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Abstract— Highly dynamic environments pose a particular in swarm robotics [8] and group behavior simulations [9],
challenge for motion planning due to the need for constant to handle the very high dimensional combined configuration
evaluation or validation of plans. However, due to the wide space
range of applications, an algorithm to safely plan in the pres- '
ence of moving obstacles is required. In this paper, we propose a
novel technique that provides computationally efficient planning
solutions in environments with static obstacles and several
dynamic obstacles with stochastic motions. Path-Guided APF-
SR works by first applying a sampling-based technique to
identify a valid, collision-free path in the presence of static
obstacles. Then, an artificial potential field planning method is
used to safely navigate through the moving obstacles using the
path as an attractive intermediate goal bias. In order to improve
the safety of the artificial potential field, repulsive potential
fields around moving obstacles are calculated with stochastic
reachable sets, a method previously shown to significantly
improve planning success in highly dynamic environments.
We show that Path-Guided APF-SR outperforms other meth-
ods that have high planning success in environments with
300 stochastically moving obstacles. Furthermore, planning
is achievable in environments in which previously developed
methods have failed.

I. INTRODUCTION

Motion planning consists of finding a valid, collision-free
path for a robot from a start configuration to a goal config-
uration. Planning with both static and dynamic obstacles #sig. 1: Narrow environment used for experiments: grey bars
complicated by the need for constant adjustments of pla@se static obstacles, black/grey squares are 300 stochasti
to account for moving obstacles, yet critical in applicatio moving obstacles in line/arc trajectories, and the robostmu
such as flight coordination and autonomous vehicles. Irethetraverse from S (start) to G (goal). Solid red line is the actu
dynamic environments, it is important to produce trajéetor path taken by Path-Guided APF-SR initially guided by the
that avoid both static and dynamic obstacles with higlPRM path, dashed line. For comparison, the blue line is the
success rates in a computationally efficient manner. path taken by APF-SR (trapped in local minima near start)
Sampling based methods have shown great successaatl the green line is the path of SR-Query (collision).
identifying valid paths in complex planning problems with

static obstacles [1], [2], [3]. We extended this work to | this paper, we propose the Path-Guided APF-SR an al-
accommodate dynamic obstacles [4], and recently showggnative approach that has low computational run time, cost
that an Art|f|9|al Potential Field (APF) .method outperfomine works flexibly with any path generating sampling method,
these sampling-based methods in highly dynamic envirogyg shows great success at avoiding collisions in crowded
ments [5]. APF works by following the combined gradienigpyironments with hundreds of moving obstacles. We focus
of repulsive potentials around obstacles and an attractig, the problem of safe navigation for a single robot in highly
potential from the goal_. However, like .aI_I APF methods, th'sdynamic and complex environments, with both static and
approach struggles with the local minima problem. Whilgynamic, stochastic obstacles (which are not controljable
there are a few extensions that address this known limitatiorhe main contributions of this work are 1) the combination
[6], [7], they are either computationally expensive or pemi o path generation via sampling methods and dynamic,
badly in some environments. Researchers have also begunsgehastic obstacle avoidance via APF methods weighted
explore combinations of sampling based methods and ARfy stochastic reachable sets, 2) effective navigation in en
L Computer Science, University of New Mexico, Albuquerque, BRL31 V!{ror;]metr_ﬂs \tI)VItth ?Oth BStatIC ?F?Sta%ez as ;\.Ie”t?S %S;mlc’
2Electrical and Computer Engineering, University of New MexiAl- stochas 'C.O stacles, 3) a pa ) -gui e gra 'e_n or » an
buquerque, NM 87131 4) evaluation of our method in multiple environments and



with multiple sampling methods. algorithm. The costmap dictates a repulsiveness or dtteact
Our method works by first applying a sampling-basedhess factor for every region. Similarly, navigation fiel@d]
technique to identify a path that’s collision-free withpest assign a gradient which agents follow, with application to
to static obstacles. Then, an artificial potential field piag  crowd modeling. A method based on concept of affordance
method is used to safely navigate through the moving obstter multi-agent planning was proposed in [22].
cles, using the path as an attractive intermediate goalbtas = The main drawback in APF methods is the possibility of
improve the safety of the artificial potential field, we incor becoming trapped in local minima. While several approaches
porate a repulsive potential field for each moving obstacldiave been proposed, this remains a difficult problem. The
based on pre-computed stochastic reachable (SR) sete ThBandomized Path Planner [6] prescribes a random walk
sets provide a pairwise assurance of a likelihood of saflety, when at a local minimum, which while effective in some
known relative robot-obstacle stochastic dynamics, abexpenvironments, often requires a long time to escape from
nential computational cost in the number of relative degreeeomplex environments (e.g., a bug trap with a long and
of freedom. The APF-SR combination method removes thisarrow escape route). The navigation function approach [7]
exponential cost from runtime, while still maintaining hig is computationally expensive and often restrictive.
planning success rates in highly dynamic environments [5]. Path-guided APF has been applied to swarm [8] or group
We compare Path-Guided APF-SR to two algorithms wf9] robotics by generating the attractive potential from
previously developed for navigation in environments withintermediate goals along a precomputed path, allowing a
dynamic, stochastic obstacles (but without any static oltarge number of robots to efficiently navigate in complex
stacles). First, SR-Query [4] is a PRM-based method thanvironments in a coordinated way. Path-Guided APF-SR
dynamically adjusts path selection based on SR set weightatuses on safely navigating a single robot in a complex
edges that are updated as obstacles move. This method kBagironment with many uncontrollable stochastically nmoyvi
been shown to outperform a common PRM-based methadbstacles. This requires a new path-guidance scheme t avoi
[10] for dynamic obstacle avoidance. Second, APF-SR [3pcal minima and a SR-biased repulsive potential to improve
is a SR-biased APF method that showed a higher succesafety.
rate than standard APF methods for avoiding large numbersReachability analysis has been used to inform motion
of highly dynamic obstacles. In addition, we compare Pathplanning decisions for collision avoidance, based on two
Guided APF-SR to ORCA [11], an algorithm developed fomapproaches. One approach allows for a control and distur-
multi-agent path finding using a predicted region of cadlisi bance input, and generates the maximal set of initial states
velocity obstacles. within which a collision is guaranteed, assuming the worst
We tested Path-Guided APF-SR in environments with 30€ase disturbance input [23], [24]. This set, known as the
stochastic moving obstacles, that either are free of statieachable set, can be obtained by solving a Hamilton-Jacobi
obstacles, or have challenging static obstacles in theeshajsaacs (HJI) equation [25]; its complement assures cofiisi
of a “bug trap” or narrow corridors. In these tests, ouavoidance. In [26], the reachable set (for the robot to reach
method avoids local minima and has a high success rd@get while avoiding a single obstacle) is computed by
(over 90%) in highly dynamic environments. Further, ouassuming the obstacle actively attempts to collide with the
method is capable of solving problems that are not solvablebot. A similar approach is used in [27], with reachable
by APF-SR or SR-Query. We also evaluated Path-Guidegkts computed iteratively to enable the robot to modify its
APF-SR with paths from two different sampling methodsgactions. Multiple obstacles are avoided in an online fashio
PRM and EST, and showed no significant change in succeigs[28], based on precomputed invariant sets.
rate. The enclosed video submission contains the expetsmen Another approach incorporates stochastic relative dynam-
and visualization of the simulations. ics. Probabilistic SR sets [29] describe the set of states in
which a collision is guaranteed with a certain probability.
[30], the obstacles are modeled as random sets that evolve
over time, whereas the desired target set is known and
APF [12] is a powerful approach to path planning, thatinchanging. A disturbance input that acts in opposition to
is simple to construct, suitably fast for online planningthe robot’s objective is considered in [31], and the reatghab
easily handles kinodynamic and nonholonomic constraintsets are generated using a two-player game formulation.
and applicable to problems in unmanned aerial vehicles
[13], [14], robot soccer [15], and mobile robots [16], [17], lIl. PRELIMINARIES
[18], [19]. APF methods have been extended to address )
problems in which the goal is not reachable due to obstacfe OPbstacle Dynamics
proximity [16], and navigation in narrow passages is rezglir ~ We consider 2D rigid body obstacles in the shape of a
[17]. Other recent work has focused on modification of thequare, with center of mass = (z°,y°). We presume that
computation of the potential field through fuzzy [19] andthe obstacles follow trajectories described by a straigta |
evolutionary [18] APFs. APFs based on the repulsive andr a constant radius arcs, with stochastic linear or angular
attractive concepts can integrate with other path planningelocity w € W, respectively, a discrete random variable
methods [20], [21]. In [20], a user defined costmap influencesith probability distributionp(w). However, more complex
node placement in a Rapidly exploring Random Tree (RRTgynamics, e.g., ones that switch between straight line and

II. RELATED WORK



constant radius arc movements, can easily be incorporate

The obstacle dynamics are discretized via an Euler appro

imation with time stepA.

Ty =T, + fO(wn,n)A )
For the straight-line trajectories with line slopec R,
o w’ﬂ
Plwnm) = | o] @
For the constant-arc trajectories with radius R,
o | r(cos(wp(n+ 1)) — cos(wyn))
Fo(wn,n) = { r (sin(wy, (n + 1)) — sin(w,n)) (3)

B. Relative robot-obstacle dynamics
We presume the robot is a point mass with dynamics

Top1 =Ty + [ (un)A, (4)

Goal Gradient

representative of either 1) a holonomic system with statc

z" = (2", y"), or 2) a non-holonomic system with staté =
(z",y",0"). For the holonomic system,

[T (up) =u (®)

with velocity control inputu = (u®,u¥) € U C R?, and for
the nonholonomic system,

u? cos(0!)
[ (un) = | uysin(67) (6)
Uy
with linear and angular velocity inputs = (u®, u™) € U.

A collision occurs when|z], — Z¢||2 < dobs, OF equiva-
lently in relative coordinates =z" — z° € X, when

()

H-%n||2 S dobs

Relative dynamics are described in relative coordinates by V()

+ [ (un) = f°(wn, n)]A (8)

The stochastic transition kernelz, 1 | Z,,un,,n) repre-
sents the probability distribution af,,,; conditioned on the
known valuest,,, u,, at time stepn.

in—i—l - jn

C. SR Sets for Collision Avoidance

We calculate collision avoidance probabilities by solvang
stochastic reachability problem with the avoid d€t,defined
as the set of states in which a collision is said to occur (

;
We compute the probability that the robot remains withi

K, the complement ofi, over N time steps, with initial
relative positionz, using dynamic programming [32], [29].
We summarize key elements of the derivation here, and re
the reader to [4] [5] for additional detalils.

As in [29], the SR set is generated by iterating the value
function backwards in time witiy (z) = 1x(z), and

vn<~>—1K<~>/ Vo (@)r(# | Fu,m) i’ (9)
Z 1 (@ +Af(u,0)

wew
—Af°(w,n)) p(w).

LIZ‘

(10)

Fig. 2: Potential landscape gradients: Repulsive APFs
(square-like contours) are queried from SR sets convolved
with a Gaussiand = 0.15). The gradient of the repulsive
APF is shown in the green arrow. The attractive APF is
weaker and has a gradient (yellow arrow) that points toward
the goal located at the upper right corner.

from timen = N to time n = 0. The indicator function
1x(x) is equal to 1 ifz € K and equal to O otherwise.
The value functionV;(Z¢) at timen = 0 describes the
probability of avoiding collision overV time steps from an
initial statez,. The optimal control input: to avoid collision

is the control that solves

-y

weW

i (3 + AF (u,n)

—Af°(w, n))p(w)} - (1)

IV. METHODS

Path-Guided APF-SR separates planning into an offline
phase and a run time phase. In the offline phase, a sampling-
ased method is used to generate a path to the goal in the
resence of static obstacles only. Then, this path is used
during the run time phase as a heuristic to guide the APF-
SR method (which considers the moving obstacles). This

R iminates the local minimum created by static obstacles an

retains the high success rate of APF-SR. Hence, Path-Guided
APF-SR is capable of fast real-time planning in environraent
wth a large number of moving obstacles.

A. Offline Phase: Computation

Path-Guided APF-SR requires a pre-computed stochastic
reachable set and a path. Since the stochastic reachable set
(11) can have discontinuities and plateaus, which are-detri
mental to a gradient-following APF method, we convolve the



Algorithm 1 PRM-Guided-APF-SR

Input: Moving obstacles),, with pre-computed smoothed
SR sets, static obstacléy, sampling-basegath, robot
r start configuratiorS and goal configuratio

L Vnextnode =S
2: for t =0; t < maxTime, t=t+ A do

Goal target
Gradient .

3:  for Obstacleo € Oy, do

4: updateObstaclep,o.w,0.p(w)) Ue

6: APFgradient = (0; O) 3

7.  for Obstacleo € O, do

8: if dist(zS, 7)) < dmin then

9: APFgradient = Vclosest bot

10: APFyradient + 0.queryAPFGradient ()

11: end if Fig. 3: Path-Guided APF: The Path-Guided Gradient is
12:  end for calculated by adding the Edge Following Gradient (perpen-
13:  for Obstacleo € Og do dicular to the edge) and the Next Node Following Gradient
14: APFjrqdient = (points toward the next node). The Path-Guided Gradient
15: APFyrqdient + 0.calcAPF Gradient(T],) guides the robot to follow the path generated by sampling-
16: end for based methods.

17: i dist(T], Viestnode) < € then

18: (Viewtnodes P) = getNewTarget(Z,,, path, G)

19:  end if SubroutineupdateObstacle moves the obstacle with its

200 APFyadient = current velocity or angular velocity. Velocities are saetpl

21:  APF,qdient+get PathGuidedGradient(Viestnode, P) €VETY intervalT’ from a set of velocitiesV identical to the
22 u = getControl(APFyrqdient) offline SR set calculation.

238 T =T, + A fT(u,t) For every moving obstacle within a distanek,;,, from
24 if dist(Z],, G) < Goalipreshora then the robot,query AP F Gradient computes the repulsive APF

25: break gradient by finding the relative position from the obstacle
26: end if to the robot then querying the smoothed SR set collision
27: end for probability for the APF value (Section Ill). The gradient is

then calculated by the second order central difference adeth
and summed into the vectotPF,,,q;.n: fOr each obstacle.
stochastic reachable set with a 2D Gaussian of witdtlor SubroutinecalcAPFGradient calculates the gradient of
smoothing (Figure 2). a repulsive APFs) generated by a static obstaclés can
Next, the required path is extracted from a sampling-basd® calculated in the fashion similar to [12] based on the
method such as PRM [2], RRT [33] or EST [1] which onlydistancel to the obstacle. To implement the same APF decay
considers the static obstacles. In principle, any samplinground both static and moving obstacles, we use:
based method can be used, provided the regions containing )
{erfc(d) if d*>d>0
Us = V20
0 if d>d*

B. Run Time Phase: Planning The convolution of a Gaussian with varianeeand a square
Path-Guided APF-SR (Algorithm 1) first updates the obef width w, wherew > o, results in an complementary error
stacle positions (line 3-5updateObstacle). The repulsive function (rfc) type decay on all four edges. Given a small
potential has two primary components, due to moving and (e.g., compared to the obstacle size), the moving and static
static obstacles. The moving obstacle repulsive potentiabstacles generate comparable APFs.
is queried by using the pre-computed SR sets (line 7-In order to compute the attractive potential, subroutine
11, queryAPFGradient). The static obstacle repulsive get NewTarget finds the next node in the path. With a
potential is computed (line 12-14¢alcAPFGradient). PRM, the path is found by running Dijkstra’s algorithm.
The attractive potential is computed by finding the nexFor other methods, such as a tree-based method, there is
node on the path which is required to generate a single path, so the next path node is simply used. As
path-guided potential (lines 15-17getNewTarget and shown in Figure 3, subroutinget PathGuidedGradient
get PathGuidedGradient). The attractive and repulsive po- computes the Edge Following Gradient and the Next Node
tentials are combined to compute and execute the robot’s desllowing gradient. The Edge Following Gradient is a unit
tion (line 19-20,getControl). The subroutines are describedvector perpendicular to the edge that points toward the.edge
in more detail below. The Next Node Following Gradient is a unit vector that

the start and goal configurations are connected.



constant-arc dynamics (3). The moving obstacles are sgjuare
with width d,,s = 1. Smoothed SR sets are computed for
each obstacle witlr = 0.15; for each of the straight-line
obstacles,a € [0,27) was selected randomly. The set of
possible linear velocities i3V = {0.1,0.2,0.5,0.7} with
probability p(w) = {0.3,0.2,0.3,0.2}; the set of possible
angular velocities i9V = {0.17,0.26,0.39,0.52} /r with
probability p(w) = {0.2,0.2,0.3,0.3}, with r € {5,10,15}.

To maintain the constant density of moving obstacles, we
restrict the robot and moving obstacles to lie in a circlehwit
radius 50. When an obstacle hits the boundary of the circle,
it is transported to the antipodal position on the circle and
continues evolving from this new position. The resulting
density of moving obstacles is similar to that in [5]. We
presume complete information, that is, that the robot has
access to all obstacle positions within radiljs;,, = 3 units.

We note that the relative strength between obstacle poten-

Fig. 4: Obstacle-free environment in which the robot musttiaI gradient and goal potential gradient affects the ssece
L rate and path length. If the goal gradient is too strong,

traverse from S (start) to G (goal). The black/grey square[ e robot collides with moving obstacles more often. If the

represent stochastic linear/arc moving obstacles. : .
P 9 goal gradient is too weak, the robot focuses too much on
avoiding obstacles and often takes a much longer path to

reach the goal. We empirically select a ratio of 1:100 for

points toward the next nod®),..;n0q.. The sum of these L .
two gradients forms the Path-Guided Gradient. This gradieF1he weighting between the goal gradient and the obstacle

. -dradient, to balance these potentially competing objestiv
pulls the robot toward the path as close as possible, with i 5
deviations from the path due to moving obstacles. We compare our method to SR-Query [4], APF-SR [3]

. . ) modified with a standard APF static obstacle repulsion,
Finally, the getControl subroutine finds the control o .
. . RCA [11] downloaded from [34] and modified for a single
closest to the combined gradient of all obstacles an

goal, (APF, ). For example, in the case of a holo robot and moving obstacles. All experiments are imple-
) gradient)- y - ; 7 ;
nomic robot, the control input vector is collinear with mented with MATLAB on an i7-3615QM with 16GB RAM.

APFgqdient- On the other hand, for nonholonomic, e.g., )

unicycle robots,getControl returns control inputs that at- A- Obstacle-Free Environment

tempt to turn the robot towarddPFy,qicnt at the max The obstacle-free environment (Figure 4) provides a base-
turn rate and accelerate/decelerate the robot so thatiee inline for direct comparison of Path-Guided APF-SR with

product ofu and AP Fy,qgient 1S maximized. APF-SR, and demonstrates the PRM guidance does not
interfere with APF-SR moving obstacle avoidance. The robot
V. EXPERIMENTS starts at(—25,0) and the goal is af25,0).

To demonstrate the Path-Guided APF-SR algorithm, we Figure 5a shows that Path-Guided APF-SR has a success

- 0,
tested three different environments with stochastic, dyna rate comparable to APF-SR-(90%), and a comparable path

) ) . length. In contrast, SR-Query has a mere 2% success rate,
obstacles: The free environment has no static obstacleds S . .
Ue to collisions the robot could not avoid when traveling

similar to [4] and [5]. The bug trap environment has a staticIon an edae. When the number of moving obstacles is
obstacle the robot must escape to reach the goal. In the 9 ge. 9

narrow corridor environment, the robot must pass throu ignificantly reduced to 50 we observed a success rate of
. . P 9 8%, consistent with that reported in [4]. Although ORCA
two narrow openings to reach the goal.

. _ oduces the shortest path length, it does not have a high
We created ten PRM roadmaps with n=1000 nodes arﬁiccess rate (68%). Unlike the stochastic reachability- ana

edges selected by connecting nodes to their k=10 nearést ; .
> ; . -~ Vy8is, the stochastically changing obstacle speed was not
neighbor connections for each of the three static enV|r0t¥- . : ; '
: onsidered in ORCA's calculations.
ments. Ten trials were performed on each roadmap. W
evaluated metrics including success rate and path length fo )
each trial. We evaluated the efficacy of our algorithm foP: Bug Trap Environment
both holonomic (5) and non-holonomic (6) robot dynamics. The bug trap environment (Figure 6) is designed to test
The robot input is constrained by a maximum linear velocityhe algorithm’s ability to avoid local minima created bytita
of 0.36 units per second and a maximum angular velocity afbstacles. The start and goal positions are the same as in the
/5 radians per second. obstacle-free environment, and the obstacle width is 5d¢ime
At runtime, the robot replans everx seconds. The en- the width of the moving obstacles.
vironment has 300 randomly placed moving obstacles, with Figure 5a demonstrates the utility of the PRM for path

150 following straight-line dynamics (2), and 150 followin guidance. While the success rate for Path-Guided APF-SR
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(a) Success rate

w0 ‘ ' ‘ ' Fig. 6: Bug trap environment in which the robot must
— o traverse from S (start) to G (goal). Grey bars are static ob-
stacles; black squares are 300 stochastic, dynamic obstacl

1201

100k Environment PRM-APF-SR | APF-SR | SR-Query
Free 3.3 ms 3.0 ms 84.0 ms

Bug Trap 9.7 ms 6.6 ms 57.0 ms

8or Narrow Corridor 8.8 ms 51ms | 101.0 ms

Path Length

[
=}
T

TABLE I: Run time per planning step

40

C. Narrow Corridor Environment

2 The narrow corridor environment (Figure la) is de-

signed to test the algorithm in environments challenging

PGAPFSR APFSR  SRQ  ORCA PGAPFSR PGAPFSR to sampling-based planners. The openings in the narrow
Free Environment Bug Trap. Narrow Corridor corridors are fives times as wide as the moving obstacles.
(b) Path length Path-Guided APF-SR has a high success rate despite

Fig. 5: Performance comparison: (a) Success rate of Paﬁ,}tpchastlc and static obstacles. Although the environment

Guided APF-SR (PGAPESR in the figure) compared tct;loes not contain deep potential minima like the bug trap
APF-SR (APFSR), SR-Query (SRQ) an% ORCA inpvariouinvironment, APF-SR still becomes trapped in local minima.
environments. SR-Query and ORCA are unable to OlireCrtT:E{R—Query was unsuccessful in all 100 trials, since the longe

handle unicycle dynamics, and the success rate of the for ea}th required in this environment increases the probgaifit

: . . : collision while the robot travels along an edge.
in the bug trap and narrow corridor environment is less than
1%. APF-SR became trapped in local minima in the bug

trap and narrow corridor environment and never reached thd Discussion

goal. (b) Path length of various methods. The dotted line The bug trap and narrow corridor environment clearly

represents the straight line distance from start to goal.  show Path-Guided APF-SR can avoid local minimum created
by static obstacles and also successfully navigate around
stochastic dynamic obstacles. It is a superior method to
both APF-SR and SR-Query. Most importantly (Table 1),
the run time per planning step is similar to APF-SR, and
is at least one order of magnitude less than SR-Query,

is comparable to that in the obstacle-free environment (fonaking it feasible for applications that require real-time

both holonomic and non-holonomic robot dynamics), APFenline planning. Also, considering the stochastic motion

SR became trapped in a local minimum created by the statielps it outperform ORCA.

obstacles and the goal. While SR-Query avoids the local The primary cause of failure for Path-Guided APF-SR

minima problem as it is not an APF-based method, the longeseems to be multiple moving obstacles interaction. Conside

path required in this environment increases the probglfit the case in which several obstacles converge on the robot

collision while the robot travels along an edge. This resultfrom different directions. The obstacle potential is gedri

in zero success in 100 trials. from SR sets that consider interaction with a single obstacl



Roadmap PRM-APF-SR | SR-Query
n = 1000, k = 10 94% 2%
n=250,k=26 94% 0%

TABLE II: Comparison of planning success given paths
extracted from PRMs of various sizes in the free environ
ment. Size of roadmap is defined bynodes, and: nearest
neighbors selected for edge connection.

in isolation. The presence of multiple obstacles may cre
ate local minima that lead to collisions. Unfortunately, ¢
multi-obstacle SR set is not practical since computation i
precluded by the high dimensionality of the relative stat
space. However, the occurrence of such an event is re
compared to single obstacle encounters, and therefore dc
not have a large effect on the success rate. We investigat
the use of the path found by SR-Query to guide the APF 50 = | Dol L
SR robot away from regions with high densities of moving -50 -40 -30 20 -10 0 10 20 30 40 50

obstacles. Although SR-Query can lead the robot to lowe x
density regions, this does not necessarily preclude thé-mul (a) EST with 50000 nodes

obstacle scenario, and in general results in a much long
path length and run time per planning step.

We did not observe any collisions between the robc
and the static obstacles using the path-guidance. This
expected, as stochastically moving obstacle avoidance
intrinsically harder than static obstacle avoidance. Haxe
in preliminary experiments using only the next-node foHow
ing gradient, moving obstacle avoidance occasionally edus
large deviations from the guidance path that trapped thetrok
in a local minimum (results not shown).

Roadmap quality (Table II) has an effect on the succe:
rate of SR-Query, since longer edges increases the prot
bility of collision while traveling on an edge. Path-Guided
APF-SR is robust to roadmap quality, so long as it is possib
to connect the start position to the goal position.

Path-Guided APF-SR can be used with sampling-bast
methods besides PRM. We implement an Expansive Spa
Tree (EST) (Figure 7) with 50000 nodes and maximun
expansion per edge that is 10 seconds, using with holonon
robot dynamics. While the resulting path is more jagged and (b) Actual environment
about 1.4 times longer than the PRM path shown in Figure
the success rate {2 +6% (e.g., comparable to Path-Guided
APF-SRwith PRM). This demonstrates the flexibility of our
method, in that it is not restricted to PRM for the offline
planner for static obstacles. Indeed, the sampling-based p
of our method can be chosen as appropriate for the particular

roblem at hand.
P Beached due to Obstacles Nearby) problem, particularly

Further, we believe that our method may also have flexibiWhen navigating through a very narrow corridor. However
ity in the APF [12 [I. Whil h . ) : -
'ty inthe [12], [35], as we lle [S] demonstrates that echniques such as [16] and [17] can be integrated to alkevia

APF-SR outperforms other choices of APF, it unavoidabl his problem
inherits the curse of dimensionality in the offline calcidat P '
of the SR set. In an environment with a low number of mov-
ing obstacles and a scenario where collisions are not fatal, VI. CONCLUSION
a computationally lightweight APF that can be computed We propose the Path-Guided APF-SR method for effec-
online may be preferable to querying the precomputed Sfe navigation in complex environments with both static
sets, enabling an online APF planning method for high DOBbstacles as well as numerous dynamic, stochastic obstacle
robot while still avoiding local minima. Integration of PRM for guidance and APF-SR for stochastic
Lastly, our method does exhibit the GNRON (Goal Notdynamic obstacle avoidance enables the robot to bypads loca

il:’ig. 7: Narrow corridor environment, using EST instead of
PRM to guide APF-SR (a) EST with 50000 nodes. (b) The
dashed line is the path given by EST and the solid line is
the actual path taken by the robot.



minima, an often fatal flaw in APF methods. Path-Guidedi4]
APF-SR has the same success rate and path length as APF-
SR, a recently developed method that is highly successng]
in rich, dynamic, stochastic environments with no static
obstacles. Further, the run time is only 10% more than th?1t6]
of APF-SR.

We evaluated Path-Guided APF-SR on static obstacle-fr¢e]
environments, as well as in environments with obstacles
designed to target potential weak spots in the algorithrﬁs]
(in both the PRM and APF elements). Our method is
successful in the bug trap environment where APF methods
typically fail, and also successful in the narrow corridor[lg]
environment where sampling-based methods would normally
be challenged. Further, it is robust to the particular sargpl
based planning method, as demonstrated by its comparaﬁg

success via EST instead of PRM.
[21]
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