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Abstract— Attaining autonomous ight is an important task
in aerial robotics. Often ight trajectories are not only subject to
unknown system dynamics, but also to speci ¢ task constraints.
We are interested in producing a trajectory for an aerial robot
with a suspended load that delivers the load to a destination
in a swing-free fashion. This paper presents a motion planning
framework for generating trajectories with minimal residual
oscillations (swing-free) for rotorcraft carrying a suspended
load. We rely on a nite-sampling, batch reinforcement learning
algorithm to train the system for a particular load. We nd
the criteria that allows the trained agent to be transferred to a
variety of models, state and action spaces and produce a number
of different trajectories. Through a combination of simulations
and experiments, we demonstrate that the inferred policy is
robust to noise and to the unmodeled dynamics of the system.
The contributions of this work are 1) applying reinforcement
learning to solve the problem of nding a swing-free trajectory
for a rotorcraft, 2) designing a problem-speci ¢ feature vector
for value function approximation, 3) giving suf cient conditions . . .
that need to be met to allow successful learning transfer to Simulator (or a generative model) available, but we make
different models, state and action spaces, and 4) veri cation no assumptions about the dynamics of the system while
of the resulting trajectories in simulation and to autonomously  designing the algorithm.

control quadrotors. We apply a machine learning approach to obtain a swing-
|. INTRODUCTION free trajectory. We learn the task using an approximate
é(alue iteration (AVI) reinforcement learning algorithm. The
alue function is parametrized with problem-speci c feature
tors. The learning and trajectory generation are separated
wo distinct phases. In the rst phase, we learn the value
antion approximation for a particular load. Once the value
unction is learned, we can use it to generate any number
of trajectories. These trajectories can have different starting
and ending positions and use different (but compatible)
U]odels (see Figure 2). We nd the sufcient criteria to

tonomous cargo delivery tasks because they are highly m I_Iow the transfer of the learned, inferred policy to a variety
neuverable, holonomic vehicle's with the abiiities of vertical®! Situations. We demonstrate that the approach produces a

takeoff and landing, and single-point hover. However, the wing-free trajectory to the desired state regardless of the

are inherently unstable systems with complicated, nonlinegfarting position, that is robust to noise.

dynamics. Furthermore, the added suspended load change&© Verify our approach, we learn a value function ap-
%roxmatlon for swing-free ight using a generic holonomic

the dynamics of the system. : - :
Our goal is to nd a fast trajectory with minimal residual M0del of the aerial vehicle with a suspended load as a
oscillations (swing-free) for a rotor craft aerial robot carryin imulator. Then we generate trajectories using two models:
a suspended load as described in [8]. In addition, swin{j€ Same holonomic model used to learn parameters, and a
control during the ight is desired. We assume that we know'©/SY holonomic model. We demonstrate that the trajectories

the goal state of the vehicle, and the initial state can H&€ feasible by using them for autonomous control of a

arbitrary. Furthermore, we assume that we hawaak box ummingbird quadrotor shown in Figure 1. The summary
of the results is presented here, for the full results please see
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Fig. 1. Quadrotor with a suspended load

Unmanned aerial vehicles (UAVS) play an increasing rol
in a wide number of missions such as remote sensin
transportation, and search and rescue missions. Cargoes s
consist of food and supply delivery in disaster struck area
patient transport, or spacecraft landing. Planning motions f
a UAV carrying a load is complex because load swing i
dif cult to control. However, it is necessary for the safety
and success of the mission.

Helicopters and quadrotors are ideal candidates for a



In our implementation, the state space is a 10-dimensional
vectors = [p Vv ] of the vehicle's positionp =

l [ li [x y z]" relative to the goal state, vehicles linear velocity
I — T i - T
T T o v —_[5 y 7] . load displacement angles =[ L .._] and
Value lteration |, VeI | Ganeralion [JT"aiectonv+| Traiectory their respective angular speeds=[ + £ relative to the
[ vehicles center of the mass (see Figure 3). L is the length
of the suspension cable. Since L is constant in this work, it

will be omitted.

‘ Simulator

‘ Reward ‘ ‘S\mulalor

Linear
Dynamics

Generic
Holonomic

Noisy
Holonomic

Fig. 2. Trajectory generation block diagram. The system learns problem-
speci ¢ feature vector parametrization of the value function. It queries
a simulator, calculates feature vectors and receives a reward for a state.
Once learned, the value function approximation is passed to the trajectory
generation to generate number of different trajectories. The module uses the i

same feature vectors, but can rely on different simulators to nd the best L

action in any given state. The produced trajectory is sent to a robot. The

green blocks are external to the learning algorithm and considered to Béy. 3. Load displacement angles for a quadrotor carrying a suspended
unknown. load.

The samples are uniformly, randomly drawn from a hyper-
[5] apply policy gradient descent to perform aggressiveube centred in the goal state at equilibrium. The action space
guadrotor multi- ips. is a linear acceleration vectar = [x y 2]" discretized
Palunko et al. applied dynamic programming to solveising equidistant steps centered around zero acceleration.
swing-free trajectories for quadrotors [8]. While dynamic The state value function V is approximated with a linear
programming requires pre-calculating each trajectory, theombination of the feature vectét(s). The feature vector
approach presented here allows us to learn the problerhosen for this problem consists of four basis functions:
once, and generate any number of different trajectoriesjuares of vehicles distance to the goal, its velocity magni-
with different starting positions using same value functiotude, and load displacement and velocity magnitude as shown

approximation. in (1):

2) Swing-free Trajectories in Manufacturingdwing-free V()= T F(s)
trajectories are important in industrial robotics with appli- ) ) ) - (1)
cations such as cranes in construction sites and for cargo F(s) =[kpk® k(v)k* k k* k_ k7]

loading in ports [1]. Residual oscillation reduction has apynere 2 R
plications in manu'factu.nn.g environments where parts need The reward function penalizes the distance from the goal
to be transported in a limited space, [12]. _ state, and the size of the load displacement. It also penalizes
3) Reinforcement and Transfer Learningo accomplish he npegative z coordinate to provide a bounding box and
swing-free trajectories for rotorcraft with a suspended loadforce that the vehicle must stay above the ground. Lastly,
we rely on approximate value iteration [3] with a speci cally o agent is rewarded when it reaches equilibrium. The
designed feature vector for value function approximationeyarg functionR(s) = c'r(s) is a linear combination of
Taylor and Stone [11] propose value function transfer bgsggis rewards (s) = [r1(s) ra(s) rs(s)]”, weighted with

tween the tasks in different state and action spaces usifgctorc = [, ¢, cs]", for some constants; anda,, where:
behavior transfer function to transfer the value function to

the new domain. Sherstov and Stone in [10] examine action ri(s)= k pk?
transfer between the tasks, learning the optimal policy and a KF (s)k <
transferring only the most relevant actions for the optimal ra(s) =

5 .
policy. McMahan et al. [6] suggested learning a partial policy k= k% otherwise

for xed start and goal states. a z<0
ra(s) =

1. METHODS o z 0
A. Reinforcement Learning for Swing-Free Trajectories

The approximate value iteration algorithm [3] produces an To obtain the state transition function sampRssy; a) =
approximate solution to a Markov Decision Process (MDP3, we rely on a simplied model of the quadrotor-load
in continuous state spaces with a discrete action set. Vi¥gstem, where the quadrotor is represented by a holonomic
approximate the value function with a linearly parametrizedhodel of a UAV widely used in the literature [7]. The
feature vector. It is in an expectation-maximization (EM)imulator returns the next system state[pv ] when an
algorithm which relies on a sampling of the state spacactiona is applied to a statsg = [po Vo o o] Equations
transitions, an estimation of the state value function using) and (3) describe the simulat@®= [0 0 g]" is gravity
Bellman equation [2], and a linear regression to nd thdorce, L is the length of the suspension cable, ani the
parameters that minimize the least square error. length of the time step.



O

V=Vo+ a; p=po+ Vo+0:5 %a @) Proposition 1ll.1 connects state value approximation with

= g+ = o+ +0:5 2 Lyapunov stability theory. If V satis es the critera, the

system is globally approximately stable. We empirically
where show that the criteria is met. Proposition 1.1 requires that
_sin gsin g cosS g C€oS gsin oL *! is negative de nite for the value function V described in
- COS (COS o 0 cos gsin oL ! @ ) (1) to have a unique maximum. As we will see in IV-B, the

(3) empirical results show that is the case. These observations

To learn the approximation of the state value function, Avlead to several practical properties of the induced greedy
starts with an arbitrary vector. In each iteration, the state policy that we will verify empirically:
space is randomly sampled to produce a set of state sampled) The induced greedy policy is robust to some noie:
M. New estimate of the state value function is calculatetbng as there is a transition to a state with a higher value, an
according toV(s) = r(s)+ max , 'F(P(s;a))) for all action could be taken and the goal will be attained, although
sampless 2 M. 0 < < 1 is a discount factor. A not optimally. Section IV-B presents the empirical evidence
linear regression then nds a new value ofthat ts the for this property.

calculated estimate¥ (s) into quadric form TF(s). The 2) The policy is agnostic to the simulator usedhe
process repeats until the maximum number of iterations &mulator de nes the transition function and along with the
reached. action space de nes the set of reachable states. Thus, as
. ) long as the conditions of Proposition 1ll.1 are met, we can
B. Trajectory Generation switch the simulators we use. This means that we can train

An approximated value function induces a greedy policy on a simple simulator and generate a trajectory on a more
that is used to generate the trajectory and control the vehickophisticated model that would predict the system better.
Given a states, policy (s) returns an actiora. The policy 3) Learning on the domain subsefAs we will show
is determined by (s) = argmaxa( "F(P(s;a))), where P experimentally in Sections IV-B and IV-C, we can learn the
is the state transition function described in (2) and (3). Whemodel on a small subset of the state space around the goal
applied to the system the resulting action moves the systestate, and the resulting policy will work on the whole domain
to the state associated with the highest estimated value. Tivaere the criteria above hold, i.e., where the value function
algorithm starts with the initial state. Then it nds an actiondoesn't have other maxima. This property makes the method
according to the policy . The action is used to transition to a good choice for a local planner.
the next state. The process repeats until the goal is reached) Changing action spaceLastly, the action space be-
or when the trajectory exceeds a maximum number of stesveen learning and the trajectory generation can change, and
C. Analysis the algorithm will still produce a_trajectpry to the goal state.

’ For example, to save computational time, we can learn on

The Proposition 11l.1 gives suf cient conditions that thethe smaller, more coarse discretization of the action space
value function approximation, action state space and systa@ obtain the value function parameters, and generate a
dynamics need to meet to guarantee a plan that leads to thgjectory on a more re ned action space which produces a

goal state. smoother trajectory. We will demonstrate this property during
Proposition IlIl.1. Let s, be the goal state. If vector is the multi-waypoint ight experiment.
negative de nite, and action space A maps state space such IV. RESULTS

that8s2 Snfspg;9a2 A thatV( a(s)) > + V(s), for . . .
some > 0, then the system is asymptotically stable in the In this section we verify the convergence of the proposed

sense of Lyapunov, and coincidently for an arbitrary starfilgor;thsm at:_s W‘:';I\I/‘f Its effectwtehness In S|mul?t|onlanqtexpt(_er—
states 2 S, greedy policy with respect to V leads to the/Ment. Sec |onS ’ i assle\;c,sBesh € aptpr)]roxmalf{e vafute |_er? lon
goal statess. In other words8s 2 S:9n; 1(s) = So. convergence. Section IV-B shows the results of trajectory

generation in simulation for the expanded state and action
Proof. To show that the system is asymptotically stablespace. Lastly, Section IV-C presents results of experiments
we need to nd a discrete time control Lyapunov functionwith the quadrotor in expanded state and action space. The
W(s), such thatV (s(k)) > O, for 8s(k) 6 0, W(sp) =0, experiments assess the discrepancy between the simulation
4 W(s(k)) = W(s(k+1)) W(s(k)) < 0,and4 W(sp) = swing predictions and the actual swing encountered during
0, for all k, wheresp =[0000000000]. the ight, and make a comparison between a cubic trajectory
LetW(s)= V(s)=  T(kpk?k(v)k?k k?;k k?)T. (trajectory where position is &9 order polynomial function
ThenW (0) =0, and for alls 6 so, W(s) > 0, since < 0. of time) and our method. Only the summary of the results is
4W(s(k)) = (V(s(k+1)) V(s(k))) < Obecause of presented here. The detailed results with full implementation
the assumption that for each state there an action to takegstails are available in [4].
the system to a state with a higher value. . L )
Thus, W is a Lyapunov function with no constraints on sA- Value Function Approximation Learning Results
and is globally asymptotically stable. Therefore any policy We run AVI in two con gurations: 2D and 3D (see Table
following function W (or V) will lead the system to the I). Both con gurations use the same discount parameter
unique equilibrium point. < 1 to ensure that the value function is nite. The



TABLE |

APPROXIMATE VALUE ITERATION ALGORITHM HYPERPARAMETERS

The agent is trained in 3D con guration (see Table ).
For trajectory generation, we use a ne-grain discretized 3D

Parameter | 3D Con guration | 2D Con guration action spaceéA = ( 3:0:05: 3. This action space is ten
0.9 times per dimension ner.
Min action (-3, -3, -3) (-3,-3,0) To assess how well a policy adapts to different starting
Max action @3, 33) 3, 3,0 positions, we choose one xed position, and two randomly-
Action step 0.5 0.05 drawn variable positions. One measures how well the agent
p=( 1, 1, 1),v=( 3 3; 3)

Min sampling space

=( 10; 10), _=( 10; 10)

p=(1;11),v=(3;3,3)

performs within the sampling box. The rest of the positions
are well outside of the sampling space used for the policy

MAX sampling space =(10 ;10 ), _=(10:10) generation, and assess how well the method works for
Sampling Linear [ Constant (200) trajectories outside of the sampling bounds with an extended
Simulator Holonomic state space.

ET&EZ?COS; S — 50ng00 Table Il presents the averaged results. With the exception
Nomber STl 100 0 of the noisy holonomic simulator at the starting position (-

Reward function

c; =10000,c2=750,c3=1
a; =14, ap =10000, =0:05

20,-20,15), all experiments complete the trajectory with the
minimal load displacement.

The results show that trajectories generated under noisy
conditions take a bit longer to reach the goal state, and

con gurations also share the simulator, described in (2) anidle standard deviation associated with the results is a bit

(3)-

larger. This is expected, given the random nature of the noise.

The 3D con guration trains the agent with a coarsglowever, all of the noisy trajectories reach the goal with
three-dimensional action vector. Each direction of the linesgbout the same accuracy as the non-noisy trajectories. This

acceleration is discretized in 13 steps, resultind % total

nding matches our prediction from Section Il

actions. In this phase of the algorithm we are shaping the The maximum load displacement during its entire tra-

value function, and this level of coarseness is suf cient.

jectory for all 100 trials inversely depends on the distance

To assess the stability of the approximate value iteratioffom the initial state to the goal state. For short trajectories
we ran that AVI 100 times, for 1,000 iterations in the 3Dwithin the sampling box, the swing always remains within
con guration. Figure 4 shows the trend of the norm of valuet , while for the very long trajectories it could go up46 .
parameter vector with respect td_, norm. We can see that This makes sense, given that the agent is minimizing the
the k k stabilizes after about 200 iterations. The empiricatombination of the swing and distance. When very far away
results show that the algorithm is stable and produces feom the goal, the agent will move quickly towards the goal
consistent policy over different trials.

== =y+oy
== =y-oy
T W+ 20(y)
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L L L
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state and produce increased swing. Once the agent is closer
to the goal state, the swing component becomes dominant in
the value function, and the swing reduces.

C. Experimental Results

The experiments were performed using the MARHES
multi-aerial vehicle testbed. This testbed and its real-time
controller are described in detail in [8]. We rst trained an
agent in 2D con guration (see Table I). Once the agent was
trained, we generated trajectories.To generate trajectories,
we used a ne-grain discretized 3D action space. These

Fig. 4. Convergence of feature parameter vects norm over 1000 trajectories were sent to the quadrotor with a suspended load.
iterations. The results are averaged over 100 trials. One and two stand&tgure 5 compares the vehicle and load trajectories for a
deviations are shown. After initial learning phasestabilizes to a constant |egrned trajectory as own and in simulation, with cubic and
value. . . .
DP trajectories of the same length and duration.
] ) Comparison with SimulationLooking at the load trajec-

B. Simulation Results tories in Figure 5 (b), we notice the actual own trajectory

We access the quality and robustness of a trained agentriaturally contains more oscillations that the simulator didn't
simulation by generating trajectories from different distancesodel for. Despite that, the limits, boundaries, and the pro le
for two different simulators. The rst simulator is a genericof the load trajectory are close between the simulation and
holonomic aerial vehicle with suspended load simulator, thidae own trajectory. This veri es the validity of the simula-
same simulator we used in the learning phase. The secatigh results: the load trajectory predictions in the simulator
simulator is a noisy holonomic aerial vehicle simulatorare reasonably accurate.
which adds up to 5% uniform noise to the predicted state. Comparison with Cubic:Comparing the own learned
Its intent is to simulate the inaccuracies and uncertaintigsajectory with a cubic trajectory, we see a different swing
of the real hardware. We compare the performance of opro le and signi cantly higher load oscillations. The most
learned generated trajectories with model-based dynamiotable difference happens after the destination is reached
programming (DP) and cubic trajectories. during the hover (after 3.5 seconds in Figure 5 (b)). In this



TABLE I
SUMMARY OF TRAJECTORY RESULTS FOR DIFFERENT STARTING POSITION AVERAGED OVERDO TRIALS: PERCENT COMPLETED TRAJECTORIES
WITHIN 15 SECONDS TIME TO REACH THE GOAL, FINAL DISTANCE TO GOAL, FINAL SWING, AND MAXIMUM SWING .

State Goal reached t (s) kpk(m) k k() max kK k()
Location Simulator (%)
(-20.-20.15) Generic Holonomic 99 [ 10.94 1.15] 0.04 0.01| 049 0.33| 4628  3.90
e Noisy Holonomic 89 | 12.04 1.91| 0.08 0.22| 0.47 0.45| 4439  7.22
((4.5),(4,5),(4,5)) Generic Holonomic 100 | 7.89 0.87| 0.04 0.01| 0.36 0.31| 26.51 2.84
R Noisy Holonomic 100 | 7.96 1.11| 0.04 0.01| 0.44 0.29| 27.70  3.94
((1.1).(-1,1),(-1,1y)| Generic Holonomic 100 | 455 0.89] 0.04 0.01| 0.33 030 3.36 1.39
IS Noisy Holonomic 100 | 455 1.03| 0.04 0.01| 0.38 0.29| 346 152
part of the trajectory, the cubic trajectory shows a load swing ACKNOWLEDGEMENTS
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