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Abstract— Attaining autonomous �ight is an important task
in aerial robotics. Often �ight trajectories are not only subject to
unknown system dynamics, but also to speci�c task constraints.
We are interested in producing a trajectory for an aerial robot
with a suspended load that delivers the load to a destination
in a swing-free fashion. This paper presents a motion planning
framework for generating trajectories with minimal residual
oscillations (swing-free) for rotorcraft carrying a suspended
load. We rely on a �nite-sampling, batch reinforcement learning
algorithm to train the system for a particular load. We �nd
the criteria that allows the trained agent to be transferred to a
variety of models, state and action spaces and produce a number
of different trajectories. Through a combination of simulations
and experiments, we demonstrate that the inferred policy is
robust to noise and to the unmodeled dynamics of the system.
The contributions of this work are 1) applying reinforcement
learning to solve the problem of �nding a swing-free trajectory
for a rotorcraft, 2) designing a problem-speci�c feature vector
for value function approximation, 3) giving suf�cient conditions
that need to be met to allow successful learning transfer to
different models, state and action spaces, and 4) veri�cation
of the resulting trajectories in simulation and to autonomously
control quadrotors.

I. I NTRODUCTION

Unmanned aerial vehicles (UAVs) play an increasing role
in a wide number of missions such as remote sensing,
transportation, and search and rescue missions. Cargoes may
consist of food and supply delivery in disaster struck areas,
patient transport, or spacecraft landing. Planning motions for
a UAV carrying a load is complex because load swing is
dif�cult to control. However, it is necessary for the safety
and success of the mission.

Helicopters and quadrotors are ideal candidates for au-
tonomous cargo delivery tasks because they are highly ma-
neuverable, holonomic vehicle's with the abilities of vertical
takeoff and landing, and single-point hover. However, they
are inherently unstable systems with complicated, nonlinear
dynamics. Furthermore, the added suspended load changes
the dynamics of the system.

Our goal is to �nd a fast trajectory with minimal residual
oscillations (swing-free) for a rotor craft aerial robot carrying
a suspended load as described in [8]. In addition, swing
control during the �ight is desired. We assume that we know
the goal state of the vehicle, and the initial state can be
arbitrary. Furthermore, we assume that we have ablack box
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Fig. 1. Quadrotor with a suspended load

simulator (or a generative model) available, but we make
no assumptions about the dynamics of the system while
designing the algorithm.

We apply a machine learning approach to obtain a swing-
free trajectory. We learn the task using an approximate
value iteration (AVI) reinforcement learning algorithm. The
value function is parametrized with problem-speci�c feature
vectors. The learning and trajectory generation are separated
in two distinct phases. In the �rst phase, we learn the value
function approximation for a particular load. Once the value
function is learned, we can use it to generate any number
of trajectories. These trajectories can have different starting
and ending positions and use different (but compatible)
models (see Figure 2). We �nd the suf�cient criteria to
allow the transfer of the learned, inferred policy to a variety
of situations. We demonstrate that the approach produces a
swing-free trajectory to the desired state regardless of the
starting position, that is robust to noise.

To verify our approach, we learn a value function ap-
proximation for swing-free �ight using a generic holonomic
model of the aerial vehicle with a suspended load as a
simulator. Then we generate trajectories using two models:
the same holonomic model used to learn parameters, and a
noisy holonomic model. We demonstrate that the trajectories
are feasible by using them for autonomous control of a
Hummingbird quadrotor shown in Figure 1. The summary
of the results is presented here, for the full results please see
[4].

II. RELATED WORK

1) Quadrotor Trajectory Tracking and Creation:Quadro-
tor control have been active area of research. Schoellig et al.
in [9] use an expectation-maximization learning algorithm
to achieve quadrotor trajectory tracking. Lupashin et al.



Fig. 2. Trajectory generation block diagram. The system learns problem-
speci�c feature vector parametrization of the value function. It queries
a simulator, calculates feature vectors and receives a reward for a state.
Once learned, the value function approximation is passed to the trajectory
generation to generate number of different trajectories. The module uses the
same feature vectors, but can rely on different simulators to �nd the best
action in any given state. The produced trajectory is sent to a robot. The
green blocks are external to the learning algorithm and considered to be
unknown.

[5] apply policy gradient descent to perform aggressive
quadrotor multi-�ips.

Palunko et al. applied dynamic programming to solve
swing-free trajectories for quadrotors [8]. While dynamic
programming requires pre-calculating each trajectory, the
approach presented here allows us to learn the problem
once, and generate any number of different trajectories
with different starting positions using same value function
approximation.

2) Swing-free Trajectories in Manufacturing:Swing-free
trajectories are important in industrial robotics with appli-
cations such as cranes in construction sites and for cargo
loading in ports [1]. Residual oscillation reduction has ap-
plications in manufacturing environments where parts need
to be transported in a limited space, [12].

3) Reinforcement and Transfer Learning:To accomplish
swing-free trajectories for rotorcraft with a suspended load,
we rely on approximate value iteration [3] with a speci�cally
designed feature vector for value function approximation.
Taylor and Stone [11] propose value function transfer be-
tween the tasks in different state and action spaces using
behavior transfer function to transfer the value function to
the new domain. Sherstov and Stone in [10] examine action
transfer between the tasks, learning the optimal policy and
transferring only the most relevant actions for the optimal
policy. McMahan et al. [6] suggested learning a partial policy
for �xed start and goal states.

III. M ETHODS

A. Reinforcement Learning for Swing-Free Trajectories

The approximate value iteration algorithm [3] produces an
approximate solution to a Markov Decision Process (MDP)
in continuous state spaces with a discrete action set. We
approximate the value function with a linearly parametrized
feature vector. It is in an expectation-maximization (EM)
algorithm which relies on a sampling of the state space
transitions, an estimation of the state value function using
Bellman equation [2], and a linear regression to �nd the
parameters that minimize the least square error.

In our implementation, the state space is a 10-dimensional
vector s = [ p v � _� ] of the vehicle's positionp =
[x y z]T relative to the goal state, vehicles linear velocity
v = [ _x _y _z]T , load displacement angles� L = [ � L � L ]T and
their respective angular speeds_� L = [ _� L

_� L ]T relative to the
vehicles center of the mass (see Figure 3). L is the length
of the suspension cable. Since L is constant in this work, it
will be omitted.

Fig. 3. Load displacement angles for a quadrotor carrying a suspended
load.

The samples are uniformly, randomly drawn from a hyper-
cube centred in the goal state at equilibrium. The action space
is a linear acceleration vectora = [•x •y •z]T discretized
using equidistant steps centered around zero acceleration.

The state value function V is approximated with a linear
combination of the feature vectorF (s). The feature vector
chosen for this problem consists of four basis functions:
squares of vehicles distance to the goal, its velocity magni-
tude, and load displacement and velocity magnitude as shown
in (1):

V (s) =  T � F (s)

F (s) = [ kpk2 k(v)k2 k� k2 k _� k2]T
(1)

where 2 R4.
The reward function penalizes the distance from the goal

state, and the size of the load displacement. It also penalizes
the negative z coordinate to provide a bounding box and
enforce that the vehicle must stay above the ground. Lastly,
the agent is rewarded when it reaches equilibrium. The
reward functionR(s) = cT r (s) is a linear combination of
basis rewardsr (s) = [ r 1(s) r 2(s) r 3(s)]T , weighted with
vectorc = [ c1 c2 c3]T , for some constantsa1 anda2, where:

r 1(s) = �k pk2

r 2(s) =

(
a1 kF (s)k < �
�k � k2 otherwise

r 3(s) =

(
� a2 z < 0
0 z � 0

To obtain the state transition function samplesP(s0; a) =
s, we rely on a simpli�ed model of the quadrotor-load
system, where the quadrotor is represented by a holonomic
model of a UAV widely used in the literature [7]. The
simulator returns the next system states = [ p v � _� ] when an
action a is applied to a states0 = [ p0 v0 � 0 _� 0]. Equations
(2) and (3) describe the simulator.g0 = [0 0 g]T is gravity
force, L is the length of the suspension cable, and� is the
length of the time step.



v = v0 + �a ; p = p0 + �v 0 + 0 :5� 2a

_� = _� 0 + � •� ; � = � 0 + � _� 0 + 0 :5� 2 •�
(2)

where

•� =
�

sin � 0 sin � 0 � cos� 0 cos� 0 sin � 0L � 1

� cos� 0 cos� 0 0 cos� 0 sin � 0L � 1

�
(a� g0)

(3)
To learn the approximation of the state value function, AVI

starts with an arbitrary vector . In each iteration, the state
space is randomly sampled to produce a set of state samples
M. New estimate of the state value function is calculated
according toV (s) = r (s) + 
max a  T F (P(s; a))) for all
sampless 2 M . 0 < 
 < 1 is a discount factor. A
linear regression then �nds a new value of that �ts the
calculated estimatesV (s) into quadric form T F (s). The
process repeats until the maximum number of iterations is
reached.

B. Trajectory Generation
An approximated value function induces a greedy policy�

that is used to generate the trajectory and control the vehicle.
Given a states, policy � (s) returns an actiona. The policy
is determined by� (s) = argmaxa( T F (P(s; a))) , where P
is the state transition function described in (2) and (3). When
applied to the system the resulting action moves the system
to the state associated with the highest estimated value. The
algorithm starts with the initial state. Then it �nds an action
according to the policy� . The action is used to transition to
the next state. The process repeats until the goal is reached
or when the trajectory exceeds a maximum number of steps.

C. Analysis
The Proposition III.1 gives suf�cient conditions that the

value function approximation, action state space and system
dynamics need to meet to guarantee a plan that leads to the
goal state.

Proposition III.1. Let s0 be the goal state. If vector is
negative de�nite, and action space A maps state space such
that 8s 2 S n f s0g; 9a 2 A that V (� A (s)) > � + V (s), for
some� > 0, then the system is asymptotically stable in the
sense of Lyapunov, and coincidently for an arbitrary start
state s 2 S, greedy policy with respect to V leads to the
goal states0. In other words,8s 2 S;9n; � n

A (s) = s0.

Proof. To show that the system is asymptotically stable,
we need to �nd a discrete time control Lyapunov function
W(s), such thatW (s(k)) > 0, for 8s(k) 6= 0 , W (s0) = 0 ,
4 W (s(k)) = W (s(k +1)) � W (s(k)) < 0, and4 W (s0) =
0, for all k, wheres0 = [0 0 0 0 0 0 0 0 0 0]T .

Let W (s) = � V (s) = �  T (kpk2; k(v)k2; k� k2; k _� k2)T .
ThenW (0) = 0 , and for alls 6= s0, W (s) > 0, since < 0.

4 W (s(k)) = � (V (s(k + 1)) � V (s(k))) < 0 because of
the assumption that for each state there an action to takes
the system to a state with a higher value.

Thus, W is a Lyapunov function with no constraints on s,
and is globally asymptotically stable. Therefore any policy
following function W (or V) will lead the system to the
unique equilibrium point.

Proposition III.1 connects state value approximation with
Lyapunov stability theory. If V satis�es the critera, the
system is globally approximately stable. We empirically
show that the criteria is met. Proposition III.1 requires that
 is negative de�nite for the value function V described in
(1) to have a unique maximum. As we will see in IV-B, the
empirical results show that is the case. These observations
lead to several practical properties of the induced greedy
policy that we will verify empirically:

1) The induced greedy policy is robust to some noise:as
long as there is a transition to a state with a higher value, an
action could be taken and the goal will be attained, although
not optimally. Section IV-B presents the empirical evidence
for this property.

2) The policy is agnostic to the simulator used:The
simulator de�nes the transition function and along with the
action space de�nes the set of reachable states. Thus, as
long as the conditions of Proposition III.1 are met, we can
switch the simulators we use. This means that we can train
on a simple simulator and generate a trajectory on a more
sophisticated model that would predict the system better.

3) Learning on the domain subset:As we will show
experimentally in Sections IV-B and IV-C, we can learn the
model on a small subset of the state space around the goal
state, and the resulting policy will work on the whole domain
where the criteria above hold, i.e., where the value function
doesn't have other maxima. This property makes the method
a good choice for a local planner.

4) Changing action space:Lastly, the action space be-
tween learning and the trajectory generation can change, and
the algorithm will still produce a trajectory to the goal state.
For example, to save computational time, we can learn on
the smaller, more coarse discretization of the action space
to obtain the value function parameters, and generate a
trajectory on a more re�ned action space which produces a
smoother trajectory. We will demonstrate this property during
the multi-waypoint �ight experiment.

IV. RESULTS

In this section we verify the convergence of the proposed
algorithm as well as its effectiveness in simulation and exper-
iment. Section IV-A assesses the approximate value iteration
convergence. Section IV-B shows the results of trajectory
generation in simulation for the expanded state and action
space. Lastly, Section IV-C presents results of experiments
with the quadrotor in expanded state and action space. The
experiments assess the discrepancy between the simulation
swing predictions and the actual swing encountered during
the �ight, and make a comparison between a cubic trajectory
(trajectory where position is a3rd order polynomial function
of time) and our method. Only the summary of the results is
presented here. The detailed results with full implementation
details are available in [4].

A. Value Function Approximation Learning Results

We run AVI in two con�gurations: 2D and 3D (see Table
I). Both con�gurations use the same discount parameter

 < 1 to ensure that the value function is �nite. The



TABLE I
APPROXIMATE VALUE ITERATION ALGORITHM HYPERPARAMETERS.

Parameter 3D Con�guration 2D Con�guration


 0.9
Min action (-3, -3, -3) (-3, -3, 0)
Max action (3, 3, 3) (3, 3, 0)
Action step 0.5 0.05

Min sampling space p = ( � 1; � 1; � 1), v = ( � 3; � 3; � 3)
� = ( � 10� ; � 10� ), _� = ( � 10; � 10)

MAX sampling space p = (1 ; 1; 1), v = (3 ; 3; 3)
� = (10 � ; 10� ), _� = (10 ; 10)

Sampling Linear Constant (200)
Simulator Holonomic
Frequency 50Hz
Number of iterations 1000 800
Number of trials 100 40

Reward function c1 = 10000, c2 = 750 , c3 = 1
a1 = 14 , a2 = 10000, � = 0 :05

con�gurations also share the simulator, described in (2) and
(3).

The 3D con�guration trains the agent with a coarse
three-dimensional action vector. Each direction of the linear
acceleration is discretized in 13 steps, resulting in133 total
actions. In this phase of the algorithm we are shaping the
value function, and this level of coarseness is suf�cient.

To assess the stability of the approximate value iteration,
we ran that AVI 100 times, for 1,000 iterations in the 3D
con�guration. Figure 4 shows the trend of the norm of value
parameter vector with respect toL 2 norm. We can see that
the k k stabilizes after about 200 iterations. The empirical
results show that the algorithm is stable and produces a
consistent policy over different trials.
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Fig. 4. Convergence of feature parameter vector 's norm over 1000
iterations. The results are averaged over 100 trials. One and two standard
deviations are shown. After initial learning phase, stabilizes to a constant
value.

B. Simulation Results
We access the quality and robustness of a trained agent in

simulation by generating trajectories from different distances
for two different simulators. The �rst simulator is a generic
holonomic aerial vehicle with suspended load simulator, the
same simulator we used in the learning phase. The second
simulator is a noisy holonomic aerial vehicle simulator,
which adds up to 5% uniform noise to the predicted state.
Its intent is to simulate the inaccuracies and uncertainties
of the real hardware. We compare the performance of our
learned generated trajectories with model-based dynamic
programming (DP) and cubic trajectories.

The agent is trained in 3D con�guration (see Table I).
For trajectory generation, we use a �ne-grain discretized 3D
action spaceA = ( � 3 : 0:05 : 3)3. This action space is ten
times per dimension �ner.

To assess how well a policy adapts to different starting
positions, we choose one �xed position, and two randomly-
drawn variable positions. One measures how well the agent
performs within the sampling box. The rest of the positions
are well outside of the sampling space used for the policy
generation, and assess how well the method works for
trajectories outside of the sampling bounds with an extended
state space.

Table II presents the averaged results. With the exception
of the noisy holonomic simulator at the starting position (-
20,-20,15), all experiments complete the trajectory with the
minimal load displacement.

The results show that trajectories generated under noisy
conditions take a bit longer to reach the goal state, and
the standard deviation associated with the results is a bit
larger. This is expected, given the random nature of the noise.
However, all of the noisy trajectories reach the goal with
about the same accuracy as the non-noisy trajectories. This
�nding matches our prediction from Section III.

The maximum load displacement during its entire tra-
jectory for all 100 trials inversely depends on the distance
from the initial state to the goal state. For short trajectories
within the sampling box, the swing always remains within
4� , while for the very long trajectories it could go up to46� .
This makes sense, given that the agent is minimizing the
combination of the swing and distance. When very far away
from the goal, the agent will move quickly towards the goal
state and produce increased swing. Once the agent is closer
to the goal state, the swing component becomes dominant in
the value function, and the swing reduces.

C. Experimental Results

The experiments were performed using the MARHES
multi-aerial vehicle testbed. This testbed and its real-time
controller are described in detail in [8]. We �rst trained an
agent in 2D con�guration (see Table I). Once the agent was
trained, we generated trajectories.To generate trajectories,
we used a �ne-grain discretized 3D action space. These
trajectories were sent to the quadrotor with a suspended load.
Figure 5 compares the vehicle and load trajectories for a
learned trajectory as �own and in simulation, with cubic and
DP trajectories of the same length and duration.

Comparison with Simulation:Looking at the load trajec-
tories in Figure 5 (b), we notice the actual �own trajectory
naturally contains more oscillations that the simulator didn't
model for. Despite that, the limits, boundaries, and the pro�le
of the load trajectory are close between the simulation and
the �own trajectory. This veri�es the validity of the simula-
tion results: the load trajectory predictions in the simulator
are reasonably accurate.

Comparison with Cubic:Comparing the �own learned
trajectory with a cubic trajectory, we see a different swing
pro�le and signi�cantly higher load oscillations. The most
notable difference happens after the destination is reached
during the hover (after 3.5 seconds in Figure 5 (b)). In this



TABLE II
SUMMARY OF TRAJECTORY RESULTS FOR DIFFERENT STARTING POSITION AVERAGED OVER100 TRIALS: PERCENT COMPLETED TRAJECTORIES

WITHIN 15 SECONDS, TIME TO REACH THE GOAL, FINAL DISTANCE TO GOAL, FINAL SWING, AND MAXIMUM SWING .

State Goal reached t (s) k p k (m) k � k ( � ) max k � k ( � )
Location Simulator (%) � � � � � � � �

(-20,-20,15) Generic Holonomic 99 10.94 1.15 0.04 0.01 0.49 0.33 46.28 3.90
Noisy Holonomic 89 12.04 1.91 0.08 0.22 0.47 0.45 44.39 7.22

((4,5),(4,5),(4,5)) Generic Holonomic 100 7.89 0.87 0.04 0.01 0.36 0.31 26.51 2.84
Noisy Holonomic 100 7.96 1.11 0.04 0.01 0.44 0.29 27.70 3.94

((-1,1),(-1,1),(-1,1)) Generic Holonomic 100 4.55 0.89 0.04 0.01 0.33 0.30 3.36 1.39
Noisy Holonomic 100 4.55 1.03 0.04 0.01 0.38 0.29 3.46 1.52

part of the trajectory, the cubic trajectory shows a load swing
of 5 � 12� , while the learned trajectory controls the swing
to under4� .

Comparison with DP:Figure 5 (b) shows that load for the
trajectory learned with reinforcement learning stays within
the load trajectory generated using dynamic programming at
all times: during the �ight (the �rst 3.4 seconds) and the
residual oscillation after the �ight.
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Fig. 5. Quadrotor (a) and load (b) trajectories as �own, created through
learning compared to cubic, dynamic programming, and simulated trajecto-
ries.

V. CONCLUSIONS

In this work, we presented a motion planning framework
for producing trajectories with minimal residual oscillations
for a rotorcraft UAV with a freely suspended load. The
framework relies on reinforcement learning to learn the
problem characteristics for a particular load. We found
conditions that if met allow the learned agent to be applied
to produce a wide variety of trajectories. We discussed the
learning convergence, assessed the produced motion plans
in simulation, and their robustness to noise. Lastly, we
implemented the proposed algorithm on a quadrotor type
UAV in order to demonstrate its feasibility and to assess
the accuracy of the simulation results.
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