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Abstract. Identifying collision-free trajectories in environments with
dynamic obstacles is a significant challenge. However, many pertinent
problems occur in dynamic environments, e.g., flight coordination, satel-
lite navigation, autonomous driving, and household robotics. Stochas-
tic reachable (SR) sets assure collision-free trajectories with a certain
likelihood in dynamic environments, but are infeasible for multiple mov-
ing obstacles as the computation scales exponentially in the number of
Degrees of Freedom (DoF) of the relative robot-obstacle state space.
Other methods, such as artificial potential fields (APF), roadmap-based
methods, and tree-based techniques can scale well with the number of
obstacles. However, these methods usually have low success rates in en-
vironments with a large number of obstacles. In this paper, we propose
a method to integrate formal SR sets with ad-hoc APFs for multiple
moving obstacles. The success rate of this method is 30% higher than
two related methods for moving obstacle avoidance, a roadmap-based
technique that uses a SR bias and an APF technique without a SR bias,
reaching over 86% success in an enclosed space with 100 moving obstacles
that ricochet off the walls.

1 Introduction

Motion planning consists of finding a collision-free path from some start position
to some goal position. In many applications, e.g., flight coordination, satellite
navigation, and automated driving, the motion planning problem can be fur-
ther complicated by moving obstacles, i.e. obstacles whose position changes over
time during the planning process. Successful identification of valid, collision-free
paths in environments with moving obstacles requires modification of the static
planning problem to continuously re-evaluate plans, thus dynamically identifying
valid trajectories given current and predicted obstacle positions.

Common approaches to solving the motion planning problem for dynamic
obstacles include APF methods [1–4], tree based planners [5, 6], Probabilistic
Roadmap Methods (PRMs) [7–10], and several variants which use heuristics [11,



12]. APF methods create a potential landscape and use gradient descent for nav-
igation, plan locally, and can be dynamically reactive to unexpected obstacles.
These methods generate an artificial potential in the robot’s workspace, which
repels the robot from obstacles and attracts the robot to the goal [13]. APF meth-
ods suffer from several well known drawbacks, most notably local minima traps
and difficulty with narrow passages. However, recent work has improved upon
and even eliminated some of these issues [1, 14]. The work in [4] has extended
APFs to moving obstacles by considering the trajectories of the obstacles while
computing the APF in a heuristic manner. In this paper, we present a method
to generate potential fields that incorporates formal methods.

Stochastic reachability analysis provides offline verification of dynamical sys-
tems, to assess whether the state of the system will, with a certain likelihood,
remain within a desired subset of the state-space for some finite time, or avoid an
undesired subset of the state-space [15]. To solve problems in collision avoidance,
the region in the relative state-space which constitutes collision is defined as the
set of states the system should avoid [16, 17]. Unfortunately, the computation
time for stochastic reachable sets (SR sets) is exponential in the dimension of
the continuous state, hence assessment of collision probabilities with many si-
multaneously moving obstacles is not feasible. However, expensive SR sets can
be computed offline and the result queried online. In prior work [7], we inte-
grated SR sets into roadmap methods for dynamic path queries (SR-Query). We
demonstrated highly successful path identification in environments with several
moving obstacles, as compared to a roadmap-based approach that simply pruned
invalid edges during dynamic path queries [10]. However, SR-Query was suscep-
tible to ambushes by moving obstacles, due to limited reactivity and required
navigation on the roadmap edges.

The method we propose here uses multiple SR sets, computed pairwise be-
tween the robot and each dynamic obstacle, to generate an APF for each ob-
stacle. We then use the likelihood of collision with a given obstacle, computed
a priori via the SR sets, to construct the repulsion field around obstacles. The
repulsion fields are pre-computed offline and queried during the path planning
phase. SR sets provide an accurate depiction of the collision probabilities be-
tween a robot and a moving obstacle. In an environment with multiple obstacles,
the intersection of multiple SR sets clearly cannot provide a strict assurance of
safety, since the reachable set is computed for one dynamic obstacle in isolation.
Despite this limitation, the SR sets provide a more formal foundation for relating
the collision probability to the repulsion field than other ad-hoc methods [4, 18,
19] because SR sets are computed based on relative robot-obstacle dynamics.
While it is possible to use ad-hoc methods to generate a comparable repulsive
potential field, the SR computation is a formal tool that more closely ties the
repulsive potential field with the relative motion of the obstacles and robot.

Combining formal and ad-hoc methods provides several advantages over ex-
isting APF methods. First, the formal SR set provides an accurate representation
of the collision probabilities, which is used to produce potential gradients which
accurately reflect the collision probability. Second, the computation cost in low



dimensionality problems is lower than the roadmap method in [7]. Thus, the
robot is more reactive and less prone to being ambushed by fast moving obsta-
cles. Finally, our approach easily accommodates multiple obstacle scenarios, by
combining multiple SR sets to generate approximate collision avoidance proba-
bilities with many moving obstacles (which is impossible to compute through a
single SR set that accounts for all obstacles simultaneously).

We demonstrate our method computationally on scenarios with up to three
hundred stochastic dynamic obstacles. The APF with a SR bias can significantly
improve the ability of the potential field landscape to reflect the heading and
motion of obstacles. The success rate of our method is 30% higher than two
related methods for moving obstacle avoidance: 1) our roadmap-based technique
that uses a SR bias [7], and 2) an APF technique without a SR bias; with over
86% path success in an environment with 300 moving obstacles that ricochet off
the walls. In addition, the common problem of local minima in APF is mitigated
by a rapidly changing APF landscape produced by rapidly moving obstacles.
Videos of the APF with a SR bias method can be viewed at
https://www.cs.unm.edu/amprg/Research/DO/.

While our results demonstrate that the APF-SR method outperforms com-
parable methods, we note two key limitations. First, the point-mass robot model
is a simplification of actual robot motion. However, methods such as [1] and [14]
exist, which extend APF methods to non-point robots. A more realistic robot
model can be easily incorporated into the SR set calculation, but with additional
computational cost. Second, we note that the SR set must be recalculated. One
solution is to maintain a SR set database and to then match obstacle motion
to sets as [20] does with funnel libraries. Neither of these limitations are in-
surmountable, and we maintain that the improved performance of the APF-SR
method as compared to other approaches merits its use in many scenarios.

2 Related Work

APFs are a common approach to solving the path planning problem due to their
simplicity, fast execution time, and applicability to several robotic problems, in-
cluding unmanned aerial vehicles [2, 3], robot soccer [21], and mobile robots [1,
14, 22, 23]. For example, a recent APF method assigns non uniform repulsive
bubbles around moving human obstacles to prevent robots from moving in front
of a walking human [4]. Recent work has extended the APF method to account
for cases in which the goal is not reachable due to obstacle proximity [1], and
navigation in narrow passages is required [14]. Other recent work has focused on
modification of the computation of the potential field through Fuzzy [23] and
evolutionary [22] APFs. Another branch of work on APFs utilizes the repul-
sive and attractive concepts of APFs but also integrates another path planning
method [24, 25]. For example, [24] uses a user defined costmap to influence node
placement in a Rapidly exploring Random Tree (RRT) algorithm. The costmap
dictates a repulsiveness or attractiveness factor for every region. Similarly, Nav-
igation Fields [25] assign a gradient which agents follow and is used for crowd
modeling.



A Hamilton-Jacobi-Bellman (HJB) formulation [26] allows for both a control
input and a disturbance input to model collision-avoidance scenarios [27], [28]
for motion planning. The result of these reachability calculations is a maximal
set of states within which collision between two objects is guaranteed (in the
worst-case scenario), also known as the reachable set. The set which assures
collision avoidance is the complement of the reachable set. In [29], reachable
sets are calculated to assure a robot safely reaches a target while avoiding a
single obstacle, whose motion is chosen to maximize collision, and the robot
cannot modify its movements based on subsequent observations. In [30], a similar
approach is taken, but reachable sets are computed iteratively so that the robot
can modify its actions. In [20], multiple obstacles that act as bounded, worst-case
disturbances are avoided online, based on precomputed invariant sets.

An alternative approach is to calculate a SR set that allows for obstacles
whose dynamics include stochastic processes. Discrete-time SR generates prob-
abilistic reachable sets [15], based on stochastic system dynamics. In [16], the
desired target set is known, but the undesired sets that the robot should avoid
are random and must be propagated over time. In [17], a two-player stochastic
dynamical game is applied to a target tracking application in which the target
acts in opposition to the tracker.

3 Preliminaries

3.1 Obstacle Dynamics

We consider dynamic obstacles with one of two classes of trajectories with
stochastic velocities. Each obstacle is represented as a two-dimensional point
mass with state xo = (xo, yo), that follows a straight-line or approximately
constant-arc trajectory with stochastic velocity w, a discrete random variable
that takes on values in W with probability distribution p(w). However, more
complex dynamics, e.g., ones that switch between straight-line and constant arc
movements, can easily be incorporated. The obstacle dynamics discretized via
an Euler approximation with time step ∆ are

xo
n+1 = xo

n +∆wn

yon+1 = αxo
n+1

(1)

for straight-line movement, with speed w ∈ W and line slope α ∈ R, and

xo
n+1 = xo

n +∆r (cos(wn(n+ 1))− cos(wnn))
yon+1 = yon +∆r (sin(wn(n+ 1))− sin(wnn))

(2)

for constant-arc movement, with angular speed w ∈ W, and radius r ∈ R
+. The

dynamics (2) approximate actual arc dynamics to maintain low dimensionality
of the relative coordinate frame used in the calculation of the SR set.

The dynamics of both types of obstacle can be generalized to the form xo
n+1 =

xo
n +∆fo(wn, n) with f defined as appropriate by (1) or (2).



3.2 Relative robot-obstacle dynamics

We consider two models for the robot: 1) a holonomic point-mass model with
state xr = (xr, yr), and 2) a non-holonomic unicycle model with state xr =
(xr, yr, θr). The holonomic model is defined as

ẋr = ux

ẏr = uy (3)

with two-dimensional velocity control input u = (ux, uy). The non-holonomic
unicycle model is defined as

ẋr = us cos(θ)
ẏr = us sin(θ)

θ̇r = uw

(4)

with two-dimensional control input u = (us, uw), such that us is the speed and
uw is the angular velocity of the unicycle. Discretizing the robot dynamics (3)
and (4) with time step ∆ results in

xr
n+1 = xr

n +∆u. (5)

for the holonomic model and

xr
n+1 = xr

n +∆us
n cos(θ

r
n)

yrn+1 = yrn +∆us
n sin(θ

r
n)

θrn+1 = θrn +∆uw
n

(6)

for the unicycle model. We can generalize the robot dynamics to xr
n+1 = xr

n +
∆fr(un, θn) where θn = 0 for the holonomic case.

A collision between the robot and the obstacle occurs when |xr
n − xo

n| ≤ ǫ

for some n and small ǫ. We construct a relative coordinate space that is fixed to
the obstacle, with the relative state defined as x̃ = xr − xo, noting that for the
unicycle model, θ̃ = θ. Hence the dynamics of the robot relative to the obstacle
are

x̃n+1 = x̃n +∆fr(un, θn)−∆fo(wn, n) (7)

with fr(·) as in (5) and (6), fo(·) as in (1) and (2), and a collision is defined as

|x̃n| ≤ ǫ. (8)

Equation (7) describes a dynamical system with state x̃ ∈ X , control input u ∈ U
that is bounded, and stochastic disturbance w. Because x̃n+1 is a function of a
random variable, it is also a random variable. Its transitions are governed by a
stochastic transition kernel, τ(x̃n+1 | x̃n, un, n), that represents the probability
distribution of x̃n+1 conditioned on the known values x̃n, un at time step n.



3.3 SR for Collision Avoidance

We generate collision avoidance probabilities by formulating a SR problem with
the avoid set, K, defined as the set of states in which a collision is said to occur
(8). To avoid collision with the obstacle, the robot should remain within K,
the complement of K. The probability that the robot remains within K over
N time steps, with initial relative position x̃0, can be calculated using dynamic
programming [31], introduced for the stochastic reachability problem in [15]. An
abbreviated derivation for calculating the SR set follows, with details in [7]. As
in [15], the SR set is generated via dynamic programming, iterated backwards
in time from time n = N to time n = 0.

VN (x̃) = 1K(x̃) (9)

Vn(x̃) = 1K(x̃)

∫

X

Vn+1(x̃
′)τ(x̃′ | x̃, u, n) dx̃′ (10)

= 1K(x̃)
∑

w∈W

V ∗
n+1 (x̃+∆fr(u, θ)−∆fo(w, n)) p(w). (11)

The value functions (9)-(11) make use of an indicator function 1K(x) that is
equal to 1 if x ∈ K and equal to 0 otherwise. The value function V ∗

0 (x̃0) at
time n = 0 describes the probability of avoiding collision over N timesteps when
starting in some initial state x̃0. The optimal control input u to avoid collision
is determined by evaluating

V ∗
n (x̃) = max

u∈U

{

1K(x̃)
∑

w∈W

V ∗
n+1 (x̃+∆fr(u, n)−∆fo(w, n)) p(w)

}

. (12)

Figure 1a shows the SR set for a straight-line obstacle with a point mass
holonomic robot. The peaks show a higher probability of collision when the
robot is in line with the obstacle’s trajectory. Intuitively, the closer the robot
is to the obstacle, the higher the probability of collision. On a single core of an
Intel 3.40 GHz CORE i7-2600 CPU with 8 GB of RAM, the SR set in Figure 1a
took 1727.25 seconds to compute, over a horizon of N = 30 steps, with time step
of length ∆ = 1 and a point mass holonomic robot. We observed convergence
in the stochastic reachable sets for N > 5 since the robot and obstacle traveled
sufficiently far apart within this time frame.

With a single obstacle, V ∗
0 (x̃0) in (12) is the maximum probability of avoiding

a collision, and a tight upper bound. For two obstacles with separately calculated
avoidance probabilities V ∗,1

0 (x̃1
0), V

∗,2
0 (x̃2

0) (with relative position x̃i
0 with respect

to obstacle i), the probability of avoiding collision with both obstacles is

P[B1 ∩B2] ≤ min{V ∗,1
0 (x̃1

0), V
∗,2
0 (x̃2

0)} (13)

where Bi corresponds to the event that the robot avoids collision with obstacle i.
We therefore examine each collision avoidance probability individually, and the
minimum over all obstacle robot pairs is the upper bound to the total collision
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Fig. 1: SR sets for the same straight-line obstacles at origin with width and height = 1. The color

represents probability of collision. (a) SR set with a holonomic robot. (b) Holonomic robot SR set

after convolution with a Gaussian (σ = 0.15). (c) SR set with the unicycle robot. (d) Unicycle robot

SR set after convolution with a Gaussian (σ = 0.15).

avoidance probability. While an upper bound provides no guarantee of safety, it
can inform which paths are more likely, relative to other paths, to avoid collision.
Since our focus is on finding paths with higher success rates, rather than the-
oretically guaranteed collision-free paths, the upper bound (13) is appropriate.
Further discussion and the derivation of (13) is in [7].

4 Methods

In this section, we present a novel method for integrating SR sets with APF
methods. To generate the obstacle gradients and the gradient to the goal with
SR sets we must first modify the SR sets to accommodate APF, incorporate the
SR sets into the gradient calculation, and then update the robot’s control law.



Algorithm 1 APF-SR

Input: obstacles O with precomputed smoothed SR sets, robot r

1: for t = 0; t < maxTime; t = t+∆ do

2: for Obstacle o ∈ O do

3: updateObstacle(t,o,o.w,o.p(w))
4: end for

5: APFvector = (0, 0)
6: for Obstacle o ∈ O do

7: if dist( xo

n, x
r

n) < dmin then

8: APFvector = APFvector + o.getAPFGradient(xr

n)
9: end if

10: end for

11: APFvector = APFvector+ goal-gradient
12: u = calcControl(APFvector)
13: xr

n+1 = xr

n +∆ · fr(u, t)
14: end for

One hurdle in using SR sets to inform the potential field is the possibility
of non-smoothness in the optimal value for (12). In general, no guarantees of
smoothness are possible. In fact, we find a marked discontinuity in the part of
the SR set corresponding to a robot located just behind the obstacle (Figure 1).
Since APF methods use a gradient as a warning that the robot is about to collide
with an obstacle, we smooth the SR set by convolving the set with a Gaussian
with N (µ = 0, σ2). Figure 1 shows the original SR set (1a) and the resulting set
after convolution (1b). As expected, the discontinuity in Figure 1a from 0 to 1
at the obstacle boundary is smoothed in Figure 1b.

The main APF-SR algorithm, Algorithm 1, first updates the obstacle posi-
tions via the updateObstacle function (Line 3). Then Algorithm 1 calculates the
APF gradient by summing the obstacle gradients, calculated in getAPFGradient,
and the goal gradient (Lines 5-11), which is then used by calcControl to con-
struct the control input u (Line 12). Recall the APF gradient is the direction the
robot should move in to avoid obstacles and reach the goal. Finally, the control
law for the robot is updated with the control input u (Line 13).

The updateObstacle function (Algorithm 2) uses the same dynamics used to
calculate the SR sets. This algorithm updates the obstacle locations. At every
sampling instant (time T apart), Algorithm 2 evaluates a speed w of the obstacle,
based on the distribution p(w) of possible speeds (Lines 2-9), and updates the
obstacle dynamics with this speed (Line 10).

The APF gradient is calculated for all obstacles nearby the robot in the
getAPFGradient(xr

n) function. For every obstacle o, if o is within distance dmin

query the potential field influence of o on the robot. This gradient is calculated
by first finding the smallest neighboring value, pi,j , in the SR set from the robot’s
current relative position. The gradient is then calculated by the 2nd order central
finite difference centered at pi,j . The gradient from each obstacle is then summed



Algorithm 2 updateObstacle

Input: Time step n, sample interval T . obstacle o, velocities w ∈ W =
{w1, w2, ..., wnW

}, probabilities p(w)

1: if mod(n, T/∆) == 0 then

2: s = rand(0, 1)
3: for index = 0; index < nW ; index++ do

4: if s ≤ p(w)[index] then
5: o.w = w[index]
6: break
7: end if

8: end for

9: end if

10: xo

n+1 = xo

n +∆ · fo(o.w, tn)

together to produce a final gradient due to the obstacles. The goal-gradient is a
small magnitude vector that constantly points toward the goal. The goal-gradient
and the gradient due to the obstacles are summed together to get the final APF
gradient, denoted APFvector.

After the APFvector is calculated, the control input u is calculated by the
calcControl(APFvector) function. For the holonomic case u = APFvector. How-
ever, for the non-holonomic case a heading and speed must be extracted from
the APFvector to construct u = (us, uw). This is done by first setting uw to the
maximum turn rate in the direction of the APFvector, then setting us to the
maximum speed in the direction of the APFvector. The maximum speed of the
unicycle is the same as the maximum speed used in the SR calculation. Finally,
u is used to update the control law for the robot.

5 Experiments

We present three experiments of increasing difficulty. The first experiment (Sec-
tion 5.1), evaluates the APF-SR method on 50 moving obstacles, with two dif-
ferent trajectories (straight-line and constant-arc) and a holonomic point robot.
The second experiment (Section 5.2), shows the relationship between the num-
ber of obstacles, 50 to 300, and success rate for the proposed method, with a
holonomic robot and ricocheting straight-line obstacles. When the ricocheting
obstacles reach the environment boundary, they bounce off the wall with simple
friction free reflective behavior (and do not leave the planning area). Finally,
Section 5.3 evaluates the APF-SR method with a non-holonomic unicycle robot
with 100 ricocheting straight-line obstacles. Note that since the SR calculation
is computed once for each type of obstacle and robot dynamics, the offline com-
putation time is not affected by the number of obstacles.

Our APF-SR method is compared to three methods: a simple Gaussian
method with N (0, 0.152) [32], the same Gaussian method with N (0, 0.452), and



a roadmap based method (SR-Query) which also uses SR sets [7]. The Gaussian
methods wrap a Gaussian potential field around the moving obstacle. The two
Gaussian methods demonstrate that increasing the standard deviation can in-
crease the success of the Gaussian method, but at the expense of making some
paths infeasible due to the large repulsion area. The final method, SR-Query,
builds a roadmap in the workspace by sampling valid configurations (nodes) and
connecting these nodes with valid transitions (edges) thus constructing a graph.
The SR-Query method updates the edge weights by querying the SR set of each
moving obstacle which overlap with the roadmap. The edge is then assigned
the worst probability of collision and a graph search algorithm is used to find
the path with the lowest probability of collision. The robot travels along the
edges and can only replan when it reaches a node. For the comparisons shown,
the SR-Query uses a roadmap created by a uniform cell decomposition in the
workspace, with 500 nodes and edges between all 8 cell neighbors.

For the APF-SR experiments, the SR set was convolved with a Gaussian with
σ = 0.15. The σ of the smoothing Gaussian has the same value as the smaller
Gaussian comparison method (Gaussian σ = 0.15) to eliminate the smoothing
done to the SR set as possible bias for APF-SR’s success. The value σ = 0.15
worked well since larger values destroyed the shape of the SR set and smaller
values did not provide enough smoothing. The value was chosen empirically by
comparing σ = 0.05, σ = 0.45 and σ = 0.15.

To generate the SR sets, the obstacles must have a known probabilistic
velocity distribution. For all the experiments, the straight-line obstacles have
stochastic velocities, w = {0.1, 0.2, 0.5, 0.7}, with corresponding probabilities
p(w) = {0.3, 0.2, 0.3, 0.3}. Experiments with obstacles traveling along constant-
arc trajectories have w = { .4

20π ,
.6
20π ,

.9
20π ,

1.2
20π} and p(w) = {0.2, 0.2, 0.3, 0.3} with

radii 30, 40 and 50.
In Sections 5.1 and 5.2, the robot is holonomic with a maximum velocity of

0.36 units per second. In Section 5.3, the robot is a unicycle with a maximum
velocity of 0.36 meters per second and maximum turn rate of π

5 radians per
second. The other critical parameters are dmin = 3m, the goal-gradient is a
vector with magnitude 0.1 in the direction of the goal, the robot makes a decision
and moves every ∆ = 0.01 second, and the obstacle sampling interval is T = 1
second.

5.1 Comparison of holonomic robot with line and arc obstacles

The environmental setup is constant between all three methods. However, be-
cause the obstacles have stochastic velocity, multiple trials (100) are conducted
and mean results presented. Each method is run with the same random seed.
In these experiments, there are 25 constant-line obstacles and 25 constant-arc
obstacles with stochastic velocities. Figure 2a shows the initial locations of the
obstacles, as well as the start location (S) and goal location (G) of the robot.

Figure 2b shows the percentage of trials which reach the goal without col-
lision. The APF-SR method has the highest success rate (95%); much higher
than the next highest success rate (75%) via the Gaussian method with σ = .45.
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Fig. 2: 50 Obstacle Comparison: (a) The environment at t = 0. The obstacles start
outside the environment boundaries and move towards the robot. (b) Percentage of
trials which reach the goal without collision. (c) Distance from the nearest obstacle
over the coarse of the trial. (d) Example of the paths for a single stochastic trial. The
start is marked with a S and the goal with a G. Gaussian methods do not reach to goal
due to a collision.

Hence, incorporating the formal SR set methods into the ad-hoc APF method
provides a significant advantage. This advantage originates from the fact that the
APF-SR method provides information about an obstacle’s dynamics, enabling
the robot to avoid an obstacle’s path while maneuvering around all obstacles.

Of further interest is that the SR-Query method only achieves a 74% success
rate in this experiment. This is because the robot using the SR-Query method is
ambushed by obstacles while traversing an edge in the roadmap [7]. Recall that
the SR-Query method only makes path planning decisions at nodes and is there-
fore vulnerable while traversing edges. However, the proposed APF-SR method
does not suffer from this particular problem, making the proposed method more
reactive to the moving obstacles. The APF-SR method makes path planning
decisions at every timestep, while the SR-Query method only replans at nodes
in the roadmap [7].



Figure 2c evaluates a second metric, clearance, which we define as the dis-
tance from the robot to the nearest obstacle averaged over all trials. The paths
are normalized for comparison. The clearance of the APF-SR method is compa-
rable to the clearance of the other methods. However, the shape of the potential
field provides a more informed path through the obstacles. Figure 2d shows the
difference in example paths for the four methods. The difference in the decisions
can be seen in the yellow circle where the two Gaussian methods collide and stop.
The Gaussian σ = 0.15 method makes a slight turn to avoid the obstacle and is
then hit. While the Gaussian σ = 0.45 method makes a slightly more pronounced
turn, it is still hit. However, the APF-SR method makes a much steeper turn
due to the shape of the potential field, successfully avoids the moving obstacle,
and reaches the goal.

5.2 Holonomic robot with ricocheting line obstacles

We compare the Gaussian method and the APF-SR method in challenging en-
vironments with 100 straight-line obstacles. Unlike in the previous experiment,
the straight-line obstacles may ricochet off the walls defined in the 50 by 50 envi-
ronment. This increases the difficulty of the problem as all obstacles are always
present in the planning region. Figures 2a and 3a show the difference between
the 50 obstacle and 100 obstacle experimental environments.

Figure 3b shows that the APF-SR method has a success rate of 86%, while
the Gaussians have a success rate of at most 56%, for 100 obstacles. As expected,
the success rate is lower than in the 50 obstacle experiment.

Since the clearances shown in Figure 3c for each of the three methods are
comparable, the shape of the APF allows the robot to take more informed paths
through the obstacles. Figure 3d shows the path differences, particularly evident
inside the yellow circle, where the three methods follow very different paths. The
APF-SR method takes the most evasive action and successfully avoids collision,
whereas the other two methods fail.

As the number of obstacles increases from 50 to 300 (Figure 3b), the success
rate decreases, as expected. However, the APF-SR method decreases at a slower
rate and still has approximately 75% success rate with 200 obstacles, whereas
the Gaussian methods have less than 25% success rate. By incorporating the SR
sets, the APF-SR method can better avoid large numbers of obstacles. Further,
the online execution of the APF-SR method is fast, scaling linearly with the
number of obstacles. On a single core of an Intel 3.40 GHz CORE i7-2600 CPU
with 8 GB of RAM, execution time is 0.0168ms per step for the 50 obstacle
environment, and 0.0247ms per step for the 100 obstacle environment.

5.3 Non-holonomic Unicycle

In this experiment, the robot is modeled as a non-holonomic unicycle (4) and the
obstacles follow straight-line trajectories. The robot can only turn at a rate of π

5
radians per second, which makes the problem more difficult than the holonomic
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(d) Example Paths

Fig. 3: 50 - 300 Ricocheting Obstacles: (a) The 100 Obstacle environment at time
t = 0. (b) Success rate with increasing number of obstacles. (c) Distance from the
nearest obstacle normalized over the path (100 Obstacles). (d) Example of the paths
for a single stochastic obstacle run. The start is marked with ‘S’ and the goal with ‘G’.
Gaussian-method paths do not reach to goal due to a collision.

case. We also note that this problem cannot be solved with the SR-Query method
presented in [7] without path modification for the non-holonomic constraints.

Figure 4a compares the APF-SR method and the Gaussian methods. The
APF-SR method performs approximately 50% better than the next highest
Gaussian method. Thus, the SR set allows the APF-SR method to make sig-
nificantly better path planning decisions.

Figure 4b shows that clearance is comparable across all methods, indicating
that the APF-SR method’s repulsion fields produce more informed paths. Figure
4c shows an example of these paths for a single run. These paths differ more
than the paths in the previous experiments. This is due to the limited ability
of the robot to turn, and thus early differences in decisions result in large path
differences later. For example, in the yellow circle in Figure 4c, the APF-SR
method diverges from the Gaussian method early on due to the shape of the
potential field constructed with the SR sets. These paths are more erratic than
the holonomic robot’s paths because the robot’s turning ability is limited and
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(c) Example Paths

Fig. 4: 100 Obstacles with Unicycle Robot: (a) Percentage of trials which reach the
goal without collision. (b) Distance from the nearest obstacle normalized over the path.
(c) Paths Example. The start is marked with a S and the goal with a G. The paths for
the Gaussian methods do not reach to goal due to a collision.

hence the robot must take more dramatic evasive motions to avoid the obstacles.
The sharp direction changes are due to the unicycle changing velocity from
positive to negative (or vice versa), which creates a sharp reversal.

6 Conclusion

The incorporation of the formal SR sets into the ad-hoc APF method provides
the APF with a more accurate representation of the relative robot-obstacle dy-
namics, which leads to an increased success rate during path planning. The
APF-SR method has a success rate at least 30% higher than other methods
used for comparison. We also showed that this gain was due not to increased
clearance from the obstacles, but rather to more informed path planning. The
SR set informs the APF-SR algorithm of the direction and velocity of the obsta-
cle, which is used to generate a repulsive potential that reflects the probability
of collision. Hence the APF-SR algorithm can make informed planning decisions
in the presence of multiple moving obstacles.
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