
Reinforcement Learning for Balancing
a Flying Inverted Pendulum∗

Rafael Figueroa1, Aleksandra Faust2, Patricio Cruz1, Lydia Tapia2, and Rafael Fierro1
1Department of Electrical and Computer Engineering, 2Department of Computer Science

University of New Mexico
Albuquerque, NM 87131, United States

1{rfigueroa, pcruzec, rfierro}@unm.edu, 2{afaust, tapia}@cs.unm.edu

Abstract— The problem of balancing an inverted pendulum
on an unmanned aerial vehicle (UAV) has been achieved using
linear and nonlinear control approaches. However, to the best of
our knowledge, this problem has not been solved using learning
methods. On the other hand, the classical inverted pendulum is
a common benchmark problem to evaluate learning techniques.
In this paper we demonstrate a novel solution to the inverted
pendulum problem extended to UAVs, specifically quadrotors.
This complex system is underactuated and sensitive to small
acceleration changes of the quadrotor. The solution is provided
by reinforcement learning (RL), a platform commonly applied
to solve nonlinear control problems. We generate a control
policy to balance the pendulum using Continuous Action Fitted
Value Iteration (CAFVI) [1] which is a RL algorithm for high-
dimensional input-spaces. This technique combines learning of
both state and state-action value functions in an approximate
value iteration setting with continuous inputs. Simulations verify
the performance of the generated control policy for varying initial
conditions. The results show the control policy is computationally
fast enough to be appropriate of real-time control.

Index Terms— Aerial robotics, quadrotor control, inverted pen-
dulum, approximate value iteration, reinforcement learning.

I. INTRODUCTION

A pendulum on top of a quadrotor, Fig. 1, requires controls
to balance the pendulum and to stabilize the aerial vehicle.
Solving this complex problem offers insight into advanced
control strategies that can be considered for similar aerial
manipulation tasks. The flying inverted pendulum was first in-
troduced in [2] where it was solved designing linear controllers
for stabilization. However, the results indicated that a learning
approach could improve the system performance [2].

Reinforcement learning (RL) has grown as an effective
framework for control applications in recent years, due to its
ability to learn from available data rather than fully-understood
system models. For example, RL has been used to solve the
classical inverted pendulum control problem [3], [4]. Also,
iterative learning has improved quadrotor flips [5].

We previously employed RL for suspended load delivery
with a quadrotor [7], [8], [1]. Combining motion planning with
reinforcement learning, we generated collision-free trajectories
with minimal residual oscillations [9].

Our method for balancing a flying inverted pendulum is
based on a RL technique, Continuous Action Fitted Value

∗This work is partially supported by NM Space Grant to A. Faust, NIH Grant
P20RR018754 to the Center for Evolutionary and Theoretical Immunology.

Fig. 1. The inertial frame {W } and the body-fixed frame {B} for a
quadrotor balancing a pendulum.

Iteration (CAFVI) developed by Faust et al., [1]. CAFVI was
tested both in simulation and in experiments for the aerial
suspended cargo task. CAFVI is sample-efficient, needing only
a constant number of samples at every time-step to produce
a control input, and is consistent, meaning that the resulting
control input does not depend on the available samples. For
these characteristics we selected CAFVI as our learning al-
gorithm that learns the problem’s value function. Once the
value function is learned, convex sum policy [1] is used to
generate control input for the system starting at different initial
conditions.

The novel approach presented here decomposes the flying
inverted pendulum task into two subtasks, Initial Balancing
that places pendulum very close to upright position, and Bal-
anced Hover that slows down the quadrotor to a hover while
maintaining the upright inverted pendulum position. We learn
both tasks with CAFVI, and generate trajectories with the
convex sum policy also developed by Faust et al., [1]. The joint
controller, Flying Inverted Pendulum, sequentially combines the
two subtasks to solve the flying inverted pendulum. It produces
a control action that drives the system from an arbitrary
initial inverted pendulum displacement to a stable state where
the aerial vehicle hovers maintaining the inverted pendulum
minimally displaced from the upright position.



II. PRELIMINARIES

This section gives a necessary background on task learning
with CAFVI algorithm and control action generation given an
initial condition. The content of this section is a summary of
[1].

A. Reinforcement Learning Paradigm

Consider the discrete-time nonlinear system

xk+1 = F (xk,uk), (1)

where k is the discrete time, x ∈ X represents the state vector,
u ∈ U denotes the control action and F : X × U → X is the
system function. Also, a reward function is defined ρ : X×U →
R to evaluate the immediate effect of the action uk. The tuple
{X,U,F , ρ, } constitutes a Markov Decision Process (MDP)
[3], [10], [4].

The control policy for the system is defined by a function
h : X → U such that uk = h(xk). A solution to MDP
is an optimal policy h∗, which maximizes the return, i.e.,
the accumulated reward. The return depends on the policy
because the accumulated reward reachable from the given state
is determined by the policy that the system follows. Two types
of value functions exist for a given policy h, a state value
function V : X → R (V -function), and a state-action value
function Q : X × U → R (Q-function). By definition,

Q(xk,uk) = V (F (xk,uk)) = V (xk+1). (2)

A value function, a V -function or a Q-function, represents the
accumulated reward obtained by the controller in a long run.

A solution to a MDP is to find an optimal policy which
maximizes the value function, i.e., maximizes the cumulative
reward over the course of interaction. When all the components
of the MDP are known, dynamic programming methods can
produce an optimal policy [3].

Value iteration is a major class of RL techniques where the
optimal value function is iteratively found and used to compute
an optimal policy [4]. Required tabular representation of the
value function is impractical or infeasible when the state X
and action U spaces are large or continuous. In these cases,
the V -function has to be approximated yielding approximate
value iteration (AVI) methods [3]. For instance, a V -function
can be approximated as

V (x) = θTF(x), (3)

where θ is a parameter vector and F(x) is a vector of
features [3]. Offline variants of AVI methods have learning
and policy generation split in two distinct phases. During the
learning phase the AVI algorithm learns the feature vector
parametization. The method randomly samples the state space
in simulation and comes up with the updates for the parameter-
ization vector typically in the expectation-maximization (EM)
manner [3]. In the policy generation phase, the learning stops
and the system enters a control-feedback loop.

B. Continuous Action Fitted Value Iteration (CAFVI)

CAFVI is an offline approximate value iteration method for
tasks that balance several opposing constraints on the system
[1]. It is appropriate for high-dimensional input spaces for
control-affine nonlinear systems. When (1) is a control-affine
nonlinear system, it can be written as

xk+1 = F (xk,uk) = f(xk) + g(xk)uk. (4)

In CAFVI, the value function is approximated using (3)
considering that F(x) is a vector of quadratic feature state
functions (QFSFs) defined by the user. For example, a QFSF
can be ‖x‖2. CAFVI works in continuous state and input
spaces. It employs both value functions, a V -function and a
Q-function. It learns the parameterization for the V -function,
but uses a Q-function based policy, so it learns local Q-function
for a fixed state.

C. Control Action Generation with Convex Sum Policy

Given an initial condition, the parameterization vector, the
feature vectors, and the black-box system simulator, the con-
trol action generation process uses convex sum policy [1] to
determine the next control input. A controller based on the
convex sum policy transitions the system to the completion
state without any assumptions of the system dynamics. For each
dimension, the actions are selected from the appropriate axis
and the Q-function is sampled. Then, the samples are fitted
with univariate polynomials. The value of the maximum of the
polynomial on the segment is found. The resulting action is a
convex linear combinations of the orthogonal action vectors that
maximizes each of its corresponding interpolations. This action
is applied to the system, and the resulting state is observed. The
convex sum policy is fast because it requires constant number
of Q-function samples. Further the resulting action does not
depend on the samples available and the policy gives consistent
results. For these reasons, the convex sum policy is a good
candidate for the flying inverted pendulum problem.

III. METHODOLOGY

A. Quadrotor-Pendulum Model

The model presented here is used for simulations and for
next state evaluation during the convex policy.

We assume that the the pendulum mass is small compared
to the quadrotor mass, so the reactive forces of the pendulum
on the quadrotor are negligible. [2].

The world coordinate frame {W } and the body-fixed frame
{B} are shown in Fig. 1. {B} is attached to the center of mass
of the quadrotor. The rigid body equations of motion of the
quadrotor are [11]

m

ẍÿ
z̈

 = −

 0
0
mg

+ R

00
T

 , (5)

Ṙ = RΩ×, (6)

IΩ̇ = −Ω× IΩ + τ , (7)



where
m ∈ R is the mass of the quadrotor,
[x y z]

T ∈ R3 is the position of the quadrotor center of
mass respect to {W },

g ∈ R is the constant gravitational acceleration,
R ∈ SO(3) is the rotational matrix of {B} with

respect to {W },
T ∈ R is the total upward thrust,
Ω ∈ R3 is the angular velocity of {B} with re-

spect to {W },
I ∈ R3×3 is the constant inertia matrix expressed

in {B},
τ ∈ R3 is the moment applied to the quadrotor

by the aerodynamics of the rotors.

The notation Ω× denotes the skew-symmetric matrix. Also, we
denote as r the position of the quadrotor center of mass, i.e.,
r = [x y z]

T .
The pendulum can be considered as a point mass that is

rigidly attached to the quadrotor center of mass [2]. Also, we
assume that the z-position of the quadrotor is fixed. Let a and
b be respectively the x-position and y-position of the pendulum
center of mass relative to its base expressed respect to {W }.
We denote as p the position of the pendulum center of mass,
i.e., p = [a b]T . The relative z-position of the pendulum center
of mass is given by

c =
√
L2 − a2 − b2, (8)

where L is the length from the origin of {B} to the center of
mass of the pendulum.

The kinetic energy K and the potential energy U of the
pendulum are

K =
mp

2

(ẋ+ ȧ)
2
+
(
ẏ + ḃ

)2
+

(
aȧ+ bḃ

c

)2
 ,

U = mpgc,

where mp is the mass of the pendulum. The nonlinear dynamics
of the pendulum can be derived from the Lagrangian L = K−U
applying conventional Lagrangian mechanics. Then, we obtain

ä =
ab %

L2c4
−
(
L2 − a2

)
ζ

L2c4
, (9)

b̈ =
ab ζ

L2c4
−
(
L2 − a2

)
%

L2c4
, (10)

where

% = b
(
aȧ+ bḃ

)2
+ c2b

(
ȧ2 + ḃ2

)
− gc3b+ c4ÿ

ζ = a
(
aȧ+ bḃ

)2
+ c2a

(
ȧ2 + ḃ2

)
− gc3a+ c4ẍ

Since we assume that the quadrotor maintains its altitude,
just the accelerations in x and y drive the motion of the
pendulum through (9) and (10). Because the quadrotor is differ-
entially flat [12], [13], a baseline controller for the quadrotor
that has as inputs the desired translational acceleration r̈d =

Fig. 2. Block diagram of the reference model.

[ẍd ÿd z̈d]
T , and the desired yaw angular acceleration ψ̈d can

be implemented in a similar fashion as in [14]. This control
scheme is shown in Fig. 2. For the pendulum block, we use a
linear model obtained applying linearization of the pendulum
equations of motion (9) and (10). The implementation of the
baseline controller is without assuming the presence of the
pendulum. Thus, we learn to balance the inverted pendulum
using CAFVI.

B. Problem Statement

From our assumption that the quadrotor maintains its height
and from the pendulum dynamics (9) and (10), the control
inputs z̈d and ψ̈d of the system shown in Fig. 2 do not
help to balance the pendulum. Therefore, we consider that the
quadrotor keeps its initial altitude and heading at all times. This
condition can be achieved setting up z̈d = ψ̈d = 0. Thus, the
control action for balancing the pendulum is

u =
[
ẍd ÿd

]T
. (11)

Given an initial displacement of the pendulum center of mass
p0 = [a0 b0]

T , our goal is to find an optimal control input u
such that the pendulum is balanced on top of the quadrotor,
i.e., p and ṗ tends to zero, and the quadrotor reaches a
hovering state, i.e., ṙ also tends to zero. Thus, the flying inverted
pendulum task is completed when the system comes to rest.
This is when p = ṗ = ṙ = 0. From the practical perspective,
we consider the task done when the state norm is sufficiently
small.

We decompose the flying inverted pendulum task into two
subtasks, initial balance and hover balanced tasks. Initial
balance task raises the pendulum to an upright position without
regard to the quadrotor state. The task is completed when

‖p‖ < εpB
, ‖ṗ‖ < εṗB

, (12)

for small positive constants εpB
and εṗB

. The subscript B
denotes that just the balancing task is under consideration.
The second subtask, hover balanced task assumes that initial
balance was completed and the initial conditions satisfy (12).
The task requires quadrotor to reduce speed to hover while it
maintains the minimal inverted pendulum displacement. It is
completed when

‖p‖ < εpBH
, ‖ṗ‖ < εṗBH

, ‖ṙ‖ < εṙBH
, (13)

for small positive constants εpBH
, εṗBH

, and εṙBH
. The sub-

script BH denotes that balancing and hovering are under



consideration. Note that the completion criteria for the hover
balanced task is the same as for flying inverted pendulum task
although the latter has less restrictive initial conditions.

Before proceeding, we need to check that the system is
control-affine in order to apply the CAFVI algorithm. The
combination of the baseline controller and the quadrotor blocks
in Fig. 2 gives as a result a double integrator system because
of the differential flatness property of the quadrotor [12]. This
result together with the equations of motion for the pendulum,
(9) and (10), shows clearly that the system is nonlinear control-
affine. Because in simulation the discrete-time transitions of
the system illustrated in Fig. 2 are obtained by numerical
integration of the continuous time dynamics and we set up z̈d =
ψ̈d = 0, the baseline controller-quadrotor-pendulum system can
be seen as the one-block system presented in Fig. 3 with the
complete state of the system denoted as Γ = [r ṙ p ṗ]T .

Fig. 3. Concise generative model used for simulation purposes and
for next state evaluation during the convex policy, the system state
Γ = [r ṙ p ṗ]T and the control action u = [ẍd ÿd]

T . Γ− denotes
the previous system state.

C. Initial Balance

To run Algorithm CAFVI, we need to give a discount factor
γ, and input dimensionality dU . We select γ ∈ (0, 1) and in
our case dU = 2. Also, an input to this algorithm is the vector
of QFSFs F(Γ). Because one of our goals is to balance the
pendulum, we define

FB(Γ) = [‖p‖2 ‖ṗ‖2]T . (14)

The reward function is defined as

ρB =

{
KB if condB = true
0 otherwise (15)

with condB = ‖p‖ < δBp ∧ ‖ṗ‖ < δBṗ , and KB , δBp , δBṗ

are positive constant values. We run Algorithm CAFVI until
a θ that accomplishes the task of balancing the pendulum is
generated. We denote this result as θB .

D. Balanced Hover

Next, we consider balanced hover task. Thus, we define

FBH(Γ) = [‖p‖2 ‖ṗ‖2 ‖ṙ‖2]T . (16)

The reward is

ρBH = ρBH,1 + ρBH,2, (17)

where

ρBH,1 = −KBH,1‖p‖ (18)

and

ρBH,2 =

{
KBH,2 if condBH = true
0 otherwise (19)

with condBH = ‖p‖ < δBHp
∧‖ṗ‖ < δBHṗ

∧‖ṙ‖ < δBHṙ
, and

KBH,1,KBH,2, δBHp , δBHṗ , δBHṙ are positive constant values.
Under these conditions, we run Algorithm CAFVI until we
obtain a θ that fulfills the balancing and the hovering tasks.
We denote this result as θBH .

E. Flying Inverted Pendulum

Algorithm 1 depicts learning flying inverted pendulum task.
We generate θB and θBH as explained in Sections III-C and III-
D. We learn using Monte Carlo simulation for a fixed number
of trials. Upon generating family of policies, the fittest one is
selected for the inverted pendulum controller. The fittest policy
reaches the completion state fastest.

Initial balancing policy provides a satisfactory answer for a
high initial displacement when no consideration is given to the
condition that ṙ reaches zero. When the initial displacement is
small, the requirement of ṙ→ 0 can be added. For this reason,
we used both θB and θBH to implement the flying inverted
pendulum controller. The finite state machine in Fig. 4a shows
the transition map and the transition states of our controller.

Algorithm 2 summarizes the proposed control technique. The
controller is initially configured for the Initial Balance task.
It selects a control input according to the convex sum policy
explained in Section II-C. When the completion condition for
Initial Balance task is met, the controller switches to the
parameters for Balanced Hover task. On the other hand, if the
controller state is set to ‘Balanced Hover’, the controller in-
vokes convex sum policy with the parameters for the Balanced
Hover task. The output is the state of the controller and the
control input.

(a)

(b)

Fig. 4. (a) Finite state machine for the flying inverted pendulum. (b) Scheme
of the configuration for simulation tests, η is a noise vector.



Algorithm 1 Learning to fly inverted pendulum
Input: γ, vectors of QFSFs FB(Γ), FBH(Γ), ρB , ρBH ,

dimension of the action space dU (in our case dU = 2),
number of Monte Carlo simulations mc

1: B Learning Initial balance with Monte Carlo simulation
2: for i = 1, ...,mc do
3: θB,i ← CAFVI(FB(Γ), ρB , γ, dU )
4: end for
5: θB,i ←select fittest θB,i

6: B Learning Balanced Hover with Monte Carlo simulation
7: for i = 1, ...,mc do
8: θBH,i ← CAFVI(FBH(Γ), ρBH , γ, dU )
9: end for

10: θBH,i ←select fittest θBH,i

Output: parameter vectors θB ,θBH ,

Algorithm 2 Flying inverted pendulum controller
Input: parameter vectors θB , θBH , vectors of QFSFs FB(Γ),

FBH(Γ), small positive constants εp, εṗ, dimension of the
action space dU (in our case dU = 2), controller state

1: measure initial state Γ0

2: if controller state is ‘Initial Balance’ then B Initial balance
3: û← convexSumPolicy(FB(Γ),θB ,Γ0)
4: if ‖p0‖ ≤ εp ∧ ‖ṗ0‖ ≤ εṗ then
5: B switch controller state
6: controller state ← ‘Balanced Hover’
7: end if
8: else B Balanced Hover
9: û← convexSumPolicy(FBH(Γ),θBH ,Γ0)

10: end if
Output: u = û, controller state

IV. RESULTS

This section evaluates the flying inverted pendulum con-
troller. We examine each of the subtasks, Initial Balance and
Balanced Hover separately, as well as the joint Flying Inverted
Pendulum controller from Algorithm 2. The evaluation goals
are to determine the computational speed, region of attraction,
and noise tolerance.

All simulations are performed in Matlab 2012a running Win-
dows 7 with Pentium Dual-Core CPU and 4Gbs of RAM. The
configuration scheme is presented in Fig. 4b. η is a noise vector,
so we can add a percentage of noise and test the performance of
the controller. The parameters for the simulations are: L = 0.5
m, mp = 0.1 kg, KB = 106, KBH,1 = 100, KBH,2 = 106,
δBp

= 0.01 m, δBṗ
= 0.01 m/s, δBHp

= 0.05 m, δBHṗ
= 0.05

m/s and δBHṙ
= 0.5 m/s. The terminating condition for Initial

Balance controller is ‖p‖ ≤ 0.01 m and ‖ṗ‖ ≤ 0.01 m/s, while
the terminating condition for the Balanced Hover and Flying
Inverted Pendulum polices is ‖p‖ ≤ 0.05 m, ‖ṗ‖ ≤ 0.05 m/s,
and ‖ṙ‖ ≤ 0.5 m/s.

Algorithm 1 gives as results

θB = [−86.6809 − 0.3345]T ,

θBH = [−1.6692 − 0.0069 0.0007]T × 106

Both approximated V -functions, calculated with (3), are much
more sensitive to changes in pendulum’s position than changes
in velocity. To visualize this characteristic, Fig. 5 presents
the V -function for the Initial Balance task projected onto a
and ȧ axes. The similar preference is seen in the Balanced
Hover with θBH . Here, only when the position and velocity
of the inverted pendulum are close to the upright position, the
controlled reduces the quadrotor’s speed.

−0.01

0

0.01

−0.1

0

0.1

−0.015

−0.01

−0.005

0

ȧ [m/s]a [m]

V

Fig. 5. Approximate V -function associated with θB projected onto a
and ȧ.

To examine the policies’ characteristic, we randomly selected
100 initial system state conditions Γ for each policy, Initial
Balance with no noise, and with 5% of randomly added noise,
Balanced Hover with no noise, and with 2% of noise, Flying
Inverted Pendulum with no noise, and with 5% of noise. The
ranges for initial conditions per policy are presented in Table
I.

TABLE I
RANGE FOR ṙ AND p TO GENERATE SIMULATION INITIAL

CONDITION SAMPLES

Controller ṙ = [ẋ ẏ]T p = [a b]T

Initial
Balance ẋ = ẏ = 0 [m/s] a, b ∈ [−0.2, 0.2] [m]

Balanced
Hover ẋ, ẏ ∈ [−5, 5] [m/s] a, b ∈ [−0.01, 0.01] [m]

Flying Inv.
Pend. ẋ = ẏ = 0 [m/s] a, b ∈ [−0.2, 0.2] [m]

For all policies, and all the initial conditions, simulations
resulted in reaching the task terminal conditions. That means
that the initial conditions in Table I are within the policies
regions of attraction.

Table II shows the performance of the individual controller
states Initial Balance, Balanced Hover, and for the complete
Flying Inverted Pendulum controller. In this table, tf is the



time to achieve the task terminal conditions measured in system
time, tc is the computation time for a full trajectory, pf is the
final displacement of the pendulum, ṗf is the final velocity of
the pendulum, and ṙf is the final velocity of the quadrotor.
We note that the system time tf is an order of magnitude
higher than the computational time to calculate the next action,
rendering our method real-time capable.

Initial Balance policy brings the inverted pendulum to up-
right position efficiently for initial displacement of up to 34◦,
but the quadrotor’s velocity remains constant at the completion,
see Table II. This is expected due to the policy design. Balanced
hover, on the other hand, reduces quadrotor speed to zero, while
maintaining the upright pole position and its small velocities.
The downside is that it is capable in doing so only for a small
initial pole displacement. Finally, the Flying Inverted Pendulum
policy handles large initial pole displacements, and brings the
system without noise to the the task terminal conditions in a
maximum time of 5.38 s.

Lastly, the Table II shows that all three policies are capable
of handling some level of random noise. This is important
because it shows that the controllers have some tolerance to
random disturbances and unmodeled system dynamics without
impacting their performance significantly.

Fig. 6, 7, and 8 show the trajectories obtained with each of
the three policies. Pendulum positions and velocity, and quadro-
tor speed are depicted. Fig. 6 depicts the results considering
only the Initial Balance task starting at p = [0.2 − 0.2]T m.
This figure shows that Initial Balance policy brings the pole
to the upright position with minimal velocity, Fig. 6a and 6b
respectively, while the quadrotor velocity becomes constant,
Fig. 6c. The quadrotor’s residual velocity is considered in the
two following policies, see Fig. 7c and 8c. Fig. 8 shows the
results obtained using the policy Flying Inverted Pendulum.
The policy Initial Balancing starts by default and reduces
the position and velocity of the pendulum, once its terminal
conditions are achieved, the Balanced Hover policy reduces the
quadrotor velocity rapidly to zero while returning the pendulum
to the upright position with minimal velocity. Fig. 9 shows
the results obtained using the policy Flying Inverted Pendulum
while 5% of random noise is being added.

V. CONCLUSION

In this paper, we proposed a novel solution for the flying
inverted pendulum problem, i.e., balancing a pendulum on
top of a quadrotor. Our method is based on a reinforcement
learning algorithm for approximate value iteration which works
for multi-dimensional nonlinear control-affine systems. Estab-
lishing that the pendulum-quadrotor system is control-affine,
we applied this algorithm to generate two approximate near-
optimal state value functions: one for the task of balancing
the pendulum and the other for the task of balancing the
pendulum plus reaching a closed hovering state. Then, we
created a Inverted Flying Pendulum controller that computes
a control action using both value functions. We evaluated the
proposed controller in simulation considering a noisy system.
The controller handled a large initial displacement of the

pendulum driving the system close to the stable state given
by small pendulum displacement and closed-to-zero velocity
for the aerial vehicle and the pendulum.

REFERENCES

[1] A. Faust, P. Ruymgaart, M. Salman, R. Fierro, and L. Tapia,
“Continuous action reinforcement learning for underactuated dynamical
system control,” Adaptive Motion Planning Research Group Technical
Report TR13-002, 2013, under submission. [Online]. Available: https:
//cs.unm.edu/amprg/Publications/afaust-TR13-002.pdf

[2] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in IEEE
International Conference on Robotics and Automation (ICRA), 2011, pp.
763–770.

[3] L. Buşoniu, R. Babuška, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2010.

[4] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[5] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2010, pp.
1642–1648.

[6] F. Mueller, A. Schöellig, and R. D’Andrea, “Iterative learning of feed-
forward corrections for high-performance tracking,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2012, pp.
3276–3281.

[7] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learning swing-
free trajectories for UAVs with a suspended load,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013, pp. 4902–4909.

[8] I. Palunko, A. Faust, P. Cruz, L. Tapia, and R. Fierro, “A reinforcement
learning approach towards autonomous suspended load manipulation
using aerial robots,” in IEEE International Conference on Robotics and
Automation (ICRA), 2013, pp. 4896–4901.

[9] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Automated
aerial suspended cargo delivery through reinforcement learning,”
Adaptive Motion Planning Research Group Technical Report TR13-001,
2013, under submission. [Online]. Available: https://cs.unm.edu/amprg/
Publications/afaustTR13-001.pdf

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I and
Vol. II, 3rd ed. Athena Scientific, 2005 (Vol. I) and 2012 (Vol. II).

[11] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Mod-
eling, estimation, and control of quadrotor,” IEEE Robotics Automation
Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[12] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 2520–2525.

[13] A. Chamseddine, Y. Zhang, C. Rabbath, C. Join, and D. Theilliol,
“Flatness-based trajectory planning/replanning for a quadrotor unmanned
aerial vehicle,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 48, no. 4, pp. 2832–2848, 2012.

[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
multiple micro-UAV testbed,” IEEE Robotics Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.



0 1 2 3
−0.2

−0.1

0

0.1

0.2

Time [s]

P
o

s
it
io

n
 [

m
]

 

 
a
b

(a) Pendulum position

0 1 2 3
−0.4

−0.2

0

0.2

0.4

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ȧ

ḃ

(b) Pendulum velocity

0 1 2 3
−5

0

5

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ẋ
ẏ

(c) Quadrotor velocity

Fig. 6. Trajectory created with Initial Balance policy.

0 1 2 3 4
−0.01

−0.005

0

0.005

0.01

Time [s]

P
o

s
it
io

n
 [

m
]

 

 
a
b

(a) Pendulum position

0 1 2 3 4
−0.03

−0.02

−0.01

0

0.01

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ȧ

ḃ

(b) Pendulum velocity

0 1 2 3 4
−0.1

0

0.1

0.2

0.3

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ẋ
ẏ

(c) Quadrotor velocity

Fig. 7. Trajectory created with Balanced Hover policy.

0 1 2 3 4
−0.2

−0.1

0

0.1

0.2

Time [s]

P
o

s
it
io

n
 [

m
]

 

 
a
b

(a) Pendulum position

0 1 2 3 4
−0.1

0

0.1

0.2

0.3

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ȧ

ḃ

(b) Pendulum velocity

0 1 2 3 4
−2

−1

0

1

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ẋ
ẏ

(c) Quadrotor velocity

Fig. 8. Trajectory created with Flying Inverted Pendulum policy.

0 5 10 15
−0.2

−0.1

0

0.1

0.2

Time [s]

P
o

s
it
io

n
 [

m
]

 

 
a
b

(a) Pendulum position

0 5 10 15
−0.4

−0.2

0

0.2

0.4

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ȧ

ḃ

(b) Pendulum velocity

0 5 10 15
−5

0

5

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

 

 
ẋ
ẏ

(c) Quadrotor velocity

Fig. 9. Trajectory created with Flying Inverted Pendulum policy with 5% of noise.

TABLE II
SIMULATION RESULTS FOR 100 RANDOM INITIAL CONDITIONS FOR THE THREE CONTROLLERS WITH AND WITHOUT NOISE.

Noise tf [s] tc [s] ‖pf‖ [mm] ‖ṗf‖ [mm/s] ‖ṙf‖ [mm/s]
% avg min max avg min max avg min max avg min max avg min max

Initial 0 0.67 0.04 1.32 0.03 0.00 0.06 54 26 98 82 15 96 1622 25 4121
Balancing 5 0.68 0.04 1.54 0.03 0.00 0.09 53 27 99 85 15 105 1593 24 5545
Balanced 0 5.55 5.48 5.60 0.19 0.18 0.22 0 0 0 2 1 4 24 10 40
Hover 2 2.86 0.22 5.16 0.10 0.01 0.17 2 1 2 32 7 49 293 33 495
Flying 0 4.50 1.06 5.38 0.17 0.05 0.28 2 1 2 20 7 42 165 35 438
Inv. Pend. 5 4.51 0.76 5.50 0.17 0.04 0.32 2 1 2 21 4 46 173 25 446


