decision-making challenges brought action selection in continuous
spaces to the forefront of current RL research with the main idea that the gradient descent methods
find maximums for known, convex value functions [12] and in actor-critic RL [?]. Our method is
critic-only and because the system dynamics is unknown, the value-function gradient is unavailable
[?]. Thus, we develop a gradient-free method that divides-and-conquers the problem by finding the
optimal input in each direction, and then combines them. Other gradient-free approaches such as
Gibbs sampling [15] Monte Carlo methods [18], and sample-averages [?] have been tried. Online
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optimistic sampling planners have been researched [4, 6, 20], [27]. Specifically, hierarchical optimistic
optimization applied to trees (HOOT) [20], uses hierarchical discretization to progressively narrow
the search on the most promising areas of the input space, thus ensuring arbitrary small error.Our
methods find a near-optimal action through sample-based interpolation of the objective function
and finding the maximum in the closed-form on each axis independently.

Discrete actions FVI has solved the minimal residual oscillations task for a quadrotor with
a suspended load and has developed the stability conditions with a discrete action MDP [11].
Empirical validation in [11] shows that the conditions hold. This article characterizes basis vector
forms for control-affine systems, defines admissible policies resulting in an asymptotically stable
equilibrium, and analytically shows the system stability. The empirical comparison with [11] in
Section 4.2 shows that is both faster and performs the task with higher precision. This is because the
decision making quality presented here is not limited to the finite action space and is independent of
the available samples. We also show wider applicability of the methods developed here by applying
them to a multi-agent rendezvous task. Our work currently under submission [?], extends [11] to
environments with static obstacles specifically for aerial cargo delivery applications, and is concerned
with generating trajectories in discrete action spaces along kinematic paths.

3 Methods

This section consists of four parts. First, Section 3.1 specifies the problem formulation for a task on
a control-affine system suitable for approximate value iteration with linear basis vectors. Based on
the task, the system and the constraints, we develop basis functions and write state-value function
in Lyapunov quadratic function form. Second, Section 3.2 develops sample-efficient policies that
take the system to the goal and can be used for both planning and learning. Third, Section 3.3
places the policies into FVI setting to present a learning algorithm for the goal-oriented tasks.
Together they give practical implementation tools for solving constraint-balancing tasks through
reinforcement learning on control-affine systems with unknown dynamics. We discuss these tools in
Section 3.4.

3.1 Problem formulation

Consider a discrete time, control-affine system with no disturbances, D : X × U → X,

D : xk+1 = f(xk) + g(xk)uk. (1)

where states are xk ∈ X ⊆ Rdx , input is defined on a closed interval around origin, uk ∈ U ⊆ Rdu ,
du ≤ dx, 0 ∈ U , and g : X → Rdx × Rdu , g(xk)

T = [g1(xk) ... gdu(xk)] is regular for xk ∈ X \ {0},
nonlinear, and Lipschitz continuous. Drift f : X → Rdx , is nonlinear, and Lipschitz. Assume that
the system is controllable [14]. We are interested in autonomously finding control input uk that
takes the system to its origin in a timely-manner while reducing ‖Ax‖ along the trajectory, where
AT = [a1, ...,adg ] ∈ Rdg × Rdx , dg ≤ dx is nonsigular.

A discrete time, deterministic first-order Markov decision process (MDP) with continuous state
and action spaces,

M : (X,U,D, ρ) (2)

defines the problem. ρ : X → R is the observed state reward, and the system dynamics D is given
in (1). We assume that we have access to its generative model or samples, but that we do not know
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D. In the remainder of the article, when the time step k is not important, it is dropped from the
state notation without the loss of generality.

A solution to MDP is an optimal policy h∗ : X → U , that maximizes discounted cumulative
state reward. Thus, the objective function to maximize, state-value cost function V : X → R, is

V (x) =
∞∑
k=0

γkρk, (3)

where ρk is immediate reward observed at time step k starting at state x, and 0 ≤ γ < 1 a discount
constant. RL solves MDP without analytical knowledge of the system dynamics D, and reward,
ρ. Instead, it interacts with the system and iteratively constructs the value function. Using the
Bellman equation [?], the state value function V can be recursively represented as

V (x) = ρ(x) + γmax
u

V (D(x,u)).

The state value function is an immediate state reward plus discounted value of the state the system
transitions following greedy policy. The action-state function Q : X × U → R is,

Q(x,u) = ρ(x′) + γmax
u′

V (D(x′,u′)), and x′ = D(x,u).

Action-value function, Q, is the sum of the reward obtained upon performing action u from a state
x and the value of the state that follows. Both value functions give an estimate of a value. A
state-value function, V , is a measure of state’s value, while an action-value function, Q, assigns a
value to a transition from a given state using an input. Note, that RL literature works with either
a state-reward ρ, or a related state-action reward where the reward is a function of both the state
and the action. We do not consider a cost of action itself, thus the state-action reward is simply
the reward of the state that the agent transitions upon applying action u in the state x. Therefore,
the relation between the V and Q is

Q(x,u) = V ◦D(x,u). (4)

Both value functions devise a greedy policy h : X → U , at state x, as the input that transitions
the system to the highest valued reachable state.

hQ(x) = argmax
u∈U

Q(x,u) (5)

A greedy policy uses the learned value function to produce trajectories. We learn state-value
function, V , because its approximation can be constructed to define a Lyapunov candidate function,
and in tandem with the right policy it can help assess system stability. For discrete actions MDPs,
(5) is a brute force search over the available samples. When action space is continuous, (5) becomes
an optimization problem over unknown function D. We consider analytical properties of Q(x,u)
for a fixed state x and knowing V , but having only knowledge of the structure of the transition
function D. The key insight we exploit is that existence of a maximum of the action-value function
Q(x,u), as a function of input u, depends only on the learned parametrization of the state-value
function V .

Approximate value iteration algorithms with linear map approximators require basis vectors.
Given the state constraint minimization, we choose quadratic basis functions

Fi(x) = ‖aT
i x‖2, i = 1, ..., dg. (6)
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Figure 2: Example of two dimensional input and a quadratic value function. u∗ is the optimal
input, u is the one selected.

so that state-value function approximation, V , is a Lyapunov candidate function. Consequently, V
is,

V (x) =

dg∑
i=1

θiFi(x) = (Ax)TΘ(Ax) = xTΛx (7)

for a diagonal matrix Θ = diag(θ1, θ2, ..., θdg), and a symmetric matrix Λ. Let’s assume that Λ
has full rank. Approximate value iteration learns the parametrization Θ using a linear regression.
Let Γ = −Λ. Note, that if Θ is negative definite, Λ is as well, while Γ is positive definite, and
vice versa. Let also assume that when Γ > 0 the system drift is bounded with x with respect
to Γ-norm, f(x)TΓf(x) ≤ xTΓx. This characterizes system drift, conductive to the task. We
empirically demonstrate its sufficiency in the robotic systems we consider.

To summarize the system assumptions used in the reminder of the article:

1. The system is controllable and the equilibrium is reachable. In particular, we use,

∃i, 1 ≤ i ≤ du, such that f(x)Γgi(x) 6= 0, (8)

and that g(x) is regular outside of the origin,

g(x)TΓg(x) > 0, x ∈ X \ {0} (9)

2. Input is defined on a closed interval around origin,

0 ∈ U (10)

3. The drift is bounded,
f(x)TΓf(x) ≤ xTΓx, when Γ > 0 (11)

Table 1 presents a summary of the key symbols.

3.2 Policy approximation

This section looks into an efficient and a consistent policy approximation for (5) that leads the
system (1) to a goal state in the origin. Here, we learn the action-value function Q on the axes, and
assume a known estimate of the state-value function approximation V . For the policy to lead the
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Table 1: Summary of key symbols and notation.
Symbol Description
M : (X,U,D, ρ) MDP
V : X → R, V (x) = xTΛx State-value function
Q : X × U → R Action-value function
Ax Constraints to minimize
Λ = ATΘA Combination of task constraints and

value function parametrization
Γ = −Λ Task-learning matrix

∆Q(x, û) Policy ĥQ in state x
en nth axis unit vector
u ∈ U Input vector
u ∈ R Univariate input variable
un ∈ R Set of vectors in direction of nth axis
ûn ∈ R Estimate in direction of the nth axis
ûn =

∑n
i=1 ûnei Estimate over first n axes

û Estimate of Q’s maximum with a policy

Q
(p)
x,n(u) = Q(x,p+ uen) Univariate function in the direction

of axis en, passing through point p

system to the origin from an arbitrary state, the origin must be asymptotically stable. Negative
of the state-value function V can be a Lyapunov function, and the value function V needs to be
increasing in time. That only holds true when the policy approximation makes an improvement,
i.e., the policy needs to transition the system to a state of a higher value (V (xn+1) > V (xn)).
To ensure the temporal increase of V , the idea is to formulate conditions on the system dynamics
and value function V , for which Q, considered as a function only of the input, is concave and has
a maximum. In this work, we limit the conditions to a quadratic form Q. When we establish
maximum’s existence, we approximate it by finding a maximum on the axes and combining them
together. Figure 2 illustrates this idea. To reduce the dimensionality of the optimization problem,
we propose a divide and conquer approach. Instead of solving one multivariate optimization, we
solve du univariate optimizations on the axes to find a highest valued point on each axis, ui. The
composition of the axes’ action selections is the selection vector u = [u1 .. udu ]

T . This section
develops the policy approximation following these steps:

1. show that Q is a quadratic form and has a maximum (Proposition 3.1)

2. define admissible policies that ensure the equilibrium’s asymptotic stability (Theorem 3.2),
and

3. find a sampling-based method for calculating consistent, admissible policies in O(du) time
with no knowledge of the dynamics (Theorem 3.4).

Since the greedy policy (5) depends on action-value Q, Proposition 3.1 gives the connection
between value function (7) and corresponding action-value function Q.

Proposition 3.1. Action-value function Q(x,u) (4), of MDP (2) with state-value function V (7),
is a quadratic function of input u for all states x ∈ X. When Θ is negative definite, the action-value
function Q is concave and has a maximum.
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Proof. Evaluating Q(x,u) for an arbitrary state x, we get

Q(x,u) = V (D(x,u)) = V (f(x) + g(x)u), from (1)

= (f(x) + g(x)u))TΛ(f(x) + g(x)u)

Thus, Q is a quadratic function of action u at any state x. To show that Q has a maximum, we
inspect Q’s Hessian,

HQ(x,u) =


∂Q(x,u)
∂u1∂u1

... ∂Q(x,u)
∂u1∂udu

...
∂Q(x,u)
∂udu∂u1

... ∂Q(x,u)
∂udu∂udu

 = 2g(x)TΛg(x).

The Hessian is negative definite because g(x) is regular for all states x and Θ < 0, which means
that Λ < 0 as well. Therefore, the function is concave, with a maximum.

The state-value parametrization Θ is fixed for the entire state space. Thus, Proposition 3.1
guarantees that when the parametrization Θ is negative definite, the action-value function Q has
a single maximum. Next, we show that the right policy can ensure the progression to the goal, but
we first define the acceptable policies.

Definition Policy approximation û = ĥQ(x) is admissible, if it transitions the system to a state
with a higher value when one exists, i.e., when the following holds for policy’s gain at state x,
∆Q(x, û) = Q(x, û)− V (x):

1. ∆Q(x, û) > 0, for x ∈ X \ {0}, and

2. ∆Q(x, û) = 0, for x = 0.

Theorem 3.2 shows that an admissible policy is sufficient for the system to reach the goal.

Theorem 3.2. Let û = ĥQ(x) be an admissible policy approximation. When Λ < 0, and the drift
is bounded with (11), the system (1) with value function (7) progresses to an asymptotically stable
equilibrium under policy ĥQ.

Proof. Consider W (x) = −V (x) = xTΓx. W is a Lyapunov candidate function because Γ > 0.
To show the asymptotic stability, aW needs to be monotonically decreasing in timeW (xn+1) ≤

W (xn) with equality holding only when the system is in the equilibrium, xn = 0. Directly from the
definition of the admissible policy, for the state xn 6= 0, W (xn+1)−W (xn) = −Q(xn, ĥ

Q(xn)) +
V (xn) = V (xn) − Q(xn, û) < 0 When xn = 0, =⇒ xn+1 = f(0) = 0, because of (11) =⇒
W (xn+1) = 0.

Theorem 3.2 gives the problem formulation conditions for the system to transition to the goal
state. Now, we move to finding sample-based admissible policies by finding maximums of Q in
the direction parallel to an axis and passing through a point. Because Q has quadratic form, its
restriction to a line is a quadratic function of one variable. We use Lagrange interpolation to find
the coefficients of Q on a line, and find the maximum in the closed form. We first introduce the
notation for Q’s restriction in an axial direction, and its samples along the direction.
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Definition Axial restriction of Q passing through point p, is a univariate function Q
(p)
x,i (u) =

Q(x,p+ uei).

If qi = [Qp
x,1(ui1) Q

p
x,2(ui2) Q

p
x,3(ui3)]

T , are three samples ofQ
(p)
x,i (u) obtained at points [ui1 ui2 ui3],

then Q(x,p+ uei), is maximized at

ûi = min(max(û∗i, u
l
i), u

u
i ), where (12)

û∗i =
qT
i · ([u2i2 u2i3 u2i1]− [u2i3 u2i1 u2i2])

T

2qT
i · ([ui2 ui3 ui1]− [ui3 ui1 ui2])T

,

on the interval, uli ≤ u ≤ uui . Equation (12) comes directly from Lagrange interpolation of a
univariate second order polynomial to find the coefficients of the quadratic function, and then
equating the derivative to zero to find its maximum. In the stochastic case, instead of Lagrange
interpolation, linear regression yields the coefficients.

A motivation for this approach is that maximum finding in a single direction is computationally
efficient and consistent. A single-component policy is calculated in constant time. In addition, the
input selection on an axis calculated with (12) is consistent, i.e. it does not depend on the sample
points uij available to calculate it. This is direct consequence of quadratic function being uniquely
determined with arbitrary three points. It means that a policy based on (12) produces the same
result regardless of the input samples used, which is important in practice where samples are often
hard to obtain.

Lemma 3.3 shows single component policy characteristics including that a single-component
policy is stable on an interval around zero. Later, we integrate the single-component policies
together into admissible policies.

Lemma 3.3. A single input policy approximation (12), for an input component, i, 1 ≤ i ≤ du has
the following characteristics:

1. There is an input around zero that does not decrease system’s state value upon transition, i.e.,
∃u0 ∈ [uil, u

i
u] such that Q

(p)
x,i (u) ≥ Q(x,p).

2. Q
(0)
x,i(ûi)− V (x) ≥ 0, when x 6= 0

3. Q(0, ûiei)− V (0) = 0

The proof for Lemma 3.3 is in Appendix A.
We give three consistent and admissible policies as examples. First, the Manhattan policy finds

a point that maximizes Q’s restriction on the first axis, then iteratively finds maximums in the
direction parallel to the subsequent axes, passing through points that maximize the previous axis.
The second policy approximation, convex sum, is a convex combination of the maximums found
independently on each axis. Unlike the Manhattan policy that works serially, the convex sum policy
parallelizes well. Third, axial sum is the maximum of the convex sum policy approximation and
nonconvex axial combinations. This policy is also parallelizable. All three policies scale linearly
with the dimensions of the input O(du). Next, we show that they are admissible.

Theorem 3.4. The system (2) with value function (7), bounded drift (11), and a negative definite
Θ, starting at an arbitrary state x ∈ X, and on a set U (10), progresses to an equilibrium in the
origin under any of the following policies:
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1. Manhattan policy:

hQ
m :



û1 = argmax
u1
l ≤u≤u1

u

Q
(0)
x,1(u)

ûn = argmax
un
l ≤u≤un

u

Q
(ûn−1)
x,n (u), n ∈ [2, .., du],

ûn−1 =
n−1∑
i=1

ûiei.

(13)

2. Convex sum:

hQ
c : û =

du∑
i=1

λiei argmax
ui
l≤u≤ui

u

Q
(0)
x,i(u),

du∑
i=1

λi = 1 (14)

3. Axial sum:

hQ
s : û =


hQ

c (x), Q(x,hQ
c (x)) ≥ Q(x,hQ

n(x))

hQ
n(x), otherwise

(15)

where

hQ
n(x) =

du∑
i=1

ei argmax
ui
l≤u≤ui

u

Q
(0)
x,i(u)

The proof for the Theorem 3.4 is in Appendix B.
A consideration in reinforcement learning, applied to robotics and other physical systems, is

balancing exploitation and exportation [24]. Exploitation ensures the safety of the system, when
the policy is sufficiently good and yields no learning. Exploration forces the agent to perform
suboptimal steps, and the most often used ε-greedy policy performs a random action with probability
ε. Although the random action can lead to knowledge discovery and policy improvement, it also
poses a risk to the system. The policies presented here fit well in online RL paradigm, because
they allow safe exploration. Given that they are not optimal, they produce new knowledge, but
because of their admissibility and consistency, their input of choice is safe to the physical system.
For systems with independent inputs, axial sum policy is optimal (see Appendix C).

3.3 Continuous action fitted value iteration (CAFVI)

We introduced an admissible, consistent, and efficient decision making method for learning action-
value function Q locally, at fixed state x, and fixed learning iteration (when Θ is fixed) without
knowing the system dynamics. Now, the decision making policies are integrated into a FVI frame-
work [9, 5] to produce a reinforcement learning agent for continuous state and action MDPs tailored
for control-affine nonlinear systems. The algorithm learns the parameterization Θ, and works much
like approximate value iteration [9] to learn state-value function approximation θ, but the action
selection uses sampling-based policy approximation on the action-value function Q. Algorithm 1
shows an outline of the proposed continuous action fitted value iteration, CAFVI. It first initializes
θ with a zero vector. Then, it iteratively estimates Q function values and uses them to make a
new estimate of θ. First, we randomly select a state xs and observe its reward. Line 6 collects
the samples. It uniformly samples the state space for xls . Because we need three data points for
Lagrangian interpolation of a quadratic function, three input samples per input dimensions are
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selected. We also obtain, either through a simulator or an observation, the resulting state x′
ij when

uij is applied to xls . Line 7 estimates the action-value function locally, for xls and uij using the
current θl value. Next, the recommended action is calculated, û. Looking up the available samples
or using a simulator, the system makes the transition from xls using action û. The algorithm makes
a new estimate of V (xls). After ns states are processed, Line 12 finds new θ that minimizes the
least squares error for the new state-value function estimates vls . The process repeats until either
θ converges, or a maximum number of iterations is reached.

Algorithm 1 Continuous Action Fitted Value Iteration (CAFVI)

Input: X,U , discount factor γ
Input: basis function vector F
Output: θ
1: θ0,θ1 ← zero vector
2: l← 1
3: while (l ≤ max iterations) and ‖θl − θl−1‖ ≥ ε do
4: for ls = 1, .., ns do
5: sample state xls and observe its reward ρls
6: {xls ,uij,x

′
ij|i = 1, .., du, j = 1, 2, 3} {obtain system dynamics samples}

7: for all i,j, qij ← θT
l F (x′

ij) {estimate action-value function}
8: û ← calculated with (12)
9: obtain {xls , û,x

′
ls
, ρls}

10: vls = ρls + γθT
l F (x′

ls) {state-value function new estimate}
11: end for
12: θl+1 ← argminθ

∑ns

ls=1(vls − θTF (xls))
2

13: l← l + 1
14: end while
15: return θl

The novelties of the Algorithm 1 are continuous input spaces, and the joint work with both
state and action-value functions (Lines 6 - 8), while FVI works with discrete, finite input sets and
with one of the two functions [5], but not both. Although the outcome of the action-value function
learning (Line 8) is independent of the input samples, the state-value function learning (Line 12)
depends on the state-samples collected in Line 5, just like discrete action FVI [9].

3.4 Discussion

Considering a constraint-balancing task, we proposed quadratic feature vectors, and determined
sufficient conditions for which admissible policies presented in Section 3.2 transition the system to
the goal state obeying the task requirements. Finally, we presented a learning algorithm that learns
the parametrization. There are several points that need to be discussed, convergence of the CAFVI
algorithm, usage of the quadratic basis functions, and determination of the conditions from Section
3.1.

Full conditions under which FVI with discrete actions converges is still an active research topic
[5]. It is known that it converges when the system dynamics is a contraction [5]. A detailed
analysis of the error bounds for FVI algorithms with finite [?] and continuous [?] actions, finds
that the FVI error bounds scale with the difference between the basis functional space and the
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inherent dynamics of the MDP. The system’s dynamics and reward functions determine the MDP’s
dynamics. We choose quadratic basis functions, because of the nature of the problem we need to
solve and for stability. But, basis functions must fit reasonably well into the true objective function
(3) determined by the system dynamics and the reward, otherwise CAFVI diverges.

The goal of this article is to present an efficient toolset for solving constraint-balancing tasks on a
control-affine system with unknown dynamics. Using quadratic basis functions, Algorithm 1 learns
the parametrization θ. Successful learning that converges to a θ with all negative components,
produces a controller based on Section 3.2 policies that is safe for a physical system and completes
the task.

In Section 3.1, we introduced sufficient conditions for successful learning. The conditions are
sufficient but not necessary, so the learning could succeed under laxer conditions. Done in simulation
prior to a physical system control, the learning can be applied when we are uncertain if the system
satisfies the criterion. When the learning fails to succeed, the controller is not viable. Thus, a viable
controller is possible under laxer conditions verifiable through learning. so the toolset can be safely
and easily attempted first, before more computationally intensive methods are applied. It can be
also used to quickly develop an initial value function, to be refined later with another method.

4 Results

This section evaluates the proposed methodology. We first verify the policy approximations’ quality
and computational efficiency on a known function in Section 4.1, and then we showcase the method’s
learning capabilities in two case studies: a quadrotor with suspended payload (Section 4.2), and a
multi-agent rendezvous task (Section 4.3).

In all evaluations, the Convex Sum was calculated using equal convex coefficients λi = d−1
u .

Discrete and HOOT [20] policies are used for comparison. The discrete policy uses an equidistant
grid with 13 values per dimension. HOOT uses three hierarchical levels, each covering one tenth
of the input size per dimension and maintaining the same number of inputs at each level. All
computation was performed using Matlab on a single core Intel Core i7 system with 8GB of RAM,
running the Linux operating system.

4.1 Policy approximation evaluation

(a) Eccentricity (b) Manhattan (c) Axial Sum (d) Convex Sum

Figure 3: Eccentricity of the quadratic functions (a) related to policy approximation gain ratio (b-d) as a
function of quadratic coefficient (C) and rotation of the semi-axes.

In Section 3.2 we proposed three policy approximations and showed their admissibility. To
empirically verify the findings, we examine their behavior on known quadratic functions of two
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Table 2: Summary of policy approximation performance. Minimum and maximum of the value gain and
the distance from the optimal input.

Method min∆Q max∆Q min∆u max∆u
Manhattan 5.00 168.74 0.00 4.32
Axial Sum 3.40 163.76 0.00 4.37
Convex Sum 3.40 103.42 0.10 4.37

variables, elliptical paraboloids with a maximum. Table 2 depicts maximum and minimum values
for ∆Q(x,hQ(x)) as Q ranges over the class of concave elliptical paraboloids. Since the ∆Q is
always positive for all three policies, the empirical results confirm our findings from Proposition 3.4
that the policies are admissible. We also see from min∆u that in some cases Manhattan and Axial
Sum make optimal choices, which is expected as well. The maximum distance from the optimal
input column shows that the distance from the optimal input is bounded.

To further evaluate the policies’ quality we measure the gain ratio between the policy’s gain and
maximum gain on the action-value function (u∗ is optimal input):

ghQ(x) =
Q(x,hQ(x))−Q(x,0)
Q(x,u∗)−Q(x,0)

.

Non-admissible policies have negative or zero gain ratio for some states, while the gain ratio for
admissible policies is strictly positive. The gain ratio of one signifies that policy hQ is optimal,
while a gain ratio of zero means that the selected input transitions the system to an equivalent
state from the value function perspective. The elliptic paraboloids’, Q(x, [u1u2]

T ) = au21 + bu1u2 +
cu22 + du1 + eu2 + f , isolines are ellipses, and the approximation error depends on the rotational
angle of the ellipse’s axes, and its eccentricity. Thus, a policy’s quality is assessed as a function of
these two parameters: the rotational angle α and range of the parameter c, while parameters a, d, e,
and f are fixed. Parameter b is calculated such that b = (a− c) tan 2α. The eccentricity is depicted
in Figure 3a, with zero eccentricity representing a circle, and an eccentricity of one representing
the ellipse degenerating into a parabola. The white areas in the heat maps are areas where the
function is either a hyperbolic paraboloid or a plane, rather than an elliptic paraboloid and has no
maximum. Figure 3 displays the heat maps of the gain ratios for the Manhattan (Figure 3b), Axial
Sum (Figure 3c), and Convex Sum (Figure 3d) policies. All policies have strictly positive gain ratio,
which gives additional empirical evidence to support the finding in Proposition 3.4. Manhattan and
Axial Sum perform similarly, with the best results for near-circular paraboloids, and degrading as
the eccentricity increases. In contrast, the Convex Sum policy performs best for highly elongated
elliptical paraboloids.

Lastly, we consider the computational efficiency of the three policies, and compare the running
time of a single decision making with discrete and HOOT [20] policies. Figure 4 depicts the com-
putational time for each of the policies as a function of the input dimensionality. Both discrete and
HOOT policies’ computational time grows exponentially with the dimensionality, while the three
policies that are based on the axial maximums: Manhattan, Axial Sum, and Convex Sum are linear
in the input dimensionality, although Manhattan is slightly slower.
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Figure 4: Policy approximation computational time per input dimensionality. Comparison of discrete,
HOOT, Manhattan, Axial Sum, and Convex Sum policies. The y-axis is logarithmic.

4.2 Cargo delivery task

This section applies the proposed methods to the aerial cargo delivery task [11]. This task is defined
for a UAV carrying a suspended load, and seeks acceleration on the UAV’s body, that transports the
joint UAV-load system to a goal state with minimal residual oscillations. We show that the system
and its MDP satisfy conditions for Theorem 3.2, and will assess the methods though examining
the learning quality, the resulting trajectory characteristics, and implementation on the physical
system. We compare it to the discrete AVI [11] and HOOT [20], and show that methods presented
here solve the task with more precision.

To apply the motion planner to the cargo delivery task for a holonomic UAV carrying a suspended
load, we use the following definition of the swing-free trajectory.

Definition A trajectory of duration t0 is said to be with minimal residual oscillations if for a given
constant ε > 0 there is a time 0 ≤ t1 ≤ t0, such that for all t ≥ t1, the load displacement is bounded
with ε (ρ(t) < ε).

The MDP state space is the position of the center of the mass of the UAV p = [x y z]T , its
linear velocities v = [ẋ ẏ ż]T , the angular position η = [ψ φ]T of the suspended load in the polar
coordinates originating at the quadrotor’s center of mass, with the zenith belonging to the axis
perpendicular to Earth, and its angular velocities η̇ = [ψ̇ φ̇]T . The actuator is the acceleration
on the quadrotor’s body, u = [ux uy uz]

T . For the system’s generative model, we use a simplified
model of the quadrotor-load model described in [11], which satisfies the form (1).

v = v0 +4tu; p = p0 +4tv0 +
4t2

2
u

η̇ = η̇0 +4tη̈; η = η0 +4tη̇0 +
4t2

2
η̈, where

η̈ =

[
sin θ0 sinφ0 − cosφ0 L−1 cos θ0 sinφ0

− cos θ0 cosφ0 0 L−1 cosφ0 sin θ0

]
(u− g′)

(16)

The system (16) satisfies the form (1). The reward function penalizes the distance from the goal
state, the load displacement, and the negative z coordinate. Lastly, the agent is rewarded when it
reaches equilibrium.

The value function is approximated as a linear combination of quadratic forms of state subspaces
V (x) = θT ∗ F (x) F (x) = [‖p‖2 ‖v‖2 ‖η‖2 ‖η̇‖2]T where θ ∈ R4, satisfies the form (7), and
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because the learning produces θ with all negative components, all conditions for Theorem 3.2 are
satisfied including the drift (11).
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Figure 5: Learning results for Manhattan, and Axial Sum, and Convex Sum, compared to discrete
greedy, and HOOT policies averaged over 100 trials. Learning curves for Manhattan and Axial Sum
are similar to Convex Sum and are omitted from (b) for better visibility.

The time-to-learn is presented in Figure 5a. The axial maximum policies perform an order
of magnitude faster than the discrete and HOOT policies. To assess learning with Algorithm 1
using Manhattan, Axial Sum, and Convex Sum policies, we compare to learning using the greedy
discrete policy and HOOT. Figure 5b shows the learning curve, over number of iterations. After
300 iterations all policies converge to a stable value. All converge to the same value, but discrete
learning that converges to a lower value.

Finally, inspection of the learned parametrization vectors confirms that all the components
are negative, meeting all needed criteria for Theorem 3.2. This means that the equilibrium is
asymptotically stable, for admissible policies, and we can generate trajectories of an arbitrary
length.

Next, we plan trajectories using the learned parametrizations over the 100 trials for the three
proposed policies and compare them to the discrete and HOOT policies. We consider a cargo
delivery task complete when ‖p‖ ≤ 0.010m, ‖v‖ ≤ 0.025 m/s, ‖η‖ ≤ 1◦, and ‖η̇‖ ≤ 5◦/s. This
is a stricter terminal set than the one previously used in [11]. The input limits are −3 ≤ ui ≤ 3,
for i ∈ 1, 2, 3. The discrete and HOOT policies use the same setup described in Section 4. The
planning occurs at 50Hz. We compare the performance and trajectory characteristics of trajectories
originating 3 meters from the goal state. Table 3 presents results of the comparison. Manhattan,
Axial Sum, and HOOT produce very similar trajectories, while Convex Sum generates slightly
longer trajectories, but with the best load displacement characteristics. This is because the Convex
Sum takes a different approach and selects smaller inputs, resulting in smoother trajectories. The
Convex Sum method plans the 9 second trajectory in 0.14s, over 5 times faster than the discrete
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planning, and over 3 times faster than HOOT. Finally, 30% of the discrete trajectories are never
able to complete the task. This is because the terminal set is too small for the discretization. In
other words, the discretized policy is not admissible. Examining the simulated trajectories in Figure
6 reveals that Convex Sum indeed selects a smaller input, resulting in a smoother trajectory (Figure
6a) and less swing (Figure 6b). HOOT, Manhattan, and Axial Sum, produce virtually identical
trajectories, while the discrete trajectory has considerable jerk, absent from the other trajectories.

Table 3: Summary of trajectory characteristics over 100 trials. Means (µ) and standard deviations
(σ) of time to reach the goal, final distance to goal, final swing, maximum swing, and time to
compute the trajectory. Best results are highlighted.
Method Percent t (s) ‖ p ‖ (cm) ‖ η ‖ (◦) max ‖ η ‖ (◦) Comp. time (s)

completed µ σ µ σ µ σ µ σ µ σ
Discrete 70.00 10.81 3.12 0.98 0.33 0.16 0.14 11.96 1.63 0.81 0.23
HOOT 100.00 8.49 1.33 0.83 0.27 0.18 0.20 12.93 1.49 0.48 0.07
Manhattan 100.00 8.66 1.68 0.89 0.19 0.15 0.16 12.24 1.58 0.24 0.05
Axial Sum 100.00 8.55 1.56 0.85 0.22 0.20 0.18 12.61 1.55 0.17 0.03
Convex Sum 100.00 9.61 1.62 0.97 0.07 0.03 0.06 9.52 1.29 0.14 0.02
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(b) Load trajectory

Figure 6: Comparison of simulated cargo delivery trajectories created with Convex Sum versus
trajectories created with discrete greedy and HOOT policies. (Trajectories for Manhattan and
Axial Sum are similar to Convex Sum and are omitted for better visibility.)

Lastly, we experimentally compare the learned policies. The experiments were performed on
AscTec Hummingbird quadrocopters, carrying a 62-centimeter suspended load weighing 45 grams.
The quadrotor and load position were tracked via a Vicon motion capture system at 100 Hz.
Experimentally, HOOT and Axial Sum resulted in similar trajectories, while Manhattan’s trajectory
exhibited the most deviation from the planned trajectory (Figure 7). The Convex Sum trajectory is
the smoothest. Table 4 quantifies the maximum load swing and the power required to produce the
load’s motion from the experimental data. Convex Sum policy generates experimental trajectories
with the best load swing performance, and with load motion that requires close to three times less
energy to generate. The enclosed video submission contains videos of the experiments.
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(a) Quadrotor trajectory
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Figure 7: Comparison of experimental cargo delivery task trajectories created with Convex Sum
versus trajectories created with discrete greedy and HOOT policies. (Trajectories for Manhattan
and Axial Sum are similar to Convex Sum and are omitted for better visibility.)

Table 4: Summary of experimental trajectory characteristics. Maximum swing and energy needed
to produce load oscillations. Best results are highlighted.

Method max ‖ η ‖ (◦) Energy (J)
Discrete 15.21 0.0070
HOOT 15.61 0.0087
Manhattan 15.95 0.0105
Axial Sum 14.20 0.0086
Convex Sum 12.36 0.0031

4.3 Rendezvous task

The rendezvous cargo delivery task is a multi-agent variant of the time-sensitive cargo delivery task.
It requires an UAV carrying a suspended load to rendezvous in swing-free fashion with a ground-
bound robot to hand over the cargo. The cargo might be a patient airlifted to a hospital and then
taken by a moving ground robot for delivery to an operating room for surgery. The rendezvous
location and time are not known a priori, and the two heterogeneous agents must plan jointly to
coordinate their speeds and positions. The two robots have no knowledge of the dynamics and
each others’ constraints. The task requires minimization of the distance between the load’s and the
ground robot’s location, the load swing minimization, and minimization for the agents’ velocities,
while completing the task as fast as possible.

The quadrotor with the suspended load is modeled as in Section 4.2, while a rigid body con-
strained to two DOF in a plane models the ground-based robot. The joint state space is a 16-
dimensional vector: the quadrotor’s 10-dimensional state space (Section 4.2), and the ground robot’s
position-velocity space. The input is 5-dimensional acceleration to the quadrotor’s and ground
robot’s center of masses. The ground robot’s maximum acceleration is lower than quadrotor’s.

Applying Algorithm 1 with Convex Sum policy, the system learns the state-value function
parametrization Θ that is negative definite. Figure 8 shows both robots two seconds in the trajec-
tory. The comparison of simulated trajectories created with the Convex Sum and HOOT policies
is depicted in Figure 9. Convex Sum finds an 8.54-second trajectory that solves the task in 0.12
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seconds. HOOT policy fails to find a suitable trajectory before reaching the maximum trajectory
duration, destabilizes the system, and terminates after 101.44 seconds. The discrete policy yields
similar results as HOOT. This is because the input needed to solve the task is smaller than the
HOOT’s setup, and the system begins to oscillate. The rendezvous point produced with Convex
Sum policy is between the robots’ initial positions, closer to the slower robot, as expected (Figure
9a). The quadrotor’s load swing is minimal (Figure 9b). The absolute accumulated reward collected
while performing the task is smooth and steadily making progress, while the accumulated reward
along HOOT trajectory remains significantly lower (Figure 9c). Enclosed video submission contains
an animation of the simulation. The rendezvous simulation shows that the proposed methods are
able to solve tasks that previous methods are unable to because the convex policy is admissible.
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Figure 8: Cargo-bearing UAV and a ground-based robot rendezvous at 2 seconds.

5 Conclusions

Control of high-dimensional systems with continuous actions is a rapidly developing topic of re-
search. In this paper we proposed a method for learning control of non-linear motion systems
through combined learning of state-value and action-value functions. Negative definite quadratic
state-value functions imply quadratic, concave action-value functions. That allowed us to approxi-
mate policy as a combination of its action-value function maximums on the axes, which we found
through interpolation between observed samples. These policies are admissible, consistent, and effi-
cient. Lastly, we showed that a quadratic, negative definite state-value function, in conjunction with
admissible policies, are sufficient conditions for the system to progress to the goal while minimizing
given constraints.

The verification on known functions confirmed the policies’ admissibility. A quadrotor carrying
a suspended load assessed the method’s applicability to a physical system and a practical problem,
and provided a comparison to two other methods demonstrating higher precision of the proposed
method as well. The rendezvous task tested the method in higher dimensional input spaces for
a multi-agent system, and showed that it finds a solution where other two methods do not. The
results confirm that the proposed method outruns current state-of-the-art by an order of magnitude,
while the experimental data revealed that the proposed method produces trajectories with better
characteristics.

In all, we presented a solid first step for an optimal control framework for unknown control-
affine systems for constraint-balancing tasks. Despite the applied method’s restrictive condition,
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Figure 9: Comparison of simulated rendezvous task trajectories created with Convex Sum to trajec-
tories created with discrete greedy and HOOT policies. Green solid - Convex Sum ground; Purple
solid - Convex Sum aerial; Green dashed - HOOT ground; Purple dashed - HOOT aerial.
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the results demonstrated high accuracy and fast learning times on the practical applications. In
future work, the methodology can be extended to stochastic MDPs.

Appendices

A Proof for Lemma 3.3

Proof. First, to show that there is ∃u0 ∈ [uil, u
i
u] such that Q

(p)
x,i (u) ≥ Q(x,p), we pick u = 0, and

directly from the definition, we get Q
(p)
x,i (0) = Q(x,p). As a consequence

Q
(p)
x,i (0) ≤ Q

(p)
x,i (ûi) (17)

Second, to show that Q
(0)
x,i(ûi)− V (x) ≥ 0,

Q
(0)
x,i(ûi) ≥ Q

(0)
x,i(0), from (17)

= f(x)TΛf(x) ≥ xΛx, due to (11)

= V (x)

Third, we show Q(0, ûiei)−V (0) = 0. Since, the origin is equilibrium, the dynamics is D(0, ûiei) =
0. Let’s evaluate the dynamics at ûiei, when x = 0,

D(0, ûiei) = f(0) + g(0)ûiei

= f(0), because of (9)

= 0, because of (11)

Thus, Q(0, ûiei)− V (0) = 0.

B Proof for Theorem 3.4

Proof. In all three cases, it is sufficient to show that the policy approximations are admissible.
Manhattan policy: To show that the policy approximation (13) is admissible, for x 6= 0 we use

induction by n, 1 ≤ n ≤ du, with induction hypothesis,

∆Q(x, ûn) ≥ 0, where ûn =
n∑

i=1

ûiei, and

∆Q(x, ûn) = 0⇔
f(x)TΛgi(x) = 0,∀i ≤ n,f(x)TΛf(x) = xTΛx

(18)
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First note that at iteration 1 < n ≤ du,

D(x, ûn−1 + uen) = f(x) + g(x) (ûn−1 + uen)

= f(x) + g(x)ûn−1 + g(x)uen = fn(x) + gn(x)u

and

Q(x,un) = (fn(x) + gn(x)u)
TΛ(fn(x) + gn(x)u)

= gn(x)
TΛgn(x)u

2 + 2fn(x)
TΛgn(x)u

+ fn(x)
TΛfn(x)

= pnu
2 + qnu+ rn, pn, qn, rn ∈ R. (19)

Because Λ < 0, Q(x,un) is a quadratic function of one variable with a maximum in

û∗n = −gn(x)
TΛfn(x)

gn(x)TΛgn(x)
(20)

Applying the induction for n = 1, and using Lemma 3.3,

∆Q(x, û1) = Q(x, û1e1)− V (x)

≥ Q(x,0)− V (x) = f(x)TΛf(x)− xTΛx

> 0, when f(x)TΛf(x) > xTΛx. (21)

Given that, û1 6= 0 ⇔ ∆Q(x, ûn) > ∆Q(x, 0), and assuming f(x)TΛf(x) = xTΛx, we evaluate
û1 = 0. From (20),

û1 = −
g1(x)

TΛf(x)

g1(x)TΛg1(x)
= 0⇔ g1(x)

TΛf(x) = 0 (22)

So, the induction hypothesis (18) for n = 1 holds. Assuming that (18) holds for 1, .., n − 1, and
using Lemma 3.3,

∆Q(x, ûn) = Q(x, ûn−1 + ûnen)− V (x)

≥ Q(x, ûn−1 + 0)− V (x)

= ∆Q(x, ûn−1) from ind. hyp. (18)

> 0. when f(x)TΛf(x) > xTΛx.

Similarly, assuming f(x)TΛf(x) = xTΛx,

∆Q(x, ûn) = 0⇔

ûn = −gn(x)
TΛfn(x)

gn(x)TΛgn(x)
= 0, and ∆Q(x, ûn−1) = 0

Since ∆Q(x, ûn−1) = 0⇔ ûn−1 = 0, means that fn(x) = f(x) + g(x)ûn−1 = f(x),

∆Q(x, ûn) = 0⇔
gn(x)

TΛf(x) = 0, and ∆Q(x, ûn−1) = 0⇔
gi(x)

TΛf(x) = 0, for 1 ≤ i ≤ n
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For n = du, the policy gain ∆Q(x, ûdu) = 0 ⇔ f(x)TΛf(x) = xTΛx, and gi(x)
TΛf(x) =

0, for 1 ≤ i ≤ du. But, that is contradiction with the controllability assumption (8), thus ∆Q(x, ûdu) >
0, when x 6= 0.

When x = 0, we get directly from Lemma 3.3, ∆Q(0, ûdu) = 0. This completes the proof that
Manhattan policy (13) is admissible, and therefore the equilibrium is asymptotically stable.

Convex sum (14): Following the same reasoning as for the first step of the Manhattan policy (21)

and (22), we get that for all 1 ≤ n ≤ du, ∆Q(x, ûnen) ≥ 0, where ûnen = argmaxun
l ≤u≤un

u
Q

(0)
x,n(u)

and the equality holds only when

∆Q(x, ûnen) = 0⇔
f(x)TΛgn(x) = 0,f(x)TΛf(x) = xTΛx

(23)

To simplify the notation, let Qi = ∆Q(x, ûnen), and Q0 = 0. Without loss of generality, assume
that Q0 ≤ Q1 ≤ ... ≤ Qdu , n = 1, ..., du. The equality only holds when (23) holds for all n = 1, ..., du
which is contradiction with the (8). Thus, there must be at least one 1 ≤ n0 ≤ du, such that
Qn0−1 < Qn0 , and consequently 0 < Qdu .

Lastly, we need to show that the combined input û calculated with (14) is admissible, i.e.,
∆Q(x, û) > 0. It suffices to show that û is inside the ellipsoid Q̌0 = {u|Q(x,u) ≥ Q0}. Similarly,
Q1, ..., Qdu define a set of concentric ellipsoids Q̌i = {u|Q(x,u) ≥ Qi}, i = 1, ..., du. Since,
Q̌0 ⊇ Q̌1 ⊇ ... ⊇ Q̌du , and ∀i, ûi ∈ Q̌i =⇒ ûi ∈ Q̌0. Because ellipsoid Q̌0 is convex, the convex
combination of points inside it (14), belongs to it as well. Since, at least one ellipsoid must be a
true subset of Q̌0, which completes the asymptotic stability proof.

Axial sum policy approximation (15): is admissible because (14) is admissible. Formally,
∆Q(x,hQ

s (x)) ≥ ∆Q(x,hQ
c (x)) ≥ 0.

C Optimality conditions

Proposition C.1. When g(x) is an independent input matrix, A = I, and state-value function
parameterization Θ is negative definite, then Axial Sum policy (15) is optimal with respect to the
state-value function (7).

Proof. The optimal input u∗ is a solution to ∂Q(x,ui)
∂ui

= 0, and û is a solution to
dQ

(0)
x,i(u)

du
at state

x with respect to the state-value function (7). To show that the Axial Sum policy is optimal,

u∗ = û, it is enough to show that dQ(x,ui)
dui

=
dQ

(0)
x,i(u)

du
. This is the case when Q has the form of

Q(x,u) =
∑dx

i=1(pxi
u2i + qxi

ui + rxi
), for some pxi

, qxi
, rxi
∈ R that depend on the current state x.

In the Proposition 3.1 we showed that Q(x,u) = (f(x) + g(x)u))TΘ(f(x) + g(x)u)

=
∑dx

i=1 θi

(∑du
j=1 gij(x)uj + fi(x)

)2

. Since there is a single nonzero element ji in row i of matrix

g, Q(x,u) =
∑dx

i=1 (θi(gji(x)uji + fji(x))
2 =

∑dx
i=1(θig

2
ji
(x)u2ji + 2θifji(x)gji(x)uji + f2

ji
(x)) After

rearranging,Q(x,u) =
∑dx

i=1(pxi
u2i + qxi

ui + rxi
).
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