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ABSTRACT
One of the many challenges in designing autonomy for oper-
ation in uncertain and dynamic environments is the planning
of collision-free paths. Roadmap-based motion planning is a
popular technique for identifying collision-free paths, since
it approximates the often infeasible space of all possible mo-
tions with a networked structure of valid configurations. We
use stochastic reachable sets to identify regions of low col-
lision probability, and to create roadmaps which incorpo-
rate likelihood of collision. We complete a small number
of stochastic reachability calculations with individual obsta-
cles a priori. This information is then associated with the
weight, or preference for traversal, given to a transition in
the roadmap structure. Our method is novel, and scales
well with the number of obstacles, maintaining a relatively
high probability of reaching the goal in a finite time hori-
zon without collision, as compared to other methods. We
demonstrate our method on systems with up to 50 dynamic
obstacles.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous Ve-
hicles; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Control Theory, Dynamic
Programming ; G.3 [Mathematics of Computing]: Prob-
ability and Statistics—Stochastic Processes

Keywords
Stochastic Reachability; Motion Planning;
Probabilistic Roadmaps

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC’14, April 15–17, 2014, Berlin, Germany.
Copyright 2014 ACM 978-1-4503-2732-9/14/04 ...$15.00.
http://dx.doi.org/10.1145/2562059.2562127.

1. INTRODUCTION
One of the many challenges in designing autonomy for op-

eration in uncertain and dynamic environments is the plan-
ning of collision-free paths. In applications such as search
and rescue, coordinated sensing, collaborative monitoring,
or automated manufacturing environments, a robot must
traverse from a known start state to a goal state, in an en-
vironment that could contain many moving obstacles with
stochastic dynamics. While theoretical solutions may be
available via stochastic reachability, computational expense
limits such an approach to a very small number of dynamic
obstacles, depending on the model complexity of the robot
and obstacle dynamics. Motion planning techniques pro-
vide a more computationally feasible alternative, depending
on degrees of freedom of the robot, the nature of the envi-
ronment, and the planning constraints. However, there is
strong evidence that any complete planner will require ex-
ponential time in the number of DOFs of the robot [14], [11],
[6].

In this paper, we present a novel, stochastic reachability
based method to create probabilistic roadmaps that accommo-
date many moving obstacles that travel stochastically along
straight line or arc trajectories. We use the likelihood of col-
lision with a given object, computed a priori via stochastic
reachability (SR), to inform the likelihood of collision along
a given path. We demonstrate our method computationally
on scenarios with up to 50 stochastic dynamic obstacles.

The robotic motion planning problem consists of find-
ing a valid (collision-free) path for a robot from a start
state to a goal state. One common solution to solving the
planning problem is to use a roadmap, a network of valid
configurations (nodes) and transitions between configura-
tions (edges), that captures the topology of the collision-free
space. Common approaches are cell-decomposition meth-
ods which place nodes at regular intervals [15], Probabilistic
Roadmap Methods (PRMs) which place nodes probabilisti-
cally [14], and several variants which use heuristics to place
nodes [2, 4]. However, planning in environments with dy-
namic obstacles remains a significant challenge.

Stochastic reachability analysis provides offline verifica-
tion of dynamical systems, to assess whether the state of
the system will, with a certain likelihood, remain within a



desired subset of the state-space for some finite time, or
avoid an undesired subset of the state-space [1]. To solve
problems in collision avoidance, the region in the relative
state-space which constitutes collision is defined as the set
of states we wish the system to avoid [28, 13]. Unfortu-
nately, the computation time for stochastic reachable sets
(SR sets) is exponential in the dimension of the continuous
state, making the assessment of collision probabilities with
many simultaneously moving obstacles next to impossible
(once the dynamics of each obstacle are incorporated into
the state). However, while expensive, SR sets can be com-
puted offline and the result queried online.
Our method combines multiple SR sets (computed pair-

wise between the robot and each dynamic obstacle), to gen-
erate appropriate weights associated with the edges in the
roadmap. The SR sets are generated offline, computed indi-
vidually for relative dynamics associated with each obstacle,
and the results combined and queried at runtime by our al-
gorithm. In an environment with multiple obstacles, the in-
tersection of multiple SR sets clearly cannot provide a strict
assurance of safety, since the reachable set is computed for
one dynamic obstacle in isolation. However, such an ap-
proach can significantly improve the ability of the roadmap
to reflect obstacle dynamics. Further, in simulation, we find
that the SR - weighted roadmap is able to intelligently nav-
igate in the presence of stochastic dynamic obstacles signif-
icantly more often than standard roadmap methods.
Our proposed combination of formal and ad-hoc methods

has several advantages over existing moving obstacle solu-
tions and over SR alone. First, at runtime, the method is
fast since it does not have to make expensive collision detec-
tion calls and instead just queries the precomputed SR set.
Second, it scales well with many obstacles. Furthermore, it
provides a framework in which multiple SR sets can be com-
bined to generate approximate collision avoidance probabil-
ities with many moving obstacles, which would otherwise be
impossible using a single SR set that accounts for all obsta-
cles simultaneously. Finally, by using SR for the underlying
collision probability calculation, the method provides an up-
per bound on the probability of collision avoidance, which
can be used comparatively to select the best path.
Section 2 describes related literature in roadmaps with

moving obstacles as well as in stochastic reachability for
motion planning and collision avoidance. Section 3 presents
the robot and obstacle dynamics, and known techniques for
roadmap construction. Section 4 presents the computed
stochastic reachable sets for collision avoidance with two
types of stochastic dynamic obstacles, as well as our algo-
rithm for roadmap construction that queries the stochastic
reachable set. Section 5 describes our computational exper-
iments, with two moving obstacles, and finally with 50 mov-
ing obstacles. Lastly, conclusions and directions for future
work are offered in Section 6.

2. RELATED WORK

2.1 Roadmaps and moving obstacles
Several roadmap-based techniques including PRM vari-

ants have been developed to address planning in spaces with
moving obstacles [23], [5], [30], [10], [24], [25]. Generally,
these approaches adapt to moving obstacles using one of two
approaches. The first category generates a roadmap with
little obstacle information, and later filters paths at run-

time with local obstacle information [23], [5]. These methods
have low precomputation costs, but generally prove expen-
sive during path selection. They start with an initial path
that is collision free and incrementally modify the path to
maintain a smooth, collision free path. These methods only
rely on physical obstacle clearance by using protective bub-
bles to deform the path.

The second category approximates the environment and
is cheap at runtime. These methods create an approximate
roadmap and then use a heuristic approach to produce lo-
cally valid paths to avoid moving obstacles. These methods
decrease runtime costs at the expense of path accuracy [24],
[12]. In [24], a first stage constructs a dynamic roadmap that
considers some obstacles and is shared across multiple mov-
ing robots. Then, in a second stage, a path is extracted by
a single robot that is locally modified to account for neigh-
boring robots (moving obstacles). Similarly, [30] repairs the
existing roadmap when an obstacle makes an edge or group
of edges invalid. The authors of [34] use a roadmap, but
deform the edges around moving obstacles. The work in [2]
trades off distance from the goal and the dynamic obstacles
to path plan. Approaches in [32] and [22] utilize roadmap
methods with heuristics to manage the moving obstacles,
while [31] attempts to optimize the roadmap for moving ob-
stacles under motion constraints.

2.2 Stochastic reachable sets
A Hamilton-Jacobi-Bellman (HJB) formulation [21] al-

lows for both a control input and a disturbance input to
model collision-avoidance scenarios [19], [9] for motion plan-
ning. The result of these reachability calculations is a maxi-
mal set of states within which collision between two objects
is guaranteed (in the worst-case scenario), also known as
the reachable set. The set which assures collision avoid-
ance is simply the complement of the reachable set. In [29],
reachable sets are calculated to assure a robot safely reaches
a target while avoiding a single obstacle, whose motion is
chosen to maximize collision, and the robot cannot mod-
ify its movements based on subsequent observations. In [8],
a similar approach is taken, but with reachable sets com-
puted iteratively so that the robot can modify its actions.
In [17], multiple obstacles that each act as bounded, worst-
case disturbances are avoided in an online fashion, based on
precomputed invariant sets.

An alternative approach is to calculate an SR set that
allows for obstacles whose dynamics include stochastic pro-
cesses. Discrete-time SR generates probabilistic reachable
sets [1], based on stochastic system dynamics. In [28], the
desired target set is known, but the undesired sets that the
robot should avoid are random and must be propagated over
time. In [13] a two-player stochastic dynamical game is con-
sidered, and applied to a target tracking application in which
the target acts in opposition to the tracker.

3. PRELIMINARIES

3.1 Obstacle Dynamics
We consider two representative types of dynamic obsta-

cles, which have known trajectories but stochastic velocities.
In particular, we consider straight-line and constant-arc tra-
jectories, and presume that each obstacle is represented as
a two-dimensional point mass. The obstacle dynamics are
of the form ẋ

o
= f(w, t), with obstacle state xo = (xo, yo),



and with w a discrete random variable that takes on values
in W with probability distribution p(w). We only consider a
discrete random variable here for computational simplicity,
although a continuous random variable could be introduced.
The discretized obstacle dynamics (via an Euler approxima-
tion with time step ∆) are

xo
n+1 = xo

n +∆wn+1

yo
n+1 = αxo

n+1

(1)

for straight-line movement, with speed w ∈ W and slope
α ∈ R, and

xo
n+1 = xo

n +∆r (cos(wn+1(n+ 1))− cos(wn+1n))
yo
n+1 = yo

n +∆r (sin(wn+1(n+ 1))− sin(wn+1n))
(2)

for constant-arc movement, with angular speed w ∈ W.

3.2 Relative robot-obstacle dynamics
We presume a two-dimensional point-mass model for the

robot with state xr = (xr, yr) and dynamics in Cartesian
coordinates

ẋr = ux

ẏr = uy
(3)

with two-dimensional control input u = (ux, uy) that is the
velocity of the robot in both directions. While the obstacle
is not trying to actively collide with the robot, its dynam-
ics (1), (2) contain a stochastic component, which can be
considered a disturbance that affects the robot’s behavior.
Discretizing the dynamics (3) using an Euler approximation
with time step ∆ results in

x
r
n+1 = x

r
n +∆ · u. (4)

A collision between the robot and the obstacle occurs
when |xr

n − xo
n| ≤ ǫ for some n and ǫ small. We construct a

relative coordinate space that is fixed to the obstacle, with
the relative state defined as x̃ = xr−xo. Hence the dynamics
of the robot relative to the obstacle are

x̃n+1 = x̃n +∆un −∆f(wn, tn) (5)

with f(·) as in (1) and (2), and a collision is defined as

|x̃n| ≤ ǫ. (6)

Using (5), we now have a dynamical system with state x̃ ∈
X , control input u ∈ U that is bounded, and stochastic dis-
turbance w. Because x̃n+1 is a function of a random variable,
it is also a random variable. Its transitions are governed by
a stochastic transition kernel, τ(x̃n+1 | x̃n, un, n), that rep-
resents the probability distribution of x̃n+1 conditioned on
the known values x̃n, un and time step n.

3.3 Roadmap Construction
Roadmap-based techniques attempt to approximate the

topology of the collision-free C-space, the space of all possi-
ble robot configurations (where a configuration completely
specifies the location of every point on the robot) [16]. They
work by building a graph in collision-free C-space through
sampling collision-free robot configurations (node genera-
tion), connecting neighboring nodes with weighted edges
if a collision-free transition exists (node connection), and
then querying the resulting roadmap by finding a path to
a goal configuration (roadmap query). Node generation can
be done via several different methods, e.g., using a cell de-
composition of the space [15], a uniform random distribution
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(a) SR set for arc obstacle.
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(b) SR set for line obstacle.
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(c) Roadmap with edges weighted by SR sets

Figure 1: Two stochastic reachable sets for constant-arc
and straight-line obstacles and their incorporation into a
roadmap. (a) Stochastic reachable set that shows the like-
lihood of collision between the robot and an arc obstacle
(in relative coordinates). (b) Stochastic reachable set for a
straight-line obstacle with α = 1. (c) Roadmap (Cartesian
coordinates) with likelihood of collision indicated by edge
color. The yellow circle (square) shows the line (arc) obsta-
cle locations.

[14], obstacle boundaries [33], or visibility [26]. The utility of
these various node generation methods varies with problem
complexity. For example, cell decomposition methods are
powerful, but their utility degrades with complex obstacle
boundaries and in high-dimensional planning problems. On
the other hand, uniform random placement, PRM, works
well with high-dimensional problems, but has difficulty with
obstacles that form tight narrow passages. Collision-free
tests are often performed with static obstacles, and edge
weights can be determined by several metrics of interest,
e.g., distance [14], clearance from obstacles [18] [20], or other
problem-specific measures [27].

4. METHODS
In this section, we present the novel methods for inte-

grating SR sets with roadmap path extraction. First, we
formulate the SR problem for collision avoidance with the
straight-line and constant-arc dynamic obstacles. We then
show how SR can be used to help build roadmaps that select
a path that avoids multiple moving obstacles.



4.1 SR for Collision Avoidance
The SR problem can be formulated in the context of col-

lision avoidance, where the probability of avoiding collisions
within some finite time horizon is determined. The set K

is defined as the set of states in which a collision is said to
occur (6). To avoid collision with the obstacle, the robot
should remain within K, the complement of K. The proba-
bility that the robot will remain within K over N time steps,
with initial relative position x̃0, is given by

A
u,N
x̃0

(K) = P [x̃0, . . . , x̃N ∈ K | x̃0, u] (7)

with P denoting probability and input sequence
u = [u0, u1, · · · , uN−1]

T .
Since P[x ∈ K] = E[1K(x)], with E denoting expected

value and 1K(x) denoting the indicator function defined as
1K(x) = 1 for x ∈ K, and 0 otherwise, equation (7) can be
rewritten as (see [1])

A
u,N
x̃0

(K) = E

[

N
∏

n=0

1K(x̃n) | x̃0, u

]

, (8)

since
∏N

n=0
1K(x̃n) = 1 if x̃0, . . . , x̃N ∈ K, and 0 otherwise.

Finally, instead of assuming a predetermined set of con-
trol inputs u, we construct a state-feedback control input to
maximize the likelihood of avoiding collision and to facilitate
real-time control selection for motion planning. Equation
(8) can then be reformulated as a stochastic optimal control
problem.

A
N
x̃0
(K) = max

π∈Π
E

[

N
∏

n=0

1K(x̃n) | x̃0

]

(9)

Hence we define a policy π = (π0, . . . , πN−1) with πn : X →
U and optimize (9) over all possible policies Π of this form.
The resulting optimal policy π∗ provides an upper bound on
the probability of avoiding collision.
We implement a dynamic programming recursion [3], first

introduced for the reachability problem in [1], to estimate
the collision avoidance probability.

VN (x̃) = 1K(x̃) (10)

Vn(x̃) = 1K(x̃)

∫

X

Vn+1(x̃
′)τ(x̃′ | x̃, u, n) dx̃′ (11)

Iterating (10), (11) backwards, the value function at time 0
provides the probability of avoiding collision,

V0(x̃0) = A
N
x̃0
(K). (12)

The optimal control is determined by evaluating

V
∗

n (x̃) = sup
u∈U

{

1K(x̃)

∫

X

V
∗

n+1(x̃
′)τ(x̃′ | x̃, u, n) dx̃′

}

(13)

which also returns the optimal policy π∗, with

π
∗

n(x̃) = un = arg sup
u∈U

V
∗

n (x̃). (14)

Equation (13) can be simplified to

V
∗

n (x̃) = max
u∈U

{

1K(x̃)
∑

w∈W

V
∗

n+1 (x̃+∆u−

∆f(w, n)) p(w)

}

. (15)

Figure 1a shows the SR set for a constant-arc obstacle
with radius r = 5, and probabilities p(w) = {0.2, 0.2, 0.3, 0.3}
associated with angular speeds w ∈ W =

{

.4
2π

, .6
2π

, .9
2π

, 1.2
2π

}

.
The slight curvature seen in the probability peaks corre-
sponds to the obstacle trajectory. Similarly, Figure 1b shows
the SR set for a straight-line obstacle with probabilities
p(w) = {0.3, 0.4, 0.3} associated with speeds w ∈ W =
{0.5, 0.7, 0.9}, and slope α = −1. The peaks show higher
probability of collision with the obstacle when the robot is
in line with the obstacle trajectory. Intuitively, the closer
the robot is to the obstacle, the higher the probability of
collision.

On a single core of an Intel 3.40 GHz CORE i7-2600 CPU
with 8 GB of RAM, Figure 1a took 1727.25 seconds to com-
pute, over a horizon of N = 30 steps and a time step of
length ∆ = 1. Figure 1b took 1751.87 seconds to compute,
again with N = 30 and ∆ = 1. In both cases, we observed
convergence in the stochastic reachable sets for N > 5 since
the robot and obstacle traveled sufficiently far apart within
this time frame.

With a single obstacle, V ∗
0 (x̃0) in (15) is the maximum

probability of avoiding a collision, and hence a tight upper
bound. For two obstacles with separately calculated avoid-
ance probabilities V ∗,1

0 (x̃1
0), V

∗,2
0 (x̃2

0) (with relative position
x̃i
0 with respect to obstacle i), the probability of avoiding

collision with both obstacles is

P[B1 ∩B2] = P[B1] + P[B2]− P[B1 ∪B2]

≤ min{P[B1],P[B2]}

P[B1 ∩B2] ≤ min{V ∗,1
0 (x̃1

0), V
∗,2
0 (x̃2

0)} (16)

where Bi corresponds to the event that the robot avoids
collision with obstacle i. We obtain an upper bound on the
collision avoidance probability for two obstacles by taking
the minimum of the individual avoidance probabilities. The
same holds similarly form obstacles. The minimum of them
individual avoidance probabilities provides an upper bound
on the probability of avoiding collision with all m obstacles.

Lastly, we note that because we ultimately use the colli-
sion avoidance probabilities to determine routing choices on
a roadmap, the true probabilities are of less interest than the
relative probabilities at different locations. By generating
an upper bound on the probability of avoiding collision with
several moving obstacles, the robot can identify and travel
along the path with the greatest upper bound. Further, if
the obstacles are not so dense that avoiding the obstacle
with the highest probability of collision implies a greater
likelihood of avoiding all other obstacles as well, then this
upper bound is fairly tight, and the robot can accurately
identify the safest route through the roadmap.

4.2 SR Query
We now integrate SR sets (12) for straight-line and constant-

arc obstacles into a pre-computed roadmap using techniques
developed for static obstacles [15, 14]. Given a roadmap and
an SR set for each moving obstacle, we identify paths that
are likely to be free.

Algorithm 1 describes integration of the stochastic reach-
able sets into an existing roadmap via the roadmap query
process. Although the SR calculation is performed offline,
Algorithm 1 is intended to run in real time, using the infor-
mation currently available to the robot (i.e. obstacle loca-
tions). Paths are extracted using Dijkstra’s algorithm [7].



Algorithm 1 SR Query

Input: Obstacles O, Roadmap, Max time T = N ·∆
Output: boolean Success

1: nextNode = start

2: previousNode = start

3: for tn = 0; tn < T ; n = n+ 1 do

4: for Obstacle o ∈ O do

5: updateObstacle(o)
6: end for

7: if at(robot, nextNode) then
8: for each edge e ∈ Roadmap do

9: EdgeWeight = updateEdgeWeights(e,O)
10: end for

11: Path = Dijkstras(previousNode,GoalNode)
12: nextNode = Path.next

13: xr
n+1 = Path.next.getXV elocity()

14: yr
n+1 = Path.next.getY V elocity()

15: end if

16: xr
n+1 = interp(previousNode, nextNode, tn)

17: end for

However, to find paths of combined shortest distance and
lowest probability of collision, the SR computation must be
integrated into the roadmap edge weights. First, since the
robot knows the location of each obstacle at the current
time, the positions of the obstacles are updated to reflect
their current locations. Second, we consider each node in
the roadmap to be a waypoint. Updates of the roadmap
weights are then performed at waypoints (see Algorithm 1,
line 7). Updates consist of reweighting all edges (line 9),
finding the path of lowest edge weight (line 11), querying
the SR optimal control (14) to determine the robot’s speed
and resulting trajectory (lines 13 and 14), and traversing
along that edge with the determined robot speed for the al-
lotted time (line 15). If the robot is not at a waypoint, then
it continues along the predetermined roadmap edge.
Two elements that are critical to the success of Algo-

rithm 1 and atypical for probabilistic road maps are 1) up-
dating of the obstacles, and 2) the subsequent effect on edge
weights.
Regarding the first element, the likelihood of avoiding col-

lision (12) and the optimal control (14) are evaluated over
a discretized set of states, and are stored for use during run
time for path planning. The algorithm propagates the loca-
tion of the obstacles according to each obstacle’s stochastic
dynamics (1), (2). The stochastically determined obstacle
speeds are chosen as per the randomization in Algorithm 2.
The relative states are computed for every robot-obstacle
pair in the environment.
Regarding the second element, edges define a transition

between two configurations (see Section 3.3). These edges
can be subdivided (often uniformly) into sets of discrete
points defining the transition between configurations in the
roadmap, and each point corresponds to a new intermediate
configuration. The weight for a single edge is updated as in
Algorithm 3. For each intermediate configuration associated
with an edge, the relative distance to each obstacle is calcu-
lated and the probability of collision avoidance at the cur-
rent relative distance is queried for each obstacle. The mini-
mum of all avoidance probabilities is taken as the weight for

Algorithm 2 updateObstacle

Input: time tn = n · ∆, obstacle o, velocities w ∈ W =
{w1, w2, ..., wnW

}, probabilities p(w)

1: if mod(tn, 1) == 0 then

2: s = rand(0, 1)
3: for index = 0; index < nW ; index++ do

4: if s ≤ p(w)[index] then
5: o.w = w[index]
6: break
7: end if

8: end for

9: end if

10: xo
n+1 = xo

n +∆ · f(o.w, tn)

Algorithm 3 updateEdgeWeight

Input: Edge e, Obstacles O

1: EdgeWeight = 0
2: for Configuration c ∈ e do

3: PROB = 1
4: for Obstacle o ∈ O do

5: x̃ = c− o

6: PROB = min{PROB, o.V ∗
0 (x̃)}

7: end for

8: if PROB < EdgeWeight then

9: EdgeWeight = PROB

10: end if

11: end for

12: e.Weight = 1

EdgeWeight

that configuration. This calculation is fast in comparison to
standard collision detection methods whose computational
complexity is defined by the number of polygons in the plan-
ning problem. The assigned edge weight is then the lowest
probability of collision avoidance amongst all intermediate
configurations for that edge, inverted for use in Dijkstra’s
algorithm (which finds minimum cost paths for graphs with
nonnegative edge weights). Note that we presume the same
time horizon N and time step ∆ in Algorithm 1 as we do in
the reachability calculations.

5. EXPERIMENTS
We evaluated our method on successful navigation in envi-

ronments with several moving obstacles. Successful naviga-
tion is defined as the ability to find a path from a start state
to goal state, without any collisions and within a specified
time horizon. The stochastic reachable sets were computed
in Matlab, and the SR Query was added to the Parasol Mo-
tion Planning Library (PMPL) from Texas A&M University.
PMPL was also used to generate the initial roadmaps. Ex-
periments were run on a single core of an Intel 3.40 GHz
CORE i7-2600 CPU with 8 GB of RAM.

We compared our method (SR Query) to a Lazy-based
method (Lazy) for moving obstacle avoidance [12]. The Lazy
method updates the roadmap as obstacles move, by invali-
dating edges and nodes that are found to be in collision with
the new position of the moving obstacles. This comparison
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Figure 2: Comparison of SR Query and Lazy methods for
the two dynamic obstacle experiment. Averaged likelihood
of successfully traversing a collision-free path within the al-
lotted time horizon for a given roadmap size, for Grid-based
maps and PRM roadmaps. Note: Grid runs do not have
error bars since there is only a single cell decomposition for
a given roadmap size.

shows the accuracy gained by considering the probabilities
of collision instead of just the obstacles’ current locations.
Furthermore, we show the flexibility of the method by

running experiments with node generation done with a uni-
form random distribution (PRM) [14] and with a regular
cell decomposition (Grid) [15]. While cell decompositions
can be ideal solutions, they are often infeasible for plan-
ning problems with several or complex static obstacles or of
high dimensionality. In those cases, PRMs are often pre-
ferred. Since both types of roadmaps are treated the same
way by the algorithm, we investigate how the topology of the
roadmap can impact our method. In the Grid roadmaps, ev-
ery node is connected with up to 8 adjacent neighbors. PRM
roadmaps are constructed with uniform random sampling
and each node is connected to its five closest neighbors.

5.1 Two Moving Obstacles
In this experiment, the robot navigates across a plan-

ning space while avoiding two dynamic obstacles that follow
straight-line (1) and constant-arc (2) dynamics from initial
conditions xo

l (0), xo
a(0). The robot’s start state and goal

state are at the opposite corners of a 20× 20 planning space
(Figure 3a). The obstacle trajectories are chosen to gener-
ate sufficient opportunities for conflict with the robot, and
obstacles may exit the planning space.
In order to evaluate the performance of our algorithm,

we constructed roadmaps of |N | = 100, 300, and 500 nodes
using the standard PRM method. For each map size, we
used 10 random seeds to create 10 different PRM roadmaps.
We also produced Grid roadmaps of size ⌊

√

|N |⌋2 nodes,
where N is the number of nodes in the corresponding PRM
roadmap, to account for their square and unformly spaced
node structure. We simulated 100 obstacle pair trajectories,
resulting in 10× 100 = 1, 000 simulations for each map size.
The success of the algorithm was measured by collision-free
path completion (the robot reaching the target) within the
given time horizon. To be conservative, we also declared
instances in which the robot did not find a collision-free path
within the allotted time horizon as unsuccessful. However,
time horizons are only applicable for the SR Query method
since the Lazy method is allowed to run until a path is found,
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(a) Similar paths generated by SR Query and Lazy meth-
ods for two dynamic obstacle scenario.
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(b) Different paths generated by SR Query and Lazy
methods for two dynamic obstacle scenario.

Figure 3: Sample trajectories found by SR Query (black
line) and Lazy (blue line) methods on a PRM roadmap with
two obstacles (red lines) over T = N∆ = 30 seconds. (a)
Both methods found qualitatively similar paths, due to little
obstacle interference. (b) SR Query and Lazy found very
different paths, likely due to a near miss with one of the
dynamic obstacles (yellow circle).

no path exists, or a collision occurs. Each simulation was
run for T = 30 seconds with a sampling interval of ∆ = 1
seconds (N = 30 time steps).

Figure 2 shows the effect of map size as well as the rel-
ative effectiveness of the two methods on PRM and Grid
roadmaps in terms of the mean percentage of success. For
the PRM roadmaps, SR Query was able to find successful
paths 88% to 91% of the time, based on roadmap size. The
error bars show how the randomized roadmap structures
impact the success rate. In comparison, the Lazy method
found successful paths 63% to 75% of the time. Unsuccess-
ful runs of Lazy were due either to pruned nodes and edges
that made traversal to the goal impossible, or direct colli-
sion with a moving obstacle. Error bars are not included
for Grid due to the static map structure of a cell decompo-
sition. In comparing Grid-based maps to PRM roadmaps,
we find that the Grid-based maps produce better results for
SR Query with larger map sizes, but poorer results for Lazy
(for all map sizes). This is consistent with evidence that
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Figure 4: Comparison of SR Query and Lazy methods for
the 50 dynamic obstacle experiment. Averaged likelihood of
successfully traversing a collision-free path within the allot-
ted time horizon for a given roadmap size, for Grid-based
maps and PRM roadmaps. Note: Grid runs do not have
error bars since there is only a single cell decomposition for
a given roadmap size.

Grids perform as well or better than randomized roadmaps
in environments without static obstacles [15]. In all cases
(Grid-based or PRM roadmaps), the SR Query method per-
forms between 15% and 45% better than the Lazy method.
We further examine the paths selected by the two algo-

rithms. In Figure 3a, the path generated via the SR Query
method (black line) is fairly similar to the path generated
via the Lazy method. The moving obstacles are shown in
red, and time is indicated as labeled waypoints along each
path. Both Lazy and SR Query methods follow the same
path initially, but at around t = 10 seconds, the SR Query
method identifies an incoming obstacle and moves the robot
away from the obstacle. However, the Lazy method does
not anticipate a possible collision, and so it does not change
its path. In this case, the Lazy method allows the robot to
barely pass in front of the obstacle. A similar near collision
for the Lazy method is shown in Figure 3b. In this exam-
ple, the paths for SR Query and Lazy are the same for the
first 10 seconds. Again, SR Query anticipates an incoming
obstacle and changes its path to avert a possible collision.
The Lazy method generates a path for the robot that passes
in front of the obstacle with very little clearance. This near
miss is highlighted in Figure 3b inside the yellow circle.

5.2 Fifty Moving Obstacles
In this experiment, a robot navigates across a 60 × 60

planning space while avoiding 50 dynamic obstacles, Oi,
i ∈ {1, · · · , 50}. Twenty-five of the obstacles have straight-
line dynamics (1), five each traveling along lines with α ∈
{−1.5,−1,−0.5,+0.5, 1.0}, respectively. The other 25 dy-
namic obstacles have constant-arc dynamics (2), 10 each
with radius r = 50, 10 with r = 40, and five with r = 30.
The speeds and associated probabilities for each obstacle are
as described in Section 4.1.
We constructed 10 each of the three roadmap sizes, as in

Section 5.1. We again generated 100 obstacle trajectories,
resulting in 1000 total simulations for each map size. Since
obtaining a feasible path is more difficult with so many more
obstacles, we increased the time horizon to T = 100 seconds.
Figure 4 shows the effect of map size as well as the av-

erage success rate of the two methods on PRM and Grid
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(a) Fifty dynamic obstacles scenario in which Lazy
method results in collision, SR Query method does not.
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(b) Fifty dynamic obstacle scenario in which both meth-
ods successfully find collision-free paths.

Figure 5: Sample trajectories found by SR Query (black
line) and Lazy (blue line) methods on a PRM roadmap
with 50 obstacles shown at 80s into the simulation (red
squares). Total simulation time T = N∆ = 100s.
(a) The Lazy method results in collision, but SR Query
method successfully reaches the goal state without colli-
sion. (b) Sample trajectories (as in (a)), in which simi-
lar successful paths are found via both methods. Movies
of the 50 moving obstacle simulations are available at
https: // www. cs. unm. edu/ amprg/ Research/ DO/

roadmaps. As this is a significantly harder problem, the
percentages of success are lower as compared to the two ob-
stacle scenario in Figure 2. However, in all cases the SR
Query method is at least 20% better than the Lazy method.
Interestingly, the Grid-based solution is significantly more
successful than the PRM-based method. This is likely due
to the regular spacing of the roadmap nodes, which prevents
long edges and allows the algorithm to make quicker replan-
ning decisions. However, this advantage would not likely
exist in more complex environments. As in Section 5.1,
the error bars in Figure 4 indicate the significant impact of
randomization in the PRM roadmap.

The 50 obstacle test in Figure 4 has lower success rates
than the two obstacle test in Figure 2 because of two factors.
First, finding a collision-free path is significantly harder with

https://www.cs.unm.edu/amprg/Research/DO/


50 obstacles as opposed to merely two. Second, the roadmap
density, defined as the number of nodes per area of the
planning space, is lower with 50 obstacles than with two
obstacles. Since the roadmap sizes are the same, but the
area increases from 20× 20 to 60× 60, the 50 obstacle tests
have lower roadmap density. Lower density roadmaps force
the robot to travel greater distances before path replanning
(which occurs in Algorithm 1 at roadmap nodes), and con-
sequently should have more collisions. However, relatively
high success rates are evident for the SR Query methods,
especially via Grid methods, likely due to the even distribu-
tion of nodes that allow for consistent replanning.
Figures 5a and 5b show two sample trajectories, one in

which the SR Query method significantly outperforms the
Lazy method, and another in which the two methods behave
comparably. Movies of the full 50 obstacle simulation are
available at
https://www.cs.unm.edu/amprg/Research/DO/.

6. CONCLUSIONS
We have successfully incorporated stochastic reachability

into motion planning roadmaps, in order to develop a novel
planning algorithm that accounts for stochastically moving
obstacles. We combined SR sets for individual obstacles into
a single planning solution, generating an upper bound on
the total avoidance probability with several obstacles. We
demonstrated our method on an example with 50 obstacles
and on two methods of roadmap construction. To date, SR
has never been applied to such large systems. By combining
roadmaps with stochastic reachability, our algorithm signifi-
cantly outperforms another existing roadmap-based method
for moving obstacles. Future work includes exploring better
ways of integrating multiple SR sets to generate tighter up-
per bounds on total collision avoidance probabilities when
incorporated into the roadmap. We also plan to investi-
gate higher dimensional systems with more complex obstacle
movement, by exploring approximate SR calculations. We
believe the incorporation of SR into roadmaps is a promising
technique for motion planning under uncertainty, as demon-
strated by our simulations.
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