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Abstract—Generating motions for robot arms in real-world
complex tasks requires a combination of approaches to cope
with the state-space complexity, task structure, environmental
noise, and hardware imperfections. This article presents an
efficient framework for adaptive motion task learning on
physical hardware that consists of state-space dimensionality
reduction with probabilistic roadmaps (PRM), task transfer
from simulation to hardware, and an online reinforcement
learning algorithm. Online refers to ongoing policy update and
adaption to current state of the environment. The task transfer
jump starts training on the hardware with knowledge learned
in simulation. To achieve faster trainings speeds and improve
scalability we integrate a PRM with the learning agent. For
motion-based task learning, we use a reinforcement learning
algorithm loosely based on human cognition. We demonstrate
the framework by applying it to two pointing tasks on a 7
degree of freedom Barrett Whole Arm Manipulator (WAM)
robot. The first task has a stationary target and illustrates the
scalability and the ability of the framework to quickly adapt
and compensate for hardware noise. The second task goes a step
further and introduces a non-stationary target, demonstrating
the framework’s ability to adapt quickly to a new environment
and new task.

I. I NTRODUCTION

Fig. 1: Whole Arm Manipulator (WAM).

In order to perform tasks, robots must be able to adapt
to changing environments and problems. In order to process
real world information, online planning has to process higher
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volumes of data with tighter deadlines at every time step. The
planning is subject to hardware imperfections and errors in
reading sensory information. Online reinforcement learning
(ORL), a machine learning technique, is a useful tool for
robotics motion learning and planning. It provides a closed-
loop feedback system continuously incorporating current
environment information into the planning and producing
the motions required to perform a task. However, online
reinforcement learning comes with several challenges that
make it potentially problematic to use on a physical system.

Implementation of an ORL algorithm must be carefully
designed to be safe for the robot both in terms of collision
avoidance and producing motions that don’t strain hardware.
Training the ORL agent from scratch on physical hardware
can cause wear and tear to the hardware and thus change the
dynamics of the system. Furthermore, motions take longer
time to execute on hardware than in simulation, and the
training phase could become impractically lengthy. Lastly,
because the state space grows exponentially with the number
of degrees of freedom, the sheer size of real world state
spaces and physical laws of motion that need to be processed
at every time step in real-time could make ORL prohibitively
computationally expensive even for serial link manipulators
with as little as 3 DoFs [7].

Reinforcement learning (RL) learns action (motion) se-
quences that maximize accumulated reward over the agent’s
lifetime. RL learns a policy, a mapping between robot’s states
and its actions with respect to some observed, and unknown
to the agent, reward signal. The outcomes of the action-
taking, transitions between the states, are also unknown a
priori and are learned through experience. The RL problem
is defined by specific state and action spaces, the ability to
observe action effects on the states, and the reward associated
with states. To accomplish task learning with RL, we need
to engineer the reward structure that corresponds to the
task, the state space that corresponds to the possible robot
configurations, and the actions space that corresponds to
possible robot motions.

Two major classes of RL methods are available, online
and offline. Offline methods analyze and derive policy from
an experience batch. Online RL, on the other hand, derives
policy in an ongoing manner. It improves and changes the
policy with every step. The advantage of the online RL
is that it naturally adapts to the changing environment,
something offline RL is not capable of doing. The adaptation
comes at the price of longer convergence times to threshold
performance. Being more computationally expensive, online
RL is potentially prohibitive for systems with high degrees



of freedom. In this article, we take advantage of online RL,
but address the slow convergence times with dimensionality
reduction with PRMs for improved scalability, and with
learning transfer by training first in simulation and moving
goals.

Consolidating on our previous work [7], [8], this article
presents framework based on ORL that successfully over-
comes the challenges above and learns motion-based tasks
suitable for a physical robot. To jump start the learning on
hardware, and avoid a lengthy training phase, we transfer
the knowledge from a task trained in simulation. To achieve
performance suitable for a physical system, ensure the safety
of the system, and address state space scalability, we rely on
probabilistic roadmaps (PRM) for dimensionality reduction.
The state space information reduced by the PRM is passed to
our learning agent, which learns to produce efficient motion
plans. We use a Brain-Emulating Cognition and Control
Architecture (BECCA) [14] agent. It is an adaptive online
reinforcement learning algorithm paired with an unsupervised
hierarchical feature creator. BECCA’s algorithm containsa
decay feature, allowing the agent to forget features and
motion plans over time. This feature is especially useful
for changing environments, as the agent continuously learns
and updates plans based on the current feedback from the
environment.

To demonstrate the framework, we implement a pointing
task on a 7 DoF WAM (Figure 1) using all 7 degrees of
freedom. The robot needs to autonomously learn how to
point at a target location in its environment regardless of
the start position. We first formulate the task in terms of RL,
and perform four sets of experiments. First, we compare the
learning scalability with and without the PRM dimensionality
reduction as a function of degrees of freedom. In the second
series of the experiments, we assess learning transfer impact
on a stationary target. We assess the performance of the
framework by measuring how well the agent adapts to
hardware imperfections and measurement noise. In the third
series of experiments the target location moves and we assess
the adaptability. Lastly, we examine the performance of the
framework by looking into time savings obtained by using
transfer learning.

Our results show that the system task performance does not
change with increase in dimensions, and shows near-identical
performance between simulation and transferred hardware
runs. We show between 100 to 600 time steps of savings
obtained by using transfer learning, and demonstrate an agile
agent that quickly adapts to the new environment within 500
time steps.

The rest of this article is organized as follows: Section
II provides necessary background and an overview of the
related work. Section III discusses our methodology, and
section IV presents our experimental results. Finally, section
V concludes the article with the framework’s benefits to
online, reactive motion-based learning.

II. PRELIMINARIES

This article presents a task learning framework for a serial
link mainulator, based on BECCA [14], transfer learning
[18], and PRMs [4]. This Section gives necessary background
and context.

A. Barrett Whole Arm Manipulator Hardware Platform

The Barrett Whole Arm Manipulator (WAM) platform
is a 7 degree of freedom (DoF) robotic arm. It is cable-
driven and controlled with position encoders and torque
estimation. The WAM has been connected to a GE Intelligent
Platforms reflective memory network in a hub design that
allows multiple computers to share memory at speeds ranging
from 43 MB/s to 170 MB/s. The reflective memory networks
allow remote computers to handle the planning and learning
processing, while leaving a small and fast computer on-board
the WAM to handle simple motion control.

There is active research on WAM training through human
demonstration. A WAM system is represented as a canonical
system of motor primitives [12]. The direct policy search
class of reinforcement algorithms learns the parameters of
the canonical system, while using the demonstration as an
initial policy [12]. This line of research has produced a WAM
capable of playing table-tennis [10], performing a ball-in-a-
cup task [5], and flipping a pancake [6].

B. BECCA

Creating a general learning machine has been one of the
grand goals of artificial intelligence (AI) since the field was
born. Efforts to achieve this goal may be divided into two
categories. The first category uses a depth first approach,
solving problems that are complex, yet limited in scope, such
as playing chess. The assumption underlying these efforts is
that an effective solution to one problem may eventually be
generalized to solve a broad set of problems. The second
category emphasizes breadth over depth, solving large classes
of simple problems. The assumption underlying these efforts
is that a general solution to simple problems may be scaled
up to address more complex ones. An example of the first
category would be a master level chess playing agent, while
an example of the second category would be an agent with the
capabilities of an ant worker. The work described here falls
into the second category, focusing on breadth. The motivating
goal for this work is to find a solution to natural world
interaction, the problem of navigating, manipulating, and
interacting with arbitrary physical environments to achieve
arbitrary goals. In this context, environment refers both to the
physical embodiment of the agent and to its surroundings,
which may include humans and other embodied agents.
The agent design presented here is loosely based on the
structure and function of the human brain and is referred to
optimistically as a Brain-Emulating Cognition and Control
Architecture (BECCA) [14], [15].

A Brain-Emulating Cognition and Control Architecture
agent interacts with the world by taking in actions, making
observations, and receiving reward (see Fig. 2). Formulated in



this way, natural world interaction is a general reinforcement
learning problem [17], and BECCA is a potential solution.
Specifically, at each discrete time step, it performs three
functions:

1) reads in an observation, a vectoro ∈ ℜm | 0 ≤ oi ≤ 1.
2) receives a reward, a scalarr ∈ ℜ | −∞ ≤ r ≤ ∞.
3) outputs an action, a vectora ∈ ℜn | 0 ≤ ai ≤ 1.
Because BECCA is intended for use in a wide variety

of environments and tasks, it makes very few assumptions
about the environment beforehand. Although it is a model-
based learner, it must learn an appropriate model through
experience. There are two key algorithms to do this: an
unsupervised feature creation algorithm and a tabular model
construction algorithm.

Fig. 2: At each timestep, the BECCA agent completes
one iteration of the sensing-learning-planning-acting loop,
consisting of six major steps: 1) Reading in observations and
reward, 2) Updating feature set, 3) Expressing observations in
terms of features, 4) Predicting likely outcomes based on an
internal model, 5) Selecting an action based on the expected
reward of action options, and 6) Updating the model.

The feature creator component identifies repeated patterns
in the input vector [14]. It then groups loosely correlated
elements of the input vector. The groups are treated as
subspaces and unit vectors of these subspaces are features
[14]. New inputs are also projected onto existing features
and the single feature in each group which has the greatest
response is turned on while all others in that group are turned
off [13], [14], [16].

The reinforcement learning component receives feature
activity, reward, and direct input from the environment. Each
feature is associated with an approximate reward. It keeps
track of recent actions and recent features in working memory
which is then used to update the model. The actual model
is a table of cause-effect pairs. The cause is the working
memory and the effect is the current feature. Considering
this in standard reinforcement learning language, the model
can be thought of as a sequence of state-action pairs. Entries
in the table which are rarely observed are deleted from the
model [13], [14], [16].

To chose an action the reinforcement learner compares the
current working memory to the entries in the model and
selects the entry which both matches the current working
memory and which has the highest recorded reward. With a

set probability, an exploratory action is chosen instead [13],
[14], [16].

In the context of traditional Markov Decision Process
(MDP)-based reinforcement learning, the cause-effect pairs
are equivalent to action-state pairs. The cause-effect table
with the working memory and its expected reward roughly
corresponds to a Q-function in traditional MDP-based re-
inforcement learning. However, BECCA’s model does not
assume the Markovian property and might depend on more
than one previous state.

As time progresses, less frequently observed cause-effect
transitions fade from the memory and the cause-effect table.
This makes BECCA inherently able to adapt to new situations
and environments at the cost of a steeper learning curve.

C. Probabilistic Roadmaps

PRMs [4] are a path planning technique used with robots
with high DoFs to reduce the complexity searching in a high-
dimensional and continuous space of possible configuration.
They have been applied to a variety of complex robot types
including manipulators [11], walking robots [3], nonholo-
nomic robots [2].

PRMs tackle the planning problem by working inconfig-
uration space(C-space) rather than the workspace.C-space
is set of all positions a robot can take. It is partitioned in
set of feasible configurations (C-free), and configuration in
collision. PRMs work by building a roadmap of possible
feasible motions inC-free space. They do this by randomly
selecting points in C-free. Then, nearby points are connected
with a local planner. Only connections that fully belong toC-
freeare added to the roadmap. Nearby can be defined by low-
cost Euclidean distance calculation to identify thek nearest
neighbors. Connection can be achieved using straight-line
interpolation. To solve the collision-free problem between
start and goal configurations, a roadmap is queried. If the
start and goal do not belong to the roadmap, they are added
to it. Then the solution to the motion planning query is the
shortest path in the roadmap with respect to some metric,
often Euclidean distance, that connects the start with the goal
configuration. This path is a sequence of configurations from
C-free space that transforms start configuration to the goal
configuration free of collision.

D. Transfer Learning

Transfer learning typically refers to utilizing information
learned in the past on a task in the present [18]. This past
learning can be transferred to a new task or to the same
task under different constraints. Transfer learning has also
been utilized in transferring knowledge from one robot to
another robot that may have a different internal architecture
to represent the world [18]. Taylor and Stone [18] define
jump start and time to threshold performance as two metrics
for transfer learning. Jump start defines the amount of gain
an agent initially receives from transferred knowledge. Time
to threshold performance defines the amount of time it takes



Fig. 3: Task learning framework.

an agent to reach the threshold performance, which is the
best the agent can do at a given task.

III. M ETHODS

We present a framework for online motion-based task
learning. Figure 3 shows the framework’s main components.
Task definition describes process of constructing the reward
structure, and state-action space encoding to describe the
task. PRM creation segment generates a roadmap for a given
environment and physical system. With the roadmap con-
structed and task encoded, the BECCA agent is deployed on
a simulated system. Once the simulated agent’s performance
meets the satisfactory criteria, the entire agent is transferred
to the physical system for ongoing task performing.

A. Probabilistic Roadmaps Creation

This article uses the PRMs combined with learning agent
techniques to build a roadmap for the reinforcement learning
agent to navigate by randomly sampling joint positions.
The PRM for a task, environment, and system are created
as outlined in Section II-C. The nodes in the roadmap
are connected tok nearest neighbors using straight line
local planner. The learning agent’s state space is reduced to
roadmap nodes, and actions are limited to edges between
the nodes. The agent is constrained to making straight line
movements along the edges in the adjacency matrix, thus
constraining the reinforcement learner to learn how to nav-
igate the roadmap. During a transfer, the previously learned
roadmap is preserved. The PRM is the underlying state space
provided to the learning agent.

B. Task definition

While BECCA is mostly automated, an engineer must
design a task to interface with BECCA via sending sensory
vectors and interpreting action vectors. Such an interfaceis
called a task. A task simply defines what information from
the world will be sent to the agent, and in what format. Note
that BECCA is agnostic to the task semantics. The task also
defines how to read an action vector and move the robotic
actuators. Again, note that BECCA is agnostic to how this
is defined, and it will learn whatever format the engineer
devises. To demonstrate the framework we now define two
pointing tasks and explain their setup.

1) Task with Stationary Target:The sensory vector is an
element binary vector, since the PRM containsn nodes. Each
node represents a feasible, collision-free configuration of the
robotic arm. When the robot is at a particular configuration
the corresponding element in the sensory vector is set to 1.

Algorithm 1 shows how the pointing task is constructed.
The action vector is ak element long binary vector and
is parsed by theinterpret function. In this task, we have
constrained BECCA to only return a single 1 in the action
vector. The interpret function in Algorithm 1 does the
following: The 1 in the action vector represents BECCA
selecting to move to one of thek neighbors, and the(k+1)th

element is interpreted as staying at the current configuration.
For example the action vector[0, 1, 0, 0] is interpreted by
the task as selection to move to the second neighbor of
the current configuration in the roadmap. The function then
returns the configuration of the selected neighbor.

The reward structure for the PRM task assigns a reward
of 100 to the target node, a reward of 10 to all neighbors of
the target node, and a reward of 1 to the neighbors of the
neighbors. Every other node is given a reward of 0.

2) Pointing Task with Non-stationary Target:The for-
mulation and the setup of the non-stationary target task is
the same as in Section III-B1. The reinforcement learner is
trained on an initial pointing task and then transferred to
hardware, however upon being transferred the goal state is
changed. Thus, the learning agent must compensate for the
changed goal, while learning to adapt to the dynamics of
the hardware system. Specifically, for this task the goal state
is moved to one of the neighbors in the roadmap of the
simulation goal state. The reward structure is changed so
that the new goal state is reward 100 and the neighbors of
the new goal 10 and the neighbors of the neighbors 0.1.

C. Transfer Learning from Simulation to Hardware

Taylor and Stone define a taxonomy of transfer learning
in the reinforcement learning domain in [18]. Using that
terminology, our source task is a simulated pointing task. We
have two target tasks. In one, the target task has the same goal
and algorithm in both simulation and hardware runs. In the
other the target is moved but it still has the same algorithm.
The transferred knowledge is a set of feature groups and a

Algorithm 1 Task Step

Require: Task
1: Task.agent.action = [0, 0, 0, 0]
2: while not coverging do
3: newLocation← interpret(task.agent.action)
4: sendToWAM(newLocation)
5: task.currentPosition← read current WAM location
6: task.SensoryInput← task.currentPosition

7: task.reward← task.calculateReward()
8: task.agent← agentstep(SensoryInput,Reward);
9: end while



cause-effect pairs.
We transfer learned knowledge of a single task between a

perfect simulation of a robot to imperfect robotic hardware.
In simulation the robot always receives the exact same joint
angles for a particular state, but in hardware the joint angles
are subject to small error so re-entering the same state will
not have the exact same state information. The source task
uses the same learning agent, parameters, and reward function
as the target task. The only difference is that the source
task interacts with the WAM simulator while the target task
interacts with the WAM hardware.

When performing the transfer, we transfer the entire agent
with all its internal states and accumulated experience. We
only change the world model that it interacts with from the
simulator or the WAM interface.

D. WAM Simulator

The WAM simulator is a simple kinetic simulator, rep-
resenting the arm with seven points each corresponding to
one degree of freedom. The arm moves in the simulator by
simply adding the state and action vectors. The simulator
does not inject noise, and performs perfect movements. The
WAM arm, on the other hand, performs the movements as
described in the Sections II-A and III-E. The resulting motion
is subject to error in performing the movement.

E. WAM Interface

The WAM is connected to a xPC Target Kernel running
Matlab Simulink 7.7.0 R2008b [9]. The controller for the
WAM is written in Simulink and interfaces with remote
computers via the reflective memory network. The Simulink
code responsible for directly issuing commands to the WAM,
henceforth the WAM controller, receives a command vector
by reading a specific block of reflective memory. The com-
mand vector is a length seven vector containing the desired
joint angles in radians of each for the seven WAM joints.

The WAM controller, upon receiving a command vector,
places the command vector into a buffer, which only stores
one move. The command vector is first sanitized so that
each entry is within the WAM’s joint limits. If the WAM
is not executing a move, it compares its current location to
the command vector buffer. If the command vector buffer
is sufficiently different from the current location, the WAM
controller computes a linear interpolation in joint space
between the two joint angles and executes the path within the
allowable WAM workspace. However, the velocity follows a
fifth-order smooth polynomial as seen in Fig 4, and is used
both for safety and for mimicking biological motion [1]. Slow
beginnings and endings to moves provide safe joint torques.
In the current architecture a move cannot be interrupted.

IV. EXPERIMENTS

We perform four experiments. Two experiments involve
the stationary target pointing task, one is a non-stationary
pointing task, and the last evaluation assesses the training
time benefits of the framework. First we, evaluate the utility
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Fig. 4: Example Velocity Profile for a Single Joint.

of the dimensionality reduction using PRMs over standard
state space binning. Then, we examine the benefits of transfer
learning, including performance adaptability. All experimen-
tal results are averaged over five executions. Throughout the
experiments, we measure the performance on the learning
agent by measuring its cumulative reward. When the learning
agent is transitioned from simulation to physical hardware,
it is placed in a configuration that is as far as possible from
the goal configuration.

We present the performance of the learning agent on
hardware compared to performance in simulation. The agent
executes in time steps but the graphs are shown in blocks,
where 1 block equals 100 time steps. We look at the time
savings brought on by using transfer learning, and the initial
boost of performance that was obtained by knowledge trans-
fer. In case of the non-stationary task, we will look at the
time it takes the agent to react to a change in environment
and recover to the previous level of performance

Each experimental run is executed on a new roadmap of
50 configurations generated using PRMs. Each configuration
is connected to 3 neighbors and itself. A random point in
the 50 configurations is chosen as the goal. The goal node is
given a reward of 100.

A. Dimensionality reduction utility

This Section evaluates learning scalability when the state
space is reduced to PRM nodes. The goal of incorporat-
ing PRMs is to help guide the searching. The state space
dimensionality increases exponentially with DoFs. In [8],
we showed that BECCA can learn up to 3 DoF pointing
tasks with binned state space representation. Beyond that,the
learning takes impractically long and the results are affected.
Incorporating PRMs allows us to reduce the state space for
3-DoF tasks to the number of nodes in the roadmap. For the
results shown, the state space has 50 nodes, but the number
of nodes can be adjusted.

We compare the learning performance of the PRM based
task, with two variants of the task with stationary point (Sec-
tion III-B1). The task is reduced to 3 DoFs by limiting the
WAM to use only three joints. Joints 1, 2, and 3, are mapped
into a 3 dimensional C-space. Then, fifty random points are
sampled in the C-space using a uniform distribution. The
fifty points are then connected probabilistically based on the



distance between the points, such that closer points have
a higher probability of being connected. Fig. 5 shows an
example of a PRM generated for the 3-DoF task.

Fig. 6 shows the cumulative reward per block for BECCA
operating on the 3-DoF PRM task. The maximum reward that
can be receive per iteration is 100, making the maximum per
block 10,000 units of reward. The PRM covers a wide area
in the WAM’s range of motion, but only takes 900 iterations
to reach a very high cumulative reward. 900 iterations is
significantly fewer than the 5,000 iterations required for the
2-DoF task to converge [8], which indicates that PRM’s are
very effective at reducing the convergence time of BECCA.
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To compare the PRM based task to non-PRM tasks, two 3-
DoF tasks are created, a simple and a hard task. The simple
3-DoF task has 3 bins per joint, and an action vector of
length 12. The hard 3-DoF task has 4 bins per joint, and
an action vector of length 18. The reward structure for both,
the simple and hard tasks, parallel to the PRM task. It has
a maximum reward of 100 per iteration and thus 10,000 per
block. The simple task has 27 possible states. The hard task
has 64 possible states and the PRM has 50 states. Thus, the
simple and hard tasks frame the PRM in number of states.
However, it is important to note that the simple and hard

tasks have larger action vectors than the PRM task, 12 and
18 actions vs. 4.

Fig. 7 shows that the PRM method converges much faster
than either the simple 3-DoF or hard 3-DoF task. The PRM
method has reached the optimal of 7,000 units of reward
by around 1,000 iterations while, the simple 3-DoF task
has only reached approximately 6,000 units of reward by
7,000 iterations. The 3-DoF hard task has only reached
approximately 3,500 by 7,000 iterations. Thus we can see that
the PRM task converges much faster than either the simple
or hard task.
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vector length of 18, giving a state space of4

3. The PRM task has
50 points which correspond to 50 states.

To further show the scalability of the PRM approach we
produce Fig. 8 which plots the average reward of 10 runs
for each DoF from 1 to 7. This graph confirms that PRM-
BECCA is unaffected by the Degrees of Freedom with a
constant number of nodes. However, there is a problem with
just testing the Degrees of Freedom and holding the number
of nodes constant. By holding the number of nodes in the
PRM constant, the density of nodes decreases as the DoF
increases. Thus we must also test to see how BECCA scales
with the number of nodes.
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Fig. 8:Cumulative reward per block of 1-DoF to 7-DoF with PRMs.

In the following experiments we vary the number of nodes
from 60 to 200 in steps of 20, and thek neighbor parameter is
set to 4. Since the previous experiment showed that BECCA
would converge at the same number of steps regardless of
DoF we chose to do this experiment with 3 DoF. Again 10
runs are done for each number of nodes, and the results are
averaged. Fig. 9 shows the average cumulative reward for
each test. It shows that BECCA may converges at the same



TABLE I: Average cumulative rewards in simulation and on hardware
after the stabilization for 7DoF task with a stationary target and 7DoF task
with a non-stationary target

Task Simulation Hardware
Stationary Target 7460.3 7614.8

Nonstationary Target 7460.3 7491.5

time regardless of number of nodes in the graph. Fig. 9 is
very similar to Fig. 8, thus showing that BECCA converges at
the same rate regardless of DoF and regardless of the number
of nodes in the PRM.
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Fig. 9: Reward per Block for Varying Number of Nodes.

It is important to note that this is a novel use of PRMs. In
previous work, they have been used to plan the motions for
complex robot systems [2], [3], [11]. However, by integrating
PRMs with BECCA, we are able to demonstrate automatic
learning of controls to achieve motion in complex problems.

B. Transfer Learning on Pointing Task with Stationary Target

This Section assesses the effect of the transfer learning to
the system performance. We learn first in simulation and then
transfer the entire task to the physical system (Section III-C).

Figure 10 shows the cumulative reward of the pointing task
with the stationary target in simulation and on hardware. The
vertical line indicates the transition from the simulationto the
hardware. The results show near-seamless transition, and the
average performance of the agent on hardware very close to
the performance in the simulation.

Table I shows the average cumulative reward for each
experiment after stabilization, before and after transition to
the physical hardware. Stabilization in simulation occursat
20 blocks. The performance of the agent on the hardware
outperforms the agent in simulation by 154 units of reward.

To better demonstrate the advantages of using the transfer
learning in our framework, the pointing task with stationary
target experiments were run again in a different manner. Five
completely untrained learning agents were run on hardware
for 20 blocks and the results averaged together. Then five
agents which were trained for 100 blocks in a simulation
were run on hardware for 20 more blocks and averaged
together. Figure 11 shows the comparison of the stationary
pointing task using transfer to the same task without using
transfer. The advantages of using transfer are seen primarily
in the jump start and the time to threshold metrics. Table II
shows the transfer metrics for the three experiments. Jump
start shows the immediate gain from using the transfer. The

TABLE II: Transfer Metrics for stationary and non stationary tasks. Jump
start shows the gain from using transfer. Threshold gain shows the reduction
in time steps needed to reach the threshold performance

Task Metric Average min max

Stationary
Jump Start (reward) 5716 2757 9280

Threshold Gain (steps) 500 200 700

Non-stationary
Jump Start (reward) 1313 364 1702

Threshold Gain (steps) 100 100 400

pointing task starts very close to the threshold performance
using the transfer and has a jump start gain of 5716. In
all random runs, the transferred learning agent outperforms
the non-transferred learning agent (Table II). Furthermore,
the transferred task reaches the threshold performance in 2
blocks compared to 7 blocks without transfer (Figure 11). It
is important to note the time saved by using transfer learning.
Table III shows the run times for simulation versus hardware
for 20 blocks. It is clear that simulation is faster by up
to 1 hour and 55 minutes. Using transfer learning it takes
significantly less physical time on the robotic hardware for
the agent to perform the given task as near optimal levels.
This not only saves valuable time but it also saves valuable
wear and tear on the hardware.

It is important to note that the learning algorithm is not
executing pre-planned paths. It learns from experience which
paths lead to highest reward and attempts to follow those
paths. The paths learned in simulation provide BECCA with
a strong foundation to work from, however each execution
of the learning problem finds different paths due to the
randomness of exploration. Thus, it is possible to witness
executions of BECCA on the same underlying roadmap with
slightly varying performances.
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Fig. 10: Cumulative reward for the pointing task with stationary target
per time step. The vertical line indicates where the learningagent was
transitioned from simulation to physical hardware.

C. Adaptability Evaluation on Pointing Task with Non-
stationary Target

In this experiment the reinforcement learner is trained on
an initial pointing task and then transferred to hardware.
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Fig. 11: Cumulative reward for the pointing task running on hardware
with stationary target task with transfer and without transfer per time
step. Transfer is when an agent trained in simulation is transferred to
hardware. Jump start shows the initial gain obtained by usingthe transferred
knowledge. Time to threshold indicates the time that the task without the
transfer needs to achieve the same level of performance as the task with the
transfer.

TABLE III: Average time in minutes to run 20 blocks in simulation and
on hardware for 7DoF task with a stationary target and 7DoF task with a
non-stationary target

Task Simulation (min) Hardware (min)
Stationary Target 23 122

Non-stationary Target 24 121

However, upon being transferred, the goal state is changed.
Thus, the learning agent must compensate for the changed
environment. The goal state is moved to one of the neighbors
in the roadmap of the simulation goal state. The reward
structure is changed so that the new goal state is reward 100
and the neighbors of the new goal 10 and the neighbors of
the neighbors 0.1.

Figure 12 shows the results of 100 blocks of simulation
and then 20 blocks of running on hardware where the goal
has changed. Initially there is a steep performance drop, but
the reward does not drop to zero. The agent quickly recovers
and learns the new reward structure within 6 blocks. This
shows the online nature of the BECCA algorithm. It is able
to first learn one environment and when placed into a slightly
different environment it is able to quickly compensate for the
change.

Figure 13 is a comparison between the agent having
previously learned a pointing task in a modified environment,
to an agent without any prior knowledge. However, the agent
with knowledge has learned to point to a different goal in
simulation before being run on hardware. The untrained agent
is also run on hardware but has a stationary target. Thus, the
transferred agent has some information about the structure
of the environment but it does not have the exact reward
structure as the goal was moved before being placed on
physical hardware. The figure shows that the agent with prior
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Fig. 12:Cumulative reward for running in simulation and then transferring
the task to hardware. The transfer occurs at 100 blocks.

knowledge has a small jump start of 1313 units of reward
and reaches the threshold performance 1 block faster than
the agent without transferred knowledge.
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Fig. 13: Cumulative reward for the pointing task running on hardware
with a non-stationary target task with transfer and withouttransfer per time
step. Jump start shows the initial gain obtained by using the transferred
knowledge. Time to threshold indicates the time that the task without the
transfer needs to achieve the same level of performance as the task with the
transfer.

Figure 14 shows a variant on the moving target. In this
experiment the agent is trained in simulation until conver-
gence to the threshold performance. After convergence in
simulation the agent is moved to physical hardware with an
unchanged goal (just like the stationary target experiments).
The agent is then allowed to adapt to the hardware for
10 blocks, at which point the goal is moved while still
on hardware. The agent must then adapt to this change in
hardware. Figure 14 shows that the agent does very well
with the initial transfer and does better when the goal is
moved than Figure 12, where the agent is not allowed to
adapt to the hardware before the goal is moved. The threshold
performance is restored after 6 time-blocks, as previously.



But, the minimal reward of 2080 at that time-frame, is higher
than the minimal reward of 1313 when the environment is
changes right after the task transfer from the simulation to
the hardware.
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Fig. 14: Cumulative reward for the pointing task initially trained in
simulation then transferred to the robot at the solid black bar. While running
on the robot the goal is then changed at the red dashed line.

D. Timing

Timing data is collected by simply measuring the differ-
ence between start time and stop time for runs. Table III
shows the timing data for running the learning algorithm
in simulation versus on physical hardware. The run time
on hardware is approximately 5 times longer due to the
amount of time it takes to for the arm to move between
configurations. Each move on the WAM takes approximately
3.5 seconds to compute and execute. This computation time
includes the feature extraction and action decision time for
the learning algorithm. In contrast, in simulation it only takes
0.5 seconds of time to execute a complete move.

Since BECCA is an online learning algorithm, it can adapt
to changes in real time. However, because it is an unsuper-
vised learning agent it still requires repeated examples ofthe
new environment. The real time metric that we are interested
in is the amount of time it takes to converge to the threshold
performance. This time is important because it represents
the amount of time in which the robot is learning instead
of performing the desired task. This metric is recorded by
simply measuring the difference between the start time of
run and the time of each step. Table IV shows the average
time for reaching the threshold performance with and without
transfer learning. This table shows that transfer learning
reduces the learning time by 29 minutes for a stationary target
and 8 minutes for a non-stationary target.

For the experiment with both stationary and non-stationary
targets, Table IV shows the convergence time after the target
is changed for simulations training and without simulation
training. This experiment first transfers the simulation tothe
robot with a station target, and then after stabilizing the
target is moved (like the non-stationary test). The version
without simulation runs the whole experiment on the physical

TABLE IV: Average Time for Convergence to Threshold Perfor-
mance.

Task w/o Transfer (min) w/ Transfer (min)
Stationary Target 40.8 11.7

Non-stationary Target 41.1 33.0

Task w/o Transfer (min) w/ Transfer (min)
Both Targets: recovery 25.9 24.7
Both Targets: total time 129.5 82.1

robot. The times for the recovery are very similar, which
is to be expected as they are just showing the recovery
from the changed target experiment. At this point both the
transfer run and the no-transfer run have the same knowledge
and thus exhibit the same amount of recovery time. This
demonstrates the online nature of the algorithm. However, the
total run-time is very different as the transfer agent does 1400
iterations in simulation (11.44 minutes vs. 58.30 minutes).
This is a difference of 47.37 minutes.

V. D ISCUSSION

We demonstrated an efficient online motion-based task
learning framework based on reinforcement learning that
works in high-dimensional spaces in real-time, is reactiveto
changes in the environment, performs safe hardware motions,
and efficiently learns on hardware. We demonstrated the
framework by implementing it on a 7 DoF WAM using
all joints to produce pointing motions with both stationary
and non-stationary targets. The framework is robust and
extensible to other robotics systems as well as with different
model formulations, and for a large variety of tasks as well.

Dimensionality reduction and collision checks can be
handled through PRMs for any motion-based task. When
PRMs are used in this manner, they impose hard limits
on the system. For example, self-collision states tend to be
invariant to the type of environment or the task, and are good
candidates to be precomputed ahead of time. When there is
error in the model used for simulation caused by noisy sensor
data, the robot can explore the validity of the simulation’s
roadmap and learn how to efficiently navigate in the physical
environment.

Transfer learning can be used to avoid early learning
phases when the agent’s performance tends to be erratic, to
reduce wear and tear on robot, and to speed up the learning
process on the physical robot. It can be a powerful techniques
to mitigate the long convergence times of reinforcement
learning. Combining transfer learning, reinforcement learning
and probabilistic roadmap methods produces a powerful
framework for solving complex robotic tasks. By harnessing
each method’s strengths, the weaknesses of the other methods
can be mitigated.

An online reinforcement learning algorithm is a suitable
candidate for a planner when paired with the above tech-
niques. Such a reinforcement learner continuously learns and
updates its policy by incorporating most recent experience
from the environment and produces motion plans that are
adaptive, real-time, and reactive.
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