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Path-Guided Artificial Potential Fields with Stochastic Reachable Sets
for Motion Planning in Highly Dynamic Environments
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Abstract— Highly dynamic environments pose a particular
challenge for motion planning due to the need for constant
evaluation or validation of plans. However, due to the wide
range of applications, an algorithm to safely plan in the pres-
ence of moving obstacles is required. In this paper, we propose a
novel technique that provides computationally efficient planning
solutions in environments with static obstacles and several
dynamic obstacles with stochastic motions. Path-Guided APF-
SR works by first applying a sampling-based technique to
identify a valid, collision-free path in the presence of static
obstacles. Then, an artificial potential field planning method is
used to safely navigate through the moving obstacles using the
path as an attractive intermediate goal bias. In order to improve
the safety of the artificial potential field, repulsive potential
fields around moving obstacles are calculated with stochastic
reachable sets, a method previously shown to significantly
improve planning success in highly dynamic environments.
We show that Path-Guided APF-SR outperforms other meth-
ods that have high planning success in environments with
300 stochastically moving obstacles. Furthermore, planning
is achievable in environments in which previously developed
methods have failed.

I. I NTRODUCTION

Motion planning consists of finding a valid, collision-free
path for a robot from a start configuration to a goal config-
uration. Planning with both static and dynamic obstacles is
complicated by the need for constant adjustments of plans
to account for moving obstacles, yet critical in applications
such as flight coordination and autonomous vehicles. In these
dynamic environments, it is important to produce trajectories
that avoid both static and dynamic obstacles with high
success rates in a computationally efficient manner.

Sampling based methods have shown great success at
identifying valid paths in complex planning problems with
static obstacles [1], [2], [3]. We extended this work to
accommodate dynamic obstacles [4], and recently showed
that an Artificial Potential Field (APF) method outperformed
these sampling-based methods in highly dynamic environ-
ments [5]. APF works by following the combined gradient
of repulsive potentials around obstacles and an attractive
potential from the goal. However, like all APF methods, this
approach struggles with the local minima problem. While
there are a few extensions that address this known limitation
[6], [7], they are either computationally expensive or perform
badly in some environments. Researchers have also begun to
explore combinations of sampling based methods and APF
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in swarm robotics [8] and group behavior simulations [9],
to handle the very high dimensional combined configuration
space.

Fig. 1: Narrow environment used for experiments: grey bars
are static obstacles, black/grey squares are 300 stochastic
moving obstacles in line/arc trajectories, and the robot must
traverse from S (start) to G (goal). Solid red line is the actual
path taken by Path-Guided APF-SR initially guided by the
PRM path, dashed line. For comparison, the blue line is the
path taken by APF-SR (trapped in local minima near start)
and the green line is the path of SR-Query (collision).

In this paper, we propose the Path-Guided APF-SR an al-
ternative approach that has low computational run time cost,
works flexibly with any path generating sampling method,
and shows great success at avoiding collisions in crowded
environments with hundreds of moving obstacles. We focus
on the problem of safe navigation for a single robot in highly
dynamic and complex environments, with both static and
dynamic, stochastic obstacles (which are not controllable).
The main contributions of this work are 1) the combination
of path generation via sampling methods and dynamic,
stochastic obstacle avoidance via APF methods weighted
by stochastic reachable sets, 2) effective navigation in en-
vironments with both static obstacles as well as dynamic,
stochastic obstacles, 3) a path-guided gradient for APF, and
4) evaluation of our method in multiple environments and
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with multiple sampling methods.
Our method works by first applying a sampling-based

technique to identify a path that’s collision-free with respect
to static obstacles. Then, an artificial potential field planning
method is used to safely navigate through the moving obsta-
cles, using the path as an attractive intermediate goal bias. To
improve the safety of the artificial potential field, we incor-
porate a repulsive potential field for each moving obstacle,
based on pre-computed stochastic reachable (SR) sets. These
sets provide a pairwise assurance of a likelihood of safety,for
known relative robot-obstacle stochastic dynamics, at expo-
nential computational cost in the number of relative degrees
of freedom. The APF-SR combination method removes this
exponential cost from runtime, while still maintaining high
planning success rates in highly dynamic environments [5].

We compare Path-Guided APF-SR to two algorithms we
previously developed for navigation in environments with
dynamic, stochastic obstacles (but without any static ob-
stacles). First, SR-Query [4] is a PRM-based method that
dynamically adjusts path selection based on SR set weighted
edges that are updated as obstacles move. This method has
been shown to outperform a common PRM-based method
[10] for dynamic obstacle avoidance. Second, APF-SR [5]
is a SR-biased APF method that showed a higher success
rate than standard APF methods for avoiding large numbers
of highly dynamic obstacles. In addition, we compare Path-
Guided APF-SR to ORCA [11], an algorithm developed for
multi-agent path finding using a predicted region of collision,
velocity obstacles.

We tested Path-Guided APF-SR in environments with 300
stochastic moving obstacles, that either are free of static
obstacles, or have challenging static obstacles in the shape
of a “bug trap” or narrow corridors. In these tests, our
method avoids local minima and has a high success rate
(over 90%) in highly dynamic environments. Further, our
method is capable of solving problems that are not solvable
by APF-SR or SR-Query. We also evaluated Path-Guided
APF-SR with paths from two different sampling methods,
PRM and EST, and showed no significant change in success
rate. The enclosed video submission contains the experiments
and visualization of the simulations.

II. RELATED WORK

APF [12] is a powerful approach to path planning, that
is simple to construct, suitably fast for online planning,
easily handles kinodynamic and nonholonomic constraints,
and applicable to problems in unmanned aerial vehicles
[13], [14], robot soccer [15], and mobile robots [16], [17],
[18], [19]. APF methods have been extended to address
problems in which the goal is not reachable due to obstacle
proximity [16], and navigation in narrow passages is required
[17]. Other recent work has focused on modification of the
computation of the potential field through fuzzy [19] and
evolutionary [18] APFs. APFs based on the repulsive and
attractive concepts can integrate with other path planning
methods [20], [21]. In [20], a user defined costmap influences
node placement in a Rapidly exploring Random Tree (RRT)

algorithm. The costmap dictates a repulsiveness or attractive-
ness factor for every region. Similarly, navigation fields [21]
assign a gradient which agents follow, with application to
crowd modeling. A method based on concept of affordance
for multi-agent planning was proposed in [22].

The main drawback in APF methods is the possibility of
becoming trapped in local minima. While several approaches
have been proposed, this remains a difficult problem. The
Randomized Path Planner [6] prescribes a random walk
when at a local minimum, which while effective in some
environments, often requires a long time to escape from
complex environments (e.g., a bug trap with a long and
narrow escape route). The navigation function approach [7]
is computationally expensive and often restrictive.

Path-guided APF has been applied to swarm [8] or group
[9] robotics by generating the attractive potential from
intermediate goals along a precomputed path, allowing a
large number of robots to efficiently navigate in complex
environments in a coordinated way. Path-Guided APF-SR
focuses on safely navigating a single robot in a complex
environment with many uncontrollable stochastically moving
obstacles. This requires a new path-guidance scheme to avoid
local minima and a SR-biased repulsive potential to improve
safety.

Reachability analysis has been used to inform motion
planning decisions for collision avoidance, based on two
approaches. One approach allows for a control and distur-
bance input, and generates the maximal set of initial states
within which a collision is guaranteed, assuming the worst
case disturbance input [23], [24]. This set, known as the
reachable set, can be obtained by solving a Hamilton-Jacobi-
Isaacs (HJI) equation [25]; its complement assures collision
avoidance. In [26], the reachable set (for the robot to reach
target while avoiding a single obstacle) is computed by
assuming the obstacle actively attempts to collide with the
robot. A similar approach is used in [27], with reachable
sets computed iteratively to enable the robot to modify its
actions. Multiple obstacles are avoided in an online fashion
in [28], based on precomputed invariant sets.

Another approach incorporates stochastic relative dynam-
ics. Probabilistic SR sets [29] describe the set of states in
which a collision is guaranteed with a certain probability.In
[30], the obstacles are modeled as random sets that evolve
over time, whereas the desired target set is known and
unchanging. A disturbance input that acts in opposition to
the robot’s objective is considered in [31], and the reachable
sets are generated using a two-player game formulation.

III. PRELIMINARIES

A. Obstacle Dynamics

We consider 2D rigid body obstacles in the shape of a
square, with center of massxo = (xo, yo). We presume that
the obstacles follow trajectories described by a straight line
or a constant radius arcs, with stochastic linear or angular
velocity w ∈ W, respectively, a discrete random variable
with probability distributionp(w). However, more complex
dynamics, e.g., ones that switch between straight line and
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constant radius arc movements, can easily be incorporated.
The obstacle dynamics are discretized via an Euler approx-
imation with time step∆.

xo
n+1 = xo

n + fo(wn, n)∆ (1)

For the straight-line trajectories with line slopeα ∈ R,

fo(wn, n) =

[

wn

αwn

]

(2)

For the constant-arc trajectories with radiusr ∈ R
+,

fo(wn, n) =

[

r (cos(wn(n+ 1))− cos(wnn))
r (sin(wn(n+ 1))− sin(wnn))

]

(3)

B. Relative robot-obstacle dynamics

We presume the robot is a point mass with dynamics

xr
n+1 = xr

n + fr(un)∆, (4)

representative of either 1) a holonomic system with state
xr = (xr, yr), or 2) a non-holonomic system with statexr =
(xr, yr, θr). For the holonomic system,

fr(un) = u (5)

with velocity control inputu = (ux, uy) ∈ U ⊆ R
2, and for

the nonholonomic system,

fr(un) =





us
n cos(θ

r
n)

us
n sin(θ

r
n)

uw
n



 (6)

with linear and angular velocity inputsu = (us, uw) ∈ U .
A collision occurs when‖xr

n − xo
n‖2 ≤ dobs, or equiva-

lently in relative coordinates̃x ≡ xr − xo ∈ X , when

‖x̃n‖2 ≤ dobs (7)

Relative dynamics are described in relative coordinates by

x̃n+1 = x̃n + [fr(un)− fo(wn, n)]∆ (8)

The stochastic transition kernelτ(x̃n+1 | x̃n, un, n) repre-
sents the probability distribution of̃xn+1 conditioned on the
known values̃xn, un at time stepn.

C. SR Sets for Collision Avoidance

We calculate collision avoidance probabilities by solvinga
stochastic reachability problem with the avoid set,K, defined
as the set of states in which a collision is said to occur (7).
We compute the probability that the robot remains within
K, the complement ofK, over N time steps, with initial
relative positionx̃0, using dynamic programming [32], [29].
We summarize key elements of the derivation here, and refer
the reader to [4] [5] for additional details.

As in [29], the SR set is generated by iterating the value
function backwards in time withVN (x̃) = 1K(x̃), and

Vn(x̃) = 1K(x̃)

∫

X
Vn+1(x̃

′)τ(x̃′ | x̃, u, n) dx̃′ (9)

= 1K(x̃)
∑

w∈W
V ∗
n+1 (x̃+∆fr(u, θ)

−∆fo(w, n)) p(w). (10)
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Fig. 2: Potential landscape gradients: Repulsive APFs
(square-like contours) are queried from SR sets convolved
with a Gaussian (σ = 0.15). The gradient of the repulsive
APF is shown in the green arrow. The attractive APF is
weaker and has a gradient (yellow arrow) that points toward
the goal located at the upper right corner.

from time n = N to time n = 0. The indicator function
1K(x) is equal to 1 ifx ∈ K and equal to 0 otherwise.
The value functionV ∗

0 (x̃0) at time n = 0 describes the
probability of avoiding collision overN time steps from an
initial statex̃0. The optimal control inputu to avoid collision
is the control that solves

V ∗
n (x̃) = max

u∈U

{

1K(x̃)
∑

w∈W
V ∗
n+1 (x̃+∆fr(u, n)

−∆fo(w, n))p(w)

}

. (11)

IV. M ETHODS

Path-Guided APF-SR separates planning into an offline
phase and a run time phase. In the offline phase, a sampling-
based method is used to generate a path to the goal in the
presence of static obstacles only. Then, this path is used
during the run time phase as a heuristic to guide the APF-
SR method (which considers the moving obstacles). This
eliminates the local minimum created by static obstacles and
retains the high success rate of APF-SR. Hence, Path-Guided
APF-SR is capable of fast real-time planning in environments
with a large number of moving obstacles.

A. Offline Phase: Computation

Path-Guided APF-SR requires a pre-computed stochastic
reachable set and a path. Since the stochastic reachable set
(11) can have discontinuities and plateaus, which are detri-
mental to a gradient-following APF method, we convolve the
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Algorithm 1 PRM-Guided-APF-SR

Input: Moving obstaclesOM with pre-computed smoothed
SR sets, static obstaclesOS , sampling-basedpath, robot
r start configurationS and goal configurationG

1: Vnextnode = S
2: for t = 0; t < maxTime; t = t+∆ do
3: for Obstacleo ∈ OM do
4: updateObstacle(t,o,o.w,o.p(w))
5: end for
6: APFgradient = (0, 0)
7: for Obstacleo ∈ OM do
8: if dist( xo

n, xr
n) < dmin then

9: APFgradient =
10: APFgradient + o.queryAPFGradient(xr

n)
11: end if
12: end for
13: for Obstacleo ∈ OS do
14: APFgradient =
15: APFgradient + o.calcAPFGradient(xr

n)
16: end for
17: if dist(xr

n, Vnextnode) < ǫ then
18: (Vnextnode,P) = getNewTarget(xr

n, path,G)
19: end if
20: APFgradient =
21: APFgradient+getPathGuidedGradient(Vnextnode,P)
22: u = getControl(APFgradient)
23: xr

n+1 = xr
n +∆ · fr(u, t)

24: if dist( xr
n, G) < Goalthreshold then

25: break
26: end if
27: end for

stochastic reachable set with a 2D Gaussian of widthσ for
smoothing (Figure 2).

Next, the required path is extracted from a sampling-based
method such as PRM [2], RRT [33] or EST [1] which only
considers the static obstacles. In principle, any sampling-
based method can be used, provided the regions containing
the start and goal configurations are connected.

B. Run Time Phase: Planning

Path-Guided APF-SR (Algorithm 1) first updates the ob-
stacle positions (line 3-5,updateObstacle). The repulsive
potential has two primary components, due to moving and
static obstacles. The moving obstacle repulsive potential
is queried by using the pre-computed SR sets (line 7-
11, queryAPFGradient). The static obstacle repulsive
potential is computed (line 12-14,calcAPFGradient).
The attractive potential is computed by finding the next
node on the path which is required to generate a
path-guided potential (lines 15-17,getNewTarget and
getPathGuidedGradient). The attractive and repulsive po-
tentials are combined to compute and execute the robot’s ac-
tion (line 19-20,getControl). The subroutines are described
in more detail below.

Fig. 3: Path-Guided APF: The Path-Guided Gradient is
calculated by adding the Edge Following Gradient (perpen-
dicular to the edge) and the Next Node Following Gradient
(points toward the next node). The Path-Guided Gradient
guides the robot to follow the path generated by sampling-
based methods.

SubroutineupdateObstacle moves the obstacle with its
current velocity or angular velocity. Velocities are sampled
every intervalT from a set of velocitiesW identical to the
offline SR set calculation.

For every moving obstacle within a distance,dmin, from
the robot,queryAPFGradient computes the repulsive APF
gradient by finding the relative position from the obstacle
to the robot then querying the smoothed SR set collision
probability for the APF value (Section III). The gradient is
then calculated by the second order central difference method
and summed into the vectorAPFgradient for each obstacle.

SubroutinecalcAPFGradient calculates the gradient of
a repulsive APF (US) generated by a static obstacle.US can
be calculated in the fashion similar to [12] based on the
distanced to the obstacle. To implement the same APF decay
around both static and moving obstacles, we use:

US =

{

erfc( d√
2σ

) if d∗ ≥ d ≥ 0

0 if d > d∗

The convolution of a Gaussian with varianceσ and a square
of width w, wherew ≫ σ, results in an complementary error
function (erfc) type decay on all four edges. Given a small
σ (e.g., compared to the obstacle size), the moving and static
obstacles generate comparable APFs.

In order to compute the attractive potential, subroutine
getNewTarget finds the next node in the path. With a
PRM, the path is found by running Dijkstra’s algorithm.
For other methods, such as a tree-based method, there is
a single path, so the next path node is simply used. As
shown in Figure 3, subroutinegetPathGuidedGradient
computes the Edge Following Gradient and the Next Node
Following gradient. The Edge Following Gradient is a unit
vector perpendicular to the edge that points toward the edge.
The Next Node Following Gradient is a unit vector that
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Fig. 4: Obstacle-free environment in which the robot must
traverse from S (start) to G (goal). The black/grey squares
represent stochastic linear/arc moving obstacles.

points toward the next nodeVnextnode. The sum of these
two gradients forms the Path-Guided Gradient. This gradient
pulls the robot toward the path as close as possible, with
deviations from the path due to moving obstacles.

Finally, the getControl subroutine finds the control
closest to the combined gradient of all obstacles and
goal, (APFgradient). For example, in the case of a holo-
nomic robot, the control input vectoru is collinear with
APFgradient. On the other hand, for nonholonomic, e.g.,
unicycle robots,getControl returns control inputs that at-
tempt to turn the robot towardAPFgradient at the max
turn rate and accelerate/decelerate the robot so that the inner
product ofu andAPFgradient is maximized.

V. EXPERIMENTS

To demonstrate the Path-Guided APF-SR algorithm, we
tested three different environments with stochastic, dynamic
obstacles: The free environment has no static obstacles,
similar to [4] and [5]. The bug trap environment has a static
obstacle the robot must escape to reach the goal. In the
narrow corridor environment, the robot must pass through
two narrow openings to reach the goal.

We created ten PRM roadmaps with n=1000 nodes and
edges selected by connecting nodes to their k=10 nearest
neighbor connections for each of the three static environ-
ments. Ten trials were performed on each roadmap. We
evaluated metrics including success rate and path length for
each trial. We evaluated the efficacy of our algorithm for
both holonomic (5) and non-holonomic (6) robot dynamics.
The robot input is constrained by a maximum linear velocity
of 0.36 units per second and a maximum angular velocity of
π/5 radians per second.

At runtime, the robot replans every∆ seconds. The en-
vironment has 300 randomly placed moving obstacles, with
150 following straight-line dynamics (2), and 150 following

constant-arc dynamics (3). The moving obstacles are squares
with width dobs = 1. Smoothed SR sets are computed for
each obstacle withσ = 0.15; for each of the straight-line
obstacles,α ∈ [0, 2π) was selected randomly. The set of
possible linear velocities isW = {0.1, 0.2, 0.5, 0.7} with
probability p(w) = {0.3, 0.2, 0.3, 0.2}; the set of possible
angular velocities isW = {0.17, 0.26, 0.39, 0.52}/r with
probability p(w) = {0.2, 0.2, 0.3, 0.3}, with r ∈ {5, 10, 15}.

To maintain the constant density of moving obstacles, we
restrict the robot and moving obstacles to lie in a circle with
radius 50. When an obstacle hits the boundary of the circle,
it is transported to the antipodal position on the circle and
continues evolving from this new position. The resulting
density of moving obstacles is similar to that in [5]. We
presume complete information, that is, that the robot has
access to all obstacle positions within radiusdmin = 3 units.

We note that the relative strength between obstacle poten-
tial gradient and goal potential gradient affects the success
rate and path length. If the goal gradient is too strong,
the robot collides with moving obstacles more often. If the
goal gradient is too weak, the robot focuses too much on
avoiding obstacles and often takes a much longer path to
reach the goal. We empirically select a ratio of 1:100 for
the weighting between the goal gradient and the obstacle
gradient, to balance these potentially competing objectives.

We compare our method to SR-Query [4], APF-SR [5]
modified with a standard APF static obstacle repulsion,
ORCA [11] downloaded from [34] and modified for a single
robot and moving obstacles. All experiments are imple-
mented with MATLAB on an i7-3615QM with 16GB RAM.

A. Obstacle-Free Environment

The obstacle-free environment (Figure 4) provides a base-
line for direct comparison of Path-Guided APF-SR with
APF-SR, and demonstrates the PRM guidance does not
interfere with APF-SR moving obstacle avoidance. The robot
starts at(−25, 0) and the goal is at(25, 0).

Figure 5a shows that Path-Guided APF-SR has a success
rate comparable to APF-SR (> 90%), and a comparable path
length. In contrast, SR-Query has a mere 2% success rate,
due to collisions the robot could not avoid when traveling
along an edge. When the number of moving obstacles is
significantly reduced to 50 we observed a success rate of
58%, consistent with that reported in [4]. Although ORCA
produces the shortest path length, it does not have a high
success rate (68%). Unlike the stochastic reachability anal-
ysis, the stochastically changing obstacle speed was not
considered in ORCA’s calculations.

B. Bug Trap Environment

The bug trap environment (Figure 6) is designed to test
the algorithm’s ability to avoid local minima created by static
obstacles. The start and goal positions are the same as in the
obstacle-free environment, and the obstacle width is 5 times
the width of the moving obstacles.

Figure 5a demonstrates the utility of the PRM for path
guidance. While the success rate for Path-Guided APF-SR
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(a) Success rate

(b) Path length

Fig. 5: Performance comparison: (a) Success rate of Path-
Guided APF-SR (PGAPFSR in the figure) compared to
APF-SR (APFSR), SR-Query (SRQ) and ORCA in various
environments. SR-Query and ORCA are unable to directly
handle unicycle dynamics, and the success rate of the former
in the bug trap and narrow corridor environment is less than
1%. APF-SR became trapped in local minima in the bug
trap and narrow corridor environment and never reached the
goal. (b) Path length of various methods. The dotted line
represents the straight line distance from start to goal.

is comparable to that in the obstacle-free environment (for
both holonomic and non-holonomic robot dynamics), APF-
SR became trapped in a local minimum created by the static
obstacles and the goal. While SR-Query avoids the local
minima problem as it is not an APF-based method, the longer
path required in this environment increases the probability of
collision while the robot travels along an edge. This results
in zero success in 100 trials.
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Fig. 6: Bug trap environment in which the robot must
traverse from S (start) to G (goal). Grey bars are static ob-
stacles; black squares are 300 stochastic, dynamic obstacles.

Environment PRM-APF-SR APF-SR SR-Query
Free 3.3 ms 3.0 ms 84.0 ms

Bug Trap 9.7 ms 6.6 ms 57.0 ms
Narrow Corridor 8.8 ms 5.1 ms 101.0 ms

TABLE I: Run time per planning step

C. Narrow Corridor Environment

The narrow corridor environment (Figure 1a) is de-
signed to test the algorithm in environments challenging
to sampling-based planners. The openings in the narrow
corridors are fives times as wide as the moving obstacles.

Path-Guided APF-SR has a high success rate despite
stochastic and static obstacles. Although the environment
does not contain deep potential minima like the bug trap
environment, APF-SR still becomes trapped in local minima.
SR-Query was unsuccessful in all 100 trials, since the longer
path required in this environment increases the probability of
collision while the robot travels along an edge.

D. Discussion

The bug trap and narrow corridor environment clearly
show Path-Guided APF-SR can avoid local minimum created
by static obstacles and also successfully navigate around
stochastic dynamic obstacles. It is a superior method to
both APF-SR and SR-Query. Most importantly (Table I),
the run time per planning step is similar to APF-SR, and
is at least one order of magnitude less than SR-Query,
making it feasible for applications that require real-time
online planning. Also, considering the stochastic motion
helps it outperform ORCA.

The primary cause of failure for Path-Guided APF-SR
seems to be multiple moving obstacles interaction. Consider
the case in which several obstacles converge on the robot
from different directions. The obstacle potential is queried
from SR sets that consider interaction with a single obstacle
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Roadmap PRM-APF-SR SR-Query
n = 1000, k = 10 94% 2%
n = 250, k = 6 94% 0%

TABLE II: Comparison of planning success given paths
extracted from PRMs of various sizes in the free environ-
ment. Size of roadmap is defined byn nodes, andk nearest
neighbors selected for edge connection.

in isolation. The presence of multiple obstacles may cre-
ate local minima that lead to collisions. Unfortunately, a
multi-obstacle SR set is not practical since computation is
precluded by the high dimensionality of the relative state
space. However, the occurrence of such an event is rare
compared to single obstacle encounters, and therefore does
not have a large effect on the success rate. We investigated
the use of the path found by SR-Query to guide the APF-
SR robot away from regions with high densities of moving
obstacles. Although SR-Query can lead the robot to lower
density regions, this does not necessarily preclude the multi-
obstacle scenario, and in general results in a much longer
path length and run time per planning step.

We did not observe any collisions between the robot
and the static obstacles using the path-guidance. This is
expected, as stochastically moving obstacle avoidance is
intrinsically harder than static obstacle avoidance. However,
in preliminary experiments using only the next-node follow-
ing gradient, moving obstacle avoidance occasionally caused
large deviations from the guidance path that trapped the robot
in a local minimum (results not shown).

Roadmap quality (Table II) has an effect on the success
rate of SR-Query, since longer edges increases the proba-
bility of collision while traveling on an edge. Path-Guided
APF-SR is robust to roadmap quality, so long as it is possible
to connect the start position to the goal position.

Path-Guided APF-SR can be used with sampling-based
methods besides PRM. We implement an Expansive Space
Tree (EST) (Figure 7) with 50000 nodes and maximum
expansion per edge that is 10 seconds, using with holonomic
robot dynamics. While the resulting path is more jagged and
about 1.4 times longer than the PRM path shown in Figure 1,
the success rate is92±6% (e.g., comparable to Path-Guided
APF-SRwith PRM). This demonstrates the flexibility of our
method, in that it is not restricted to PRM for the offline
planner for static obstacles. Indeed, the sampling-based part
of our method can be chosen as appropriate for the particular
problem at hand.

Further, we believe that our method may also have flexibil-
ity in the APF [12], [35], as well. While [5] demonstrates that
APF-SR outperforms other choices of APF, it unavoidably
inherits the curse of dimensionality in the offline calculation
of the SR set. In an environment with a low number of mov-
ing obstacles and a scenario where collisions are not fatal,
a computationally lightweight APF that can be computed
online may be preferable to querying the precomputed SR
sets, enabling an online APF planning method for high DOF
robot while still avoiding local minima.

Lastly, our method does exhibit the GNRON (Goal Not

(a) EST with 50000 nodes
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Fig. 7: Narrow corridor environment, using EST instead of
PRM to guide APF-SR (a) EST with 50000 nodes. (b) The
dashed line is the path given by EST and the solid line is
the actual path taken by the robot.

Reached due to Obstacles Nearby) problem, particularly
when navigating through a very narrow corridor. However,
techniques such as [16] and [17] can be integrated to alleviate
this problem.

VI. CONCLUSION

We propose the Path-Guided APF-SR method for effec-
tive navigation in complex environments with both static
obstacles as well as numerous dynamic, stochastic obstacles.
Integration of PRM for guidance and APF-SR for stochastic
dynamic obstacle avoidance enables the robot to bypass local
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minima, an often fatal flaw in APF methods. Path-Guided
APF-SR has the same success rate and path length as APF-
SR, a recently developed method that is highly successful
in rich, dynamic, stochastic environments with no static
obstacles. Further, the run time is only 10% more than that
of APF-SR.

We evaluated Path-Guided APF-SR on static obstacle-free
environments, as well as in environments with obstacles
designed to target potential weak spots in the algorithm
(in both the PRM and APF elements). Our method is
successful in the bug trap environment where APF methods
typically fail, and also successful in the narrow corridor
environment where sampling-based methods would normally
be challenged. Further, it is robust to the particular sampling-
based planning method, as demonstrated by its comparable
success via EST instead of PRM.
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