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Abstract—Generating motions for robot arms in real-world  volumes of data with tighter deadlines at every time steg Th
complex tasks requires a combination of approaches to cope planning is subject to hardware imperfections and errors in
with the state-space complexity, task structure, environmenta a4 qing sensory information. Online reinforcement leagni

noise, and hardware imperfections. This article presents an ORL hine | ina techni . ful tool f
efficient framework for adaptive motion task learning on ( ), & machine learning technique, is a useful tool for

physical hardware that consists of state-space dimensionality Fobotics motion learning and planning. It provides a clesed
reduction with probabilistic roadmaps (PRM), task transfer loop feedback system continuously incorporating current
from_3|mulat|c_>n to ha_rdware, and an _onllne_relnforcement environment information into the p|anning and producing
learning algorithm. Online refers to ongoing policy update and the motions required to perform a task. However, online

adaption to current state of the environment. The task transfe inf t . ith | chall that
jump starts training on the hardware with knowledge learned '€/Nforcement iearning comes with several challenges tha

in simulation. To achieve faster trainings speeds and improve Make it potentially problematic to use on a physical system.
scalability we integrate a PRM with the learning agent. For Implementation of an ORL algorithm must be carefully
motion-based task learning, we use a reinforcement leamning designed to be safe for the robot both in terms of collision
algorithm loosely based on human cognition. We demonstrate g\ gigance and producing motions that don’t strain hardware
the framework by applying it to two pointing tasks on a 7 Training the ORL agent from scratch on physical hardware
degree of freedom Barrett Whole Arm Manipulator (WAM)
robot. The first task has a stationary target and illustrates the Can cause wear and tear to the hardware and thus change the
scalability and the ability of the framework to quickly adapt dynamics of the system. Furthermore, motions take longer
and compensate for hardware noise. The second task goes a stefime to execute on hardware than in simulation, and the
further and introduces a non-stationary target, demonstrati P ; ;
the framework’s ability to adapt quicklyyto agnéw environme%t] training phase could become |mpract|ca_IIy Iengthy. Lastly
and new task. because the state space grows exponentially with the number
of degrees of freedom, the sheer size of real world state
[. INTRODUCTION spaces and physical laws of motion that need to be processed
at every time step in real-time could make ORL prohibitively
computationally expensive even for serial link manipulato
with as little as 3 DoFs [7].

Reinforcement learning (RL) learns action (motion) se-
guences that maximize accumulated reward over the agent’s
lifetime. RL learns a policy, a mapping between robot’sestat
and its actions with respect to some observed, and unknown
to the agent, reward signal. The outcomes of the action-
taking, transitions between the states, are also unknown a
priori and are learned through experience. The RL problem
is defined by specific state and action spaces, the ability to
observe action effects on the states, and the reward as=cia
with states. To accomplish task learning with RL, we need
Fig. 1: Whole Arm Manipulator (WAM). to engineer the reward structure that correspond_s to the

task, the state space that corresponds to the possible robot

nfigurations, and the actions space that corresponds to

ssible robot motions.

wo major classes of RL methods are available, online

and offline. Offline methods analyze and derive policy from
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In order to perform tasks, robots must be able to ad g
to changing environments and problems. In order to proces
real world information, online planning has to process high



of freedom. In this article, we take advantage of online RL, Il. PRELIMINARIES

but address the slow convergence times with dimensionalityThijs article presents a task learning framework for a serial
reduction with PRMs for improved scalability, and withjj,i mainulator, based on BECCA [14], transfer learning
learning transfer by training first in simulation and movinqlg], and PRMs [4]. This Section gives necessary background
goals. and context.

Consolidating on our previous work [7], [8], this articles pgarrett Whole Arm Manipulator Hardware Platform

presents framework based on ORL that successfully over-

comes the challenges above and learns motion-based task-léhe Barrett Whole Arm Manipulator (WAM) platiorm

suitable for a physical robot. To jump start the learning on.2 7 degree of freedom (DoF) robotic arm. It is cable-

hardware, and avoid a lengthy training phase, we trans%rtlven and controlled with position encoders and torque

the knowledge from a task trained in simulation. To achie\'&Stimaﬁon' The WAM has been connected to a GE Intelligent
e

performance suitable for a physical system, ensure theysa latforms reflective memory network in a hub design that

of the system, and address state space scalability, we melyf%IOWS multiple computers to share memory at speeds ranging

probabilistic roadmaps (PRM) for dimensionality reduntio from 43 MB/s to 170 MB/s. The reflective memory networks

The state space information reduced by the PRM is passe(?pgw re!“"te (r:](.)lm:oute.rs o hancljlle tzef plfmmng ?nd Ieg)rmng
our learning agent, which learns to produce efficient moti ocessing, while feaving a small and fast computer oneboar

plans. We use a Brain-Emulating Cognition and Contrd ?H\]NAM. o h?ndle S'mplﬁ mos\c/):'vclz?nt_rql. th hh
Architecture (BECCA) [14] agent. It is an adaptive onlined m er:et:St?CnN,i \r/t\a/:\(:/larc tor:n i r :alnlp]? q roug :n:]?nl
reinforcement learning algorithm paired with an unsupsedi emonstration. system IS represented as a canonica

hierarchical feature creator. BECCA's algorithm contains system of motor primitives [12]. The direct policy search

decay feature, allowing the agent to forget features a !]ass of reinforcement algorithms learns the parameters of

motion plans over time. This feature is especially usefdll® canonical system, while using the demonstration as an

for changing environments, as the agent continuously mammal policy [12]. This line of research has produced a WAM

and updates plans based on the current feedback from ?ﬁgable of playing .taple—tennis [10], performing a batein
environment. cup task [5], and flipping a pancake [6].

To demonstrate the framework, we implement a pointin%‘ BECCA

task on a 7 DoF WAM (Figure 1) using all 7 degrees of Creating a general learning machine has been one of the
freedom. The robot needs to autonomously learn how @gvand goals of artificial intelligence (Al) since the field sva
point at a target location in its environment regardless 8Prn. Efforts to achieve this goal may be divided into two
the start position. We first formulate the task in terms of RIcategories. The first category uses a depth first approach,
and perform four sets of experiments. First, we compare tBelving problems that are complex, yet limited in scopehsuc
learning scalability with and without the PRM dimensionali as playing chess. The assumption underlying these efforts i
reduction as a function of degrees of freedom. In the secoti@t an effective solution to one problem may eventually be
series of the experiments, we assess learning transfectmpgeneralized to solve a broad set of problems. The second
on a stationary target. We assess the performance of gi@egory emphasizes breadth over depth, solving largsedas
framework by measuring how well the agent adapts ®f simple problems. The assumption underlying these effort
hardware imperfections and measurement noise. In the thisdhat a general solution to simple problems may be scaled
series of experiments the target location moves and wesasgé to address more complex ones. An example of the first
the adaptability. Lastly, we examine the performance of ti@tegory would be a master level chess playing agent, while

framework by looking into time savings obtained by usingn eéxample of the second category would be an agent with the
transfer learning. capabilities of an ant worker. The work described here falls

into the second category, focusing on breadth. The matigati

h ith i in di : dsh dbnti 85I for this work is to find a solution to natural world
change with Increéase in dimensions, and Shows near-@enty teraction, the problem of navigating, manipulating, and

performance between simulation and transferred hardw%?eracting with arbitrary physical environments to agbie

runs. we ShOV.V between 100 tp 600 time steps of SaVmgrcbitrary goals. In this context, environment refers botthie
obtained by using transfer learning, and demonstrate de a ysical embodiment of the agent and to its surroundings

agent that quickly adapts to the new environment within 5 hich may include humans and other embodied agents.

time steps. The agent design presented here is loosely based on the
The rest of this article is organized as follows: Sectiostructure and function of the human brain and is referred to

Il provides necessary background and an overview of tloptimistically as a Brain-Emulating Cognition and Control

related work. Section Il discusses our methodology, amchitecture (BECCA) [14], [15].

section IV presents our experimental results. Finallytisec A Brain-Emulating Cognition and Control Architecture

V concludes the article with the framework’s benefits tagent interacts with the world by taking in actions, making

online, reactive motion-based learning. observations, and receiving reward (see Fig. 2). Formdiiate

Our results show that the system task performance does



this way, natural world interaction is a general reinforesitn set probability, an exploratory action is chosen insted&],[1
learning problem [17], and BECCA is a potential solution14], [16].

Specifically, at each discrete time step, it performs threeln the context of traditional Markov Decision Process

functions: (MDP)-based reinforcement learning, the cause-effeatspai
1) reads in an observation, a vectoe R™ | 0 < 0; < 1. are equivalent to action-state pairs. The cause-effede tab
2) receives a reward, a scalae R | —oco < r < co. with the working memory and its expected reward roughly
3) outputs an action, a vectare R" | 0 < a; < 1. corresponds to a Q-function in traditional MDP-based re-

Because BECCA is intended for use in a wide varietjiforcement learning. However, BECCAs model does not
of environments and tasks, it makes very few assumptiodgsume the Markovian property and might depend on more
about the environment beforehand. Although it is a modéhan one previous state.
based learner, it must learn an appropriate model throughAs time progresses, less frequently observed cause-effect
experience. There are two key algorithms to do this: dransitions fade from the memory and the cause-effect table
unsupervised feature creation algorithm and a tabular moddis makes BECCA inherently able to adapt to new situations
construction algorithm. and environments at the cost of a steeper learning curve.

C. Probabilistic Roadmaps
@G BECCA Agent O

feature reinforcement-
creator based learner
PRMs tackle the planning problem by working éonfig-

calculation
uration space(C-spacg rather than the workspac€-space
Fig. 2: At each timestep, the BECCA agent completé§ set of aI_I positioqs a r_obot can take. It is _partiti_one_d in
one iteration of the sensing-learning-planning-actingplo set_o_f feasible conflguratlons_j(free, and configuration in
consisting of six major steps: 1) Reading in observatiorss afCllision. PRMs work by building a roadmap of possible
reward, 2) Updating feature set, 3) Expressing obseniion f€asible motions irC-free space. They do this by randomly
terms of features, 4) Predicting likely outcomes based on Sfl€cting points in C-free. Then, nearby points are corueect
internal model, 5) Selecting an action based on the expect¥éfih @ local planner. Only connections that fully belongao
reward of action options, and 6) Updating the model. freeare agded to Fhe roadmap. Ngarby can b.e defined by low-
cost Euclidean distance calculation to identify th@earest

The feature creator component identifies repeated pattefffighPors. Connection can be achieved using straight-line
in the input vector [14]. It then groups loosely correlatelfiterpolation. To so'lve the collision-free problem'betwee
elements of the input vector. The groups are treated sfart and goal configurations, a roadmap is queried. If the
subspaces and unit vectors of these subspaces are feafthds and goal do not belong to the roadmap, they are added
[14]. New inputs are also projected onto existing featurd it- Then the solution to the motion planning query is the
and the single feature in each group which has the great8dprtest path in the roadmap with respect to some metric,
response is turned on while all others in that group are durn@ftén Euclidean distance, that connects the start with dae g
off [13], [14], [16]. configuration. This path is a sequence qf conf_lguratlons from

The reinforcement learning component receives featureiTe€ space that transforms start configuration to the goal
activity, reward, and direct input from the environmentcka configuration free of collision.
feature is associated with an approximate reward. It keeps
track of recent actions and recent features in working mgmor -
which is then used to update the model. The actual modelTransfer learning typically refers to utilizing informati
is a table of cause-effect pairs. The cause is the workitgprned in the past on a task in the present [18]. This past
memory and the effect is the current feature. Consideritgarning can be transferred to a new task or to the same
this in standard reinforcement learning language, the imodask under different constraints. Transfer learning has al
can be thought of as a sequence of state-action pairs. €nthieen utilized in transferring knowledge from one robot to
in the table which are rarely observed are deleted from thaother robot that may have a different internal architectu
model [13], [14], [16]. to represent the world [18]. Taylor and Stone [18] define

To chose an action the reinforcement learner compares thmp start and time to threshold performance as two metrics
current working memory to the entries in the model anfibr transfer learning. Jump start defines the amount of gain
selects the entry which both matches the current workign agent initially receives from transferred knowledgendi
memory and which has the highest recorded reward. Witht@threshold performance defines the amount of time it takes

PRMs [4] are a path planning technique used with robots
with high DoFs to reduce the complexity searching in a high-
dimensional and continuous space of possible configuration
They have been applied to a variety of complex robot types
including manipulators [11], walking robots [3], nonholo-
nomic robots [2].

world
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Task 1) Task with Stationary TargefThe sensory vector is a

definition Reward—) — element binary vector, since the PRM containsodes. Each
Training in - Tr:;;‘i':gg::d node represents a feasible, collision-free configuratidhe

Simulation | tansier | Physical robotic arm. When the robqt is at a particular conflguratlon

System the corresponding element in the sensory vector is set to 1.

PRM Reduced j Algorithm 1 shows how the pointing task is constructed.
creation state space The action vector is & element long binary vector and
is parsed by thenterpret function. In this task, we have

Fig. 3: Task learning framework. constrained BECCA to only return a single 1 in the action

vector. Theinterpret function in Algorithm 1 does the
following: The 1 in the action vector represents BECCA

an agent to reach the threshold performance, which is t@lecting to move to one of theneighbors, and thgk +1)""

best the agent can do at a given task. element is interpreted as staying at the current configurati
For example the action vectd, 1,0,0] is interpreted by
1. M ETHODS the task as selection to move to the second neighbor of

the current configuration in the roadmap. The function then
We present a framework for online motion-based taskturns the configuration of the selected neighbor.

learning. Figure 3 shows the framework’s main components.The reward structure for the PRM task assigns a reward
Task definition describes process of constructing the @wagf 100 to the target node, a reward of 10 to all neighbors of
structure, and state-action space encoding to describe {he target node, and a reward of 1 to the neighbors of the
task. PRM creation segment generates a roadmap for a giY%fi‘ghbors. Every other node is given a reward of 0.
environment and physical system. With the rpadmap CON-2) Pointing Task with Non-stationary TargefThe for-
structed and task encoded, the BECCA agent is deployed Qfjjation and the setup of the non-stationary target task is
a simulated system. Once the simulated agent's performangg same as in Section I11-B1. The reinforcement learner is
meets the satisfactory criteria, the entire agent is teansl (5ined on an initial pointing task and then transferred to

to the physical system for ongoing task performing. hardware, however upon being transferred the goal state is
o ] changed. Thus, the learning agent must compensate for the
A. Probabilistic Roadmaps Creation changed goal, while learning to adapt to the dynamics of

This article uses the PRMs combined with learning agefite hardware system. Specifically, for this task the goaésta
techniques to build a roadmap for the reinforcement legrniis moved to one of the neighbors in the roadmap of the
agent to navigate by random|y Samp“ng joint position§_imU|ati0n goal state. The reward structure is ChaHQEd SO
The PRM for a task, environment, and system are creaté@t the new goal state is reward 100 and the neighbors of
as outlined in Section II-C. The nodes in the roadmdpe new goal 10 and the neighbors of the neighbors 0.1.
are connected tk nearest neighbors using straight line . ) )
local planner. The learning agent's state space is redupedt Transfer Learning from Simulation to Hardware
roadmap nodes, and actions are limited to edges betweeffaylor and Stone define a taxonomy of transfer learning
the nodes. The agent is constrained to making straight lime the reinforcement learning domain in [18]. Using that
movements along the edges in the adjacency matrix, thi@sminology, our source task is a simulated pointing task. W
constraining the reinforcement learner to learn how to nakave two target tasks. In one, the target task has the sarhe goa
igate the roadmap. During a transfer, the previously learnand algorithm in both simulation and hardware runs. In the
roadmap is preserved. The PRM is the underlying state spatker the target is moved but it still has the same algorithm.
provided to the learning agent. The transferred knowledge is a set of feature groups and a

B. Task definition

. . ) Algorithm 1 Task Step
While BECCA is mostly automated, an engineer must

design a task to interface with BECCA via sending sensoRFduire: Task

vectors and interpreting action vectors. Such an interface 1 @sk-agent.action = [0,0,0,0]

called a task. A task simply defines what information from?2: While not coverging do .

the world will be sent to the agent, and in what format. Note® ~ "¢wLocation < interpretéask.agent.action)

that BECCA is agnostic to the task semantics. The task als§ sendT'oW AM ("e,w,Locatw”) _
defines how to read an action vector and move the roboti@ ~ task-currentPosition + read current WAM location
actuators. Again, note that BECCA is agnostic to how thi®:  task-Sensorylnput < task.currentPosition

is defined, and it will learn whatever format the engineer” task.reward « task.calculate Reward()

devises. To demonstrate the framework we now define tw§  task-agent « agentsep(Sensorylnput, Reward);
pointing tasks and explain their setup. o: end while




Velocity vs Time

cause-effect pairs.

We transfer learned knowledge of a single task between
perfect simulation of a robot to imperfect robotic hardware
In simulation the robot always receives the exact same joil
angles for a particular state, but in hardware the joint @sgl
are subject to small error so re-entering the same state w
not have the exact same state information. The source te
uses the same learning agent, parameters, and rewarcfunc
as the target task. The only difference is that the sourc o5 I s )
task interacts with the WAM simulator while the target task Time (s)
interacts with the WAM hardware. Fig. 4. Example Velocity Profile for a Single Joint.

When performing the transfer, we transfer the entire agent
with all its internal states and accumulated experience. We
only change the world model that it interacts with from thef the dimensionality reduction using PRMs over standard
simulator or the WAM interface. state space binning. Then, we examine the benefits of transfe

) learning, including performance adaptability. All expeaen-
D. WAM Simulator tal results are averaged over five executions. Througheut th

The WAM simulator is a simple kinetic simulator, rep-experiments, we measure the performance on the learning
resenting the arm with seven points each correspondingagent by measuring its cumulative reward. When the learning
one degree of freedom. The arm moves in the simulator bgent is transitioned from simulation to physical hardware
simply adding the state and action vectors. The simulatielis placed in a configuration that is as far as possible from
does not inject noise, and performs perfect movements. Tine goal configuration.

WAM arm, on the other hand, performs the movements aswe present the performance of the learning agent on
described in the Sections II-A and IlI-E. The resulting moti hardware compared to performance in simulation. The agent
is subject to error in performing the movement. executes in time steps but the graphs are shown in blocks,
E WAM Interface whe;re 1 block equals 10'0 time steps. Wg look at the t!me
savings brought on by using transfer learning, and theainiti

The WAM is connected to a xPC Target Kernel runningoost of performance that was obtained by knowledge trans-
Matlab Simulink 7.7.0 R2008b [9]. The controller for thefer. In case of the non-stationary task, we will look at the
WAM is written in Simulink and interfaces with remotetime it takes the agent to react to a change in environment
Computers via the reflective memory network. The Slmullngnd recover to the previous level of performance
code responsible for directly issuing commands to the WAM, Each experimenta| run is executed on a new roadmap of
henceforth the WAM controller, receives a command vectgp configurations generated using PRMs. Each configuration
by reading a specific block of reflective memory. The coms connected to 3 neighbors and itself. A random point in

mand vector is a length seven vector containing the desirgf 50 configurations is chosen as the goal. The goal node is
joint angles in radians of each for the seven WAM joints. given a reward of 100.

The WAM controller, upon receiving a command vector , ) . i "
places the command vector into a buffer, which only stords Dimensionality reduction utility
one move. The command vector is first sanitized so thatThis Section evaluates learning scalability when the state
each entry is within the WAM’s joint limits. If the WAM space is reduced to PRM nodes. The goal of incorporat-
is not executing a move, it compares its current location ©8g PRMs is to help guide the searching. The state space
the command vector buffer. If the command vector buffeiimensionality increases exponentially with DoFs. In [8],
is sufficiently different from the current location, the WAMwe showed that BECCA can learn up to 3 DoF pointing
controller computes a linear interpolation in joint spactasks with binned state space representation. Beyoncttieat,
between the two joint angles and executes the path within tie@rning takes impractically long and the results are &gfé.c
allowable WAM workspace. However, the velocity follows dncorporating PRMs allows us to reduce the state space for
fifth-order smooth polynomial as seen in Fig 4, and is usédDoF tasks to the number of nodes in the roadmap. For the
both for safety and for mimicking biological motion [1]. S8lo results shown, the state space has 50 nodes, but the number
beginnings and endings to moves provide safe joint torque$.nodes can be adjusted.
In the current architecture a move cannot be interrupted. We compare the learning performance of the PRM based
task, with two variants of the task with stationary point¢Se
IV. EXPERIMENTS tion 11I-B1). The task is reduced to 3 DoFs by limiting the
We perform four experiments. Two experiments involv8VAM to use only three joints. Joints 1, 2, and 3, are mapped
the stationary target pointing task, one is a non-stationanto a 3 dimensional C-space. Then, fifty random points are
pointing task, and the last evaluation assesses the tgaingampled in the C-space using a uniform distribution. The
time benefits of the framework. First we, evaluate the wtilitfifty points are then connected probabilistically basedtoa t
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distance between the points, such that closer points hassks have larger action vectors than the PRM task, 12 and
a higher probability of being connected. Fig. 5 shows alB actions vs. 4.
example of a PRM generated for the 3-DoF task. Fig. 7 shows that the PRM method converges much faster
Fig. 6 shows the cumulative reward per block for BECCAhan either the simple 3-DoF or hard 3-DoF task. The PRM
operating on the 3-DoF PRM task. The maximum reward thatethod has reached the optimal of 7,000 units of reward
can be receive per iteration is 100, making the maximum piey around 1,000 iterations while, the simple 3-DoF task
block 10,000 units of reward. The PRM covers a wide ardes only reached approximately 6,000 units of reward by
in the WAM’s range of motion, but only takes 900 iterationd,000 iterations. The 3-DoF hard task has only reached
to reach a very high cumulative reward. 900 iterations &pproximately 3,500 by 7,000 iterations. Thus we can see tha
significantly fewer than the 5,000 iterations required fog t the PRM task converges much faster than either the simple
2-DoF task to converge [8], which indicates that PRM'’s arer hard task.
very effective at reducing the convergence time of BECCA.

—o— PRM

ofs? — —x= ~ 3DOF Hard

~ — — 3DOF Simple

2 30 0 70
Iterations (in blocks of 100)

Fig. 7: Cumulative reward for PRM, 3-DoF Simple, and 3-DoF
Hard tasks. The 3-DoF simple task has 3 bins per joint, giving a
state space d®. The 3-DoF hard task has 4 bins per and an action
vector length of 18, giving a state space4df The PRM task has
50 points which correspond to 50 states.

Fig. 5: Probabilistic Roadmap for a 3-DoF WAM Task. Vertices

are possible configurations. Edges are possible transitions betwee -
configurations. o further show the scalability of the PRM approach we

produce Fig. 8 which plots the average reward of 10 runs
for each DoF from 1 to 7. This graph confirms that PRM-
BECCA is unaffected by the Degrees of Freedom with a
constant number of nodes. However, there is a problem with
just testing the Degrees of Freedom and holding the number
of nodes constant. By holding the number of nodes in the
PRM constant, the density of nodes decreases as the DoF
increases. Thus we must also test to see how BECCA scales
with the number of nodes.
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Fig. 6: PRM Cumulative Reward for a 3-DoF Task. ool
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To compare the PRM based task to non-PRM tasks, two 3- rerions (nplocks o160
DOF tasks are created, a simple and a hard task. The sim'[:)!%- 8: Cumulative reward per block of 1-DoF to 7-DoF with PRMs.
3-DoF task has 3 bhins per joint, and an action vector of
length 12. The hard 3-DoF task has 4 bins per joint, andIn the following experiments we vary the number of nodes
an action vector of length 18. The reward structure for botfrom 60 to 200 in steps of 20, and tkeneighbor parameter is
the simple and hard tasks, parallel to the PRM task. It hast to 4. Since the previous experiment showed that BECCA
a maximum reward of 100 per iteration and thus 10,000 pawould converge at the same number of steps regardless of
block. The simple task has 27 possible states. The hard t&~ we chose to do this experiment with 3 DoF. Again 10
has 64 possible states and the PRM has 50 states. Thus,rtims are done for each number of nodes, and the results are
simple and hard tasks frame the PRM in number of statesieraged. Fig. 9 shows the average cumulative reward for
However, it is important to note that the simple and harelach test. It shows that BECCA may converges at the same



TABLE |: Average cumulative rewards in simulation and on hardward ABLE Il: Transfer Metrics for stationary and non stationary tasksp
after the stabilization for 7DoF task with a stationary &irgnd 7DoF task start shows the gain from using transfer. Threshold gaimwstthe reduction
with a non-stationary target in time steps needed to reach the threshold performance

Task Simulation | Hardware Task Metric Average | min max
Stationary Target 7460.3 7614.8 Jump Start (reward) 5716 2757 | 9280
Nonstationary Targef  7460.3 7491.5 Threshold Gain (steps) 500 200 700

Jump Start (reward) 1313 364 | 1702
Threshold Gain (steps) 100 100 | 400

Stationary

Non-stationary

time regardless of number of nodes in the graph. Fig. 9 is

very similar to Fig. 8, thus showing that BECCA converges at

the same rate regardless of DoF and regardless of the nurfRipting task starts very close to the threshold perforreanc
of nodes in the PRM. using the transfer and has a jump start gain of 5716. In

all random runs, the transferred learning agent outpegorm
the non-transferred learning agent (Table Il). Furtheemor
the transferred task reaches the threshold performance in 2
blocks compared to 7 blocks without transfer (Figure 11). It
is important to note the time saved by using transfer legtnin
Table 11l shows the run times for simulation versus hardware
for 20 blocks. It is clear that simulation is faster by up
to 1 hour and 55 minutes. Using transfer learning it takes
significantly less physical time on the robotic hardware for

Fig. 9: Reward per Block for Varying Number of Nodes. ~ the agent to perform the given task as near optimal levels.
This not only saves valuable time but it also saves valuable

It is important to note that this is a novel use of PRMs. IN€a apd tear on the hardware. . . :
previous work, they have been used to plan the motions forIt is important to note that the learning algorithm is not

complex robot systems [2], [3], [11]. However, by integnati executing pre-planned paths. It learns from experiencelwhi

PRMs with BECCA. we are able to demonstrate automat?@ths lead to highest reward and attempts to follow those
learning of controls to achieve motion in complex problem®aths- The paths learned in simulation provide BECCA with
a strong foundation to work from, however each execution

B. Transfer Learning on Pointing Task with Stationary Targeof the learning problem finds different paths due to the

This Section assesses the effect of the transfer learning@domness of exploration. Thus, it is possible to witness
the system performance. We learn first in simulation and théxecutions of BECCA on the same underlying roadmap with
transfer the entire task to the physical system (Sectie@)ll slightly varying performances.

Figure 10 shows the cumulative reward of the pointing task
with the stationary target in simulation and on hardwaree Tt~ ‘ _ TDoFTask
vertical line indicates the transition from the simulattorthe
hardware. The results show near-seamless transitionhend  80%°f
average performance of the agent on hardware very close |
the performance in the simulation.

Table | shows the average cumulative reward for ea
experiment after stabilization, before and after traositio
the physical hardware. Stabilization in simulation occats
20 blocks. The performance of the agent on the hardwe
outperforms the agent in simulation by 154 units of rewar: 5yl

To better demonstrate the advantages of using the trans
learning in our framework, the pointing task with stationar
target experiments were run again in a different mannee Fi 1000 ‘ ‘ ‘ ‘
completely untrained learning agents were run on hardwe ° 2 heratons (inel?Iocks oflOBO(; 10 10
for 20 blocks and the results averaged together. Then five
agents which were trained for 100 blocks in a simulatiof!d- 10: Cumulative reward for the pointing task with stationary &irg

er time step. The vertical line indicates where the learraggnt was
were run on hardware for 20 more blocks and averagéﬁ{nsitioned from simulation to physical hardware.
together. Figure 11 shows the comparison of the stationary
pointing task using transfer to the same task without using - ) o _
transfer. The advantages of using transfer are seen pymaf- Adaptability Evaluation on Pointing Task with Non-
in the jump start and the time to threshold metrics. Table §fationary Target
shows the transfer metrics for the three experiments. Jumgn this experiment the reinforcement learner is trained on
start shows the immediate gain from using the transfer. Tha initial pointing task and then transferred to hardware.
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Fig. 11: Cumulative reward for the pointing task running on hardwar&ig. 12:Cumulative reward for running in simulation and then trarifigr
with stationary target task with transfer and without tfensper time the task to hardware. The transfer occurs at 100 blocks.

step. Transfer is when an agent trained in simulation is fearesl to

hardware. Jump start shows the initial gain obtained by usiedransferred

knowledge. Time to threshold indicates the time that the taskowt the K led h i f 1313 . f d
transfer needs to achieve the same level of performance aaskavith the nowledge has a small jJump start o units of rewar

transfer. and reaches the threshold performance 1 block faster than
the agent without transferred knowledge.
TABLE lll:  Average time in minutes to run 20 blocks in simulation and

on hardware for 7DoF task with a stationary target and 7Dek teith a
non-stationary target ‘ ‘ ;

Time to Threshold e
Task Simulation (min) [ Hardware (min) foeer —~/ // G
Stationary Target 23 122 Joool- - S / i
Non-stationary Target 24 121 -

6000

5000

4000

Cumulative Reward

However, upon being transferred, the goal state is chang
Thus, the learning agent must compensate for the chang
environment. The goal state is moved to one of the neighbc
in the roadmap of the simulation goal state. The rewa
structure is changed so that the new goal state is reward :
and the neighbors of the new goal 10 and the neighbors s
the neighbors 0.1.
Figure 12 shows the res‘,“ts of 100 blocks of SImUIa“Oﬁi . 13: Cumulative reward for the pointing task running on hardware
and then 20 blocks of running on hardware where the gaaih a non-stationary target task with transfer and withiwansfer per time
has changed. Initially there is a steep performance drop, Istgp. Jump start shows the initial gain obtained by using taesterred
the reward does not drop to zero. The agent quickly recovdfietiecde. Time lo reshalddcets the e vat he athaut e
and learns the new reward structure within 6 blocks. Thignsfer.
shows the online nature of the BECCA algorithm. It is able
to first learn one environment and when placed into a slightly Figure 14 shows a variant on the moving target. In this
different environment it is able to quickly compensate fog t experiment the agent is trained in simulation until conver-
change. gence to the threshold performance. After convergence in
Figure 13 is a comparison between the agent havisgnulation the agent is moved to physical hardware with an
previously learned a pointing task in a modified environmeninchanged goal (just like the stationary target experig)ent
to an agent without any prior knowledge. However, the agehhe agent is then allowed to adapt to the hardware for
with knowledge has learned to point to a different goal it0 blocks, at which point the goal is moved while still
simulation before being run on hardware. The untrainedtagem hardware. The agent must then adapt to this change in
is also run on hardware but has a stationary target. Thus, tregdware. Figure 14 shows that the agent does very well
transferred agent has some information about the structwigh the initial transfer and does better when the goal is
of the environment but it does not have the exact rewamdoved than Figure 12, where the agent is not allowed to
structure as the goal was moved before being placed adapt to the hardware before the goal is moved. The threshold
physical hardware. The figure shows that the agent with priperformance is restored after 6 time-blocks, as previously

2000

Without Transfer
— = With Transfer

1000 Threshold Performance

L L L L L L L L
14 16 18 20

8 10 12
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But, the minimal reward of 2080 at that time-frame, is highefABLE 1V: Average Time for Convergence to Threshold Perfor-
than the minimal reward of 1313 when the environment 182 €

changes right after the task transfer from the simulation to Task w/o Transfer (min) | w/ Transfer (min)
Stationary Target 40.8 11.7
the hardware. Non-stationary Target 41.1 33.0
Task w/o Transfer (min)| w/ Transfer (min)
10000 ; ; ; ; : : Both Targets: recovery 25.9 24.7
w000l | Both Targets: total time 129.5 82.1

8000

70001

robot. The times for the recovery are very similar, which
is to be expected as they are just showing the recovery
from the changed target experiment. At this point both the
transfer run and the no-transfer run have the same knowledge
and thus exhibit the same amount of recovery time. This
demonstrates the online nature of the algorithm. Howeker, t

6000

50001

Cumulative Reward

40001

3000

20001

Time to
Threshold

1000f }‘ ’ 1 total run-time is very different as the transfer agent dot301
o : 5 = PR % iterations in simulation (11.44 minutes vs. 58.30 minutes)
ferations (in blocks of 100) This is a difference of 47.37 minutes.
Fig. 14: Cumulative reward for the pointing task initially trained in V. DISCUSSION
simulation then transferred to the robot at the solid blagk \Wile running o ) )
on the robot the goal is then changed at the red dashed line. We demonstrated an efficient online motion-based task

learning framework based on reinforcement learning that
o works in high-dimensional spaces in real-time, is readive

D. Timing changes in the environment, performs safe hardware motions

Timing data is collected by simply measuring the differand efficiently learns on hardware. We demonstrated the
ence between start time and stop time for runs. Table fiamework by implementing it on a 7 DoF WAM using
shows the timing data for running the learning algorithrall joints to produce pointing motions with both stationary
in simulation versus on physical hardware. The run timend non-stationary targets. The framework is robust and
on hardware is approximately 5 times longer due to thextensible to other robotics systems as well as with differe
amount of time it takes to for the arm to move betweemodel formulations, and for a large variety of tasks as well.
configurations. Each move on the WAM takes approximately Dimensionality reduction and collision checks can be
3.5 seconds to compute and execute. This computation titmendled through PRMs for any motion-based task. When
includes the feature extraction and action decision tinte fERMs are used in this manner, they impose hard limits
the learning algorithm. In contrast, in simulation it ondkés on the system. For example, self-collision states tend to be
0.5 seconds of time to execute a complete move. invariant to the type of environment or the task, and are good

Since BECCA is an online learning algorithm, it can adamandidates to be precomputed ahead of time. When there is
to changes in real time. However, because it is an unsuperror in the model used for simulation caused by noisy sensor
vised learning agent it still requires repeated exampldabef data, the robot can explore the validity of the simulation’s
new environment. The real time metric that we are interestesadmap and learn how to efficiently navigate in the physical
in is the amount of time it takes to converge to the thresho&hvironment.
performance. This time is important because it representsTransfer learning can be used to avoid early learning
the amount of time in which the robot is learning insteaghases when the agent’s performance tends to be erratic, to
of performing the desired task. This metric is recorded byduce wear and tear on robot, and to speed up the learning
simply measuring the difference between the start time pfocess on the physical robot. It can be a powerful techsique
run and the time of each step. Table IV shows the averatge mitigate the long convergence times of reinforcement
time for reaching the threshold performance with and witholearning. Combining transfer learning, reinforcementnazg
transfer learning. This table shows that transfer learnimond probabilistic roadmap methods produces a powerful
reduces the learning time by 29 minutes for a stationaretardgramework for solving complex robotic tasks. By harnessing
and 8 minutes for a non-stationary target. each method’s strengths, the weaknesses of the other nsethod

For the experiment with both stationary and non-stationacan be mitigated.
targets, Table IV shows the convergence time after the targeAn online reinforcement learning algorithm is a suitable
is changed for simulations training and without simulationandidate for a planner when paired with the above tech-
training. This experiment first transfers the simulatiortite niques. Such a reinforcement learner continuously leands a
robot with a station target, and then after stabilizing thepdates its policy by incorporating most recent experience
target is moved (like the non-stationary test). The versidrom the environment and produces motion plans that are
without simulation runs the whole experiment on the physicadaptive, real-time, and reactive.
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