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Abstract— Motion planning in stochastic dynamic environ-
ments is difficult due to the need for constant plan adjustment
caused by the uncertainty of the environment. Many important
motion planning problems however, including flight coordina-
tion human interacting robots and autonomous vehicles that
require an algorithm to predict obstacle motion and plan safely.
In this paper, we propose Stochastic Ensemble Simulation
(SES)-based planning, a novel framework to efficiently predict
and produce safe trajectories in the presence of stochastic
obstacles. The stochastic obstacles can be introduced in several
ways including stochastic motion or position/speed uncertainty.
SES-based planning works by first predicting an obstacle’s
future position offline through an ensemble of Monte Carlo
simulations. This simulates the stochastic obstacle dynamics
and store the simulation results in temporal snapshots of
predicted positions. An online planner then uses this output
to identify a predicted collision-free direct path to the goal. If
a direct path toward the goal is not expected to be collision-
free, a more expensive, but flexible tree-based planner is used.
Our experiments show SES-based planning outperforms other
methods that have high planning success rate in environments
with 900 stochastically moving obstacles. Furthermore, our
method plans trajectories with an 80% success rate for a
7 DOF robot in an environment with 250 stochastic moving
obstacles and 50 obstacles with speed/position uncertainty. This
complex problem is currently beyond the capability of several
comparison methods.

1. DEVIATION FROM THE IROS PAPER

This report is modified from the IROS paper and I
highlighted the key differences here: 1) Every section has
slight modification in phrasing, including the abstract (you
have to read carefully to find those, they are minor but in
my opinion, make it more readable). 2) The related work
section more detailed. 3) A paragraph about ICS is added to
the preliminaries section. 4) Comparison in implementation
between SES and SR is added to the methods section. 4)
A brief explanation of how the global path is generated is
added to the methods section. 5) The conclusion section is
replaced by future work.

II. INTRODUCTION

Motion planning in dynamic environments is critical in
several applications such as flight coordination, autonomous
vehicles and human interacting robots. Typical approaches
plan in these environments by dynamic adjustments that
account for moving obstacles. Performing these adjustments
often proves computationally expensive. In addition, several
methods incur an increased computational expense due to
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Fig. 1: 7 DOF robot in a 3D environment with 300 stochastic
obstacles: The 200 red spheres are stochastically moving
obstacles with linear trajectories. The cyan/yellow spheres
(50 each) are random walk/noisy sensor obstacles. The blue
robot must navigate from the right green sphere (S) to the
left one (G).

the complexity of the robot shape and/or degrees of freedom
(DOF) [1] [2].

Velocity obstacle-based planning [3] computes velocity
obstacles, i.e., the set of possible robot velocities that lead
to collisions while considering both the obstacle and robot
dynamics. It has been very successful in the presence of
multiple moving obstacles, and techniques such as linear
programming can be used to speed up computation [2].
However, it can be intractable in cases where the geometry
of the robot and obstacles are complex or if the robot has
high DOF. There is also a large extra cost if obstacles move
in a stochastic manner [4].

Several other approaches apply sampling-based methods
in dynamic environments [5], [6], [7], [8]. These methods
update plans dynamically, however updates only consider
the current environment state but do not predict positional
changes. Other methods consider a joint state-time space
for sampling-based planning [9], [10]. By considering time
as an extra dimension, the future motions of the obstacles
can be fully considered, thus enabling the planner to avoid
regions of inevitable collision. However, these methods do



not consider stochastic obstacles.

In this paper, we propose Stochastic Ensemble Simulation
(SES)-based planning, a novel method for approximating the
motions of stochastically moving obstacles in the workspace
and then combining these approximations with motion plan-
ning in the robot’s configuration space. This combination of
methods allows for planning, even with high DOF robots,
in the presence of stochastically moving obstacles and/or
stochastic uncertainty in obstacle position. The method works
by first predicting stochastic obstacle motions and/or po-
sitions through Monte Carlo (MC) simulations. Multiple
MC runs are used to produce an ensemble of simulated
predictions capturing potential future positions of a single
obstacle. While the full predictions capture the underlying
stochastic obstacle dynamics, predictions are stored as tem-
poral snapshots taken during the simulation of an ensemble
of MC runs. By incorporating these snapshots into SES-
based planning, the likelihood of collision with a stochastic
obstacle can be quickly predicted. The choice of planning
method is general, and we designed and demonstrated SES
used by a dynamic tree-based planner in configuration space
that is guided by a precomputed path free of collision with
static obstacles.

The main contributions of SES include: 1) The stochastic
ensemble simulation which is an inexpensive method to pre-
dict the likelihood of future states in a dynamic environment.
It can capture a wide range of environmental uncertainty
such as stochastically moving obstacles and modeled sensor
uncertainty. 2) A SES-based planning method which utilizes
the results from SES combined with a tree-based planner
in a novel way to generate a safe trajectory in the robot’s
configuration space. 3) SES separates motion planning from
dynamic environment prediction, allowing for a wide array of
planners to be used for SES-based planning. 4) Evaluation
of our method against the current state-of-the-art planning
methods including Path-Guided APF-SR [11], ORCA [2] and
Gaussian APF [12].

We tested SES planning in three different environments
with various obstacle types and robot dynamics. Tests include
holonomic and unicycle robots in 2D environments with 300
to 900 moving obstacles and “bug trap” and narrow corridor
static obstacles. Also, we tested a 7 DOF robot in a crowded
3D environment with 300 moving obstacles with stochastic
dynamics and modeled sensor uncertainty (Figure 1). Our
results show SES planning has a higher planning success
rate than comparison methods even for a high DOF robot.

III. RELATED WORK

Velocity obstacles [3] are widely used for path planning
with moving obstacles. It is simple to implement and suitable
for fast online planning in environments with hundreds
of moving obstacles. ORCA (Optimal Reciprocal Collision
Avoidance) [2] extended this idea to multi-agent path plan-
ning and the velocity obstacle calculation was accelerated
by linear programming. This allows it to be efficient enough
to be implemented by mainstream video games. Additional
velocity obstacle formulation incorporated arcing motion

obstacles, allowing an algorithm to handle both linear and
arcing motion obstacles [13]. Frameworks have also been
proposed for planning with stochastically moving obstacles
by iterating through all possible robot velocities in order to
approximate the true velocity obstacle and find the optimal
robot velocity [4]. The main drawback of velocity obstacle
based collision avoidance is that the cost of velocity obstacle
calculation becomes prohibitively high for obstacles with
complex geometry and robots with high DOF. In addition, if
obstacles move stochastically, the velocity space needs to be
discretized and highly efficient tools such as linear program-
ming can no longer be used to speed up the computation.
This results in a running time inversely proportional to the
fourth power of the velocity resolution [4].

Sampling-based methods have been used for motion plan-
ning in dynamic environments. These methods can easily
handle complex robot geometry due to the use of sampling.
Methods utilizing a lazy-Probabilistic Roadmap (PRM) to
accommodate moving obstacles have also been used [5], [6].
Additional researchers have proposed a Rapidly-exploring
Random Tree (RRT) like local tree-based planner guided
by a precomputed global PRM [8]. The method presented
in [7] pre-builds a RRT from the goal and extends to most
parts of the environment. The tree is modified at runtime
whenever obstacle changes are detected. All these methods
plan according to the current environment and do not take
the future of the environment into account. This results in
the robot being blind to potential collisions and regions of
inevitable collision.

State-time space was introduced by [14]. It also introduced
an A* based method in 1D to avoid two obstacles. State-
time space allows sampling-based planners to incorporate
information about the future environment [9]. An RRT with
T-safety criterion, which ensures the path is collision-free
for at least 7 seconds in the future, was used to navigate
robots around moving doors has been used [10]. The mov-
ing obstacles, however, are entirely deterministic in these
methods. These methods assume a deterministic function for
the algorithm to query the exact location of obstacles in the
future.

Stochastic Reachability (SR) analysis has been used for
collision avoidance. Probabilistic SR sets [15] describe the
set of states in which a collision is guaranteed with a certain
probability. In [16], the obstacles are modeled as random sets
that evolve over time, whereas the desired target set is known
and stationary. The probability of collision is computed using
dynamic programming for each robot starting configuration
and iterates backwards in time for all possible control
input. The computation cost is thus exponential in robot’s
DOF. Recently, SR based methods have been developed
for path planning with many stochastic moving obstacles:
The method presented by [17] computes the SR-set offline
and weights the PRM edges by querying the probability of
collision from the set. Similarly, the methods in [1] and
[11] compute the SR-set offline but use the probability of
collision as a repulsive potential in an Artificial Potential
Field (APF)-based method. The latter two methods are real-
time capable and achieved very high success rates in highly



dynamic, cluttered and stochastic environments. However,
these methods are only suitable for robots with low DOF
since the cost of dynamic programming is exponential in
robot’s DOF.

Other APF-based methods predict stochastic obstacle mo-
tion through stochastic transfer kernels [18], [19]. These
methods use the probability of obstacle occupation as re-
pulsive APFs. They require explicit calculation of stochastic
transfer kernels, i.e., how the probability of obstacle occupa-
tion changes in time under the stochastic obstacle dynamics.
The calculation can be difficult and therefore limits the
stochastic obstacle dynamics to a Gaussian-biased random
walk [18] or empirically determined heuristics [19]. Our
method bypasses this difficulty by an efficient ensemble of
MC simulations, thus allowing a wide range of stochastic
obstacle dynamics. In addition, the repulsive APFs in these
methods are time-averaged for all snapshots in the future,
thus blocking an unnecessarily large amount of workspace.

IV. PRELIMINARIES

The Degree of Freedom (DOF) of a robot is defined as
the number of parameters required to completely describe
it’s configuration. An example of these parameters are the
positions, link angles and link displacements of the robot.
The space of all possible configuration parameters (feasible
or infeasible) is called configuration space (C-space) [20].
Any physical robot and obstacle exist in the 3D universe
(workspace), however the C-space can be high dimensional
for robots with many linkages (e.g., high DOF). This high
dimensional C-space can be classified as C-free, i.e., robot
configurations not in collision, or C-obstacle, i.e., robot
configuration in collision. A robot configuration (a point in
C-space) in a given environment can be classified by collision
detection between the robot and obstacles in the workspace.
Thus, motion planning consists of identifying a trajectory in
C-free from the start to the goal configuration.

Motion planning in dynamic environments involves obsta-
cles moving in workspace according to certain deterministic
or stochastic dynamics f. The future configuration (position,
orientation, etc) of an obstacle can only be predicted exactly
in the former case. The stochastic obstacle dynamics can be
intrinsic to the obstacle, such as a linearly moving obstacle
(the direction of f is fixed) with speed (|f|) randomly
sampled from a distribution every Tsqmpie second, or a
random walking obstacle with fixed |f| but the direction is
randomly sampled every T4, Second. Sensor error may
also introduce stochastic obstacle dynamics. For example, an
obstacle may move in a fixed direction and speed, but the
measured obstacle speed/position f could demonstrate noise,
e.g., a value from a Gaussian distribution centered around the
true speed/position.

Inevitable Collision States (ICS) refers to configurations in
C-space that lead to collision with probability one. This can
be caused by the robot’s dynamic constraints and obstacle
dynamics, e.g., slow robot cannot avoid a giant approaching
trash compactor. A motion planner in dynamic environments
should avoid guiding the robot into ICS as well as configu-

rations in collision since the robot will be in collision with
certainty in the future.

V. METHODS

SES-based planning has two components: the offline SES
component and the online planning component. First, SES
uses MC simulations to produce an ensemble of potential
future configurations of a stochastic obstacle. The ensemble
is then used by the online planning in order to quickly
find the likelihood of collision between the robot and the
obstacle in the robot’s configuration space. Then, we show
SES integrated with an online planning method that plans in
a limited region around the robot’s current position through
the use of tree-based planning and a precomputed path for
guidance to the goal. By separating stochastic workspace
changes from configuration space motion planning, SES pro-
vides several benefits: 1) A wide range of complex, stochastic
planning environment changes such as stochastically moving
obstacles and sensor error can be approximately predicted
with little cost. 2) planning is general and any efficient
planning method can be employed to use the SES output for
collision prediction. 3) SES planning generates trajectories
with much higher success rate than current state of the art
methods.

A. Stochastic Ensemble Simulation (SES)

SES produces predictions of future positions of stochas-
tically moving obstacles through an ensemble of MC runs
as shown in Algorithm 1. Since each MC run produces a
single obstacle trajectory prediction, an ensemble of MC
runs is required. Each run starts with a single obstacle
placed at the origin (line 2). As the MC runs progress,
divergence between each obstacle position prediction will
occur according to the stochastic dynamics described by
update Enviornment Dynamics (line 5-6). The simulation
time step ¢ in a run should be small enough to capture the
system dynamics. The simulated obstacle position predic-
tions are stored as temporal snapshots every planning time
step A (line 7). After all MC runs have finished evolving to
the simulation time horizon 7T, the ensemble of runs stored
in each of the temporal snapshots are processed.

One option for processing the ensemble of runs for a
single obstacle is to create an approximate map of obstacle
occupation likelihoods. This can be done by defining an
indicator variable P for each grid point in the workspace
and each MC run ¢ in the ensemble:

1 If (z,y) is occupied by obstacles
in the i*» MC run.
0 Otherwise.

P(x,y,i) =

The approximate probability of obstacle occupation is there-
fore an average over all MC runs:

N
1 .
Poccupation(xa y) = N Z P(l'v Y, Z) (D
=1

A large variety of stochastic obstacles can be captured
efficiently by SES through update Enviornment Dynamaics



Algorithm 1 SES

Input: Current obstacle configuration x(0), Simulation time
horizon 7, Simulation time step J, Size of Ensemble IV,
Planning time resolution A

Output: Future obstacle configuration snapshots: zp =

1: for i =0;7 < N ; i++ do

22 Z=2x(0) = x;(0)

3: k=1

4 fort=0t<=T ;t=t+0 do
5: fi = updateObstacle Dynamics(Z,t)
6: T =T+ Afl

7: if t=kA then

8: xz(k‘) =

9: k++

10: end if

11:  end for

12: end for

13: for m=0; m <=T/ A; m++ do

14:  xp(mA) = processEnsemble(x1(m),...xn(m))
15: end for

(several were covered in Section IV). An ensemble of 500
MC runs from SES is shown in Figure 2(a)-(c) for moving
obstacle in a linear trajectory with a stochastic speed.

It is worth mentioning that SES is much faster than
the stochastic reachability (SR) analysis [15] since it ap-
proximates the future position distribution of obstacles and
does not iterate through all possible robot actions. The map
shown in figure 2(a)-2(c) takes 21 seconds to generate.
A SR analysis (shown in figure 2(d)) of identical grid
resolution for a holonomic robot finishes in 3992 seconds.
In addition, SES is more flexible and easier to implement
due to the Monte Carlo simulation nature. Modifications
to update Enviornment Dynamics can easily capture hy-
brid obstacle dynamics such as an obstacle dynamics that
switches between line and arc motion with a time varying
probability.

B. SES-based Planning

Fig. 2: Predictions of obstacle occupation (red=high likeli-
hood, blue=low/no likelihood) for a square obstacle traveling
in a linear trajectory with stochastic speeds as specified in
Section VI. (a-c) SES ensemble (500 runs) at time snapshots
(@)t =0s, (b) t =4s, (c) t = 8s. (d) An SR probability
of collision considering the holonomic robot dynamics with
speed 0.36 unit/s.

Algorithm 3 growGoalTree

Input: Future workspace snapshots: zgp, Robot Current
State z,., Temporary Goal tempGoal, Planning Time
Step A

Output: growFullTree, Tree: T

1: conf =xp; k=1, 7 = null;

2: growFullTree = false

3: while dist(conf,tempGoal) > 0.5 do

4. conf = conf + A
get ActionT oGoal(con f, tempGoal)

5. collProb = getCollisionProb(conf, xg, kA)
6:  if collProb <= Prgccept then

7: T.addToTree(conf)

8: k++

9: else

10: growFullTree = true

11: return

12:  end if

13: end while

SES provides an occupation likelihood in the workspace
for a single obstacle. This could be used directly as a
likelihood of collision in order to identify paths with a
higher likelihood of safety, e.g., [21] in a lazy-PRM manner.
However, the choice of planning method can be critical to
planning success. First, since the stochastic motions become
more divergent over longer timescales, e.g., less predictive, it
is helpful to plan the robot’s motions for a short time frame



Algorithm 2 SES-based planning

Input: Future obstacle configuration snapshots:
zg = {z(0),z(A),z(2A),..,z(T)}, Guidance
Path Pg, Robot Current State z,, Planning Time step
A

for t =0; t < maxTime ; t =t + Acze do

1:

2. if reGrowTree == true then

3 Tree : 7 = null

4 tiastPlan =t

5: tempGoal = get PathGuidanceGoal(x,, Pg)

6 (growFullTree, ) =

growGoalTree(x,,tempGoal, rg)

7: if growFullTree == true then

8: 7 = growFullTree(x,, tempGoal, T,z g)
: end if

10: P = getPathFromTree(r)

11:  end if

122 Tp = @y + Aege - getAction(P,t — tiastPian)

13:  if nodeReached == true then

14: reGrowTree =
checkFutureNodes(P, x,,t, tempGoal)

15:  end if

16: end for

and continuously update the plan as obstacles are moving.
Second, it is helpful to plan according to a time step A
equal to the one used to generate the snapshots for maximum
obstacle position accuracy.

In order to address these requirements, our SES-based
planner utilizes a tree-based planning method with planning
time step A (equal to the snapshots time step) in Algorithm 2.
Each node in the tree corresponds to a particular snapshot,
and can therefore be checked for potential collision. This
allows SES-based motion planning to operate in C-space
while checking for collision of the robot and the obstacles in
the workspace. In order to guide the local trees following the
robot to the goal, we use a precomputed global path from the
start to the goal that is free of collision with static obstacles.
This global path can be generated by a variety of method. We
chose a simple uniform sampling PRM in our experiments.
The SES planning starts by querying the global path to find
a temporary goal (nodes of PRM generated path) based on
the current robot state (Algorithm 2 line 5).

SES-based planning then attempts to grow a tree directly
toward the temporary goal in growGoalTree (Algorithm 3
and shown in Figure 3(a)). This subroutine finds the direct
action toward the temporary goal and evolves a tentative
configuration conf toward it. Each new iteration of conf
(line 4), with its unique corresponding time kA, (k €
N) in the future, is checked for potential collision by
getCollision Prob, which uses the temporal snapshots of
the predicted obstacle occupation given by SES (line 5).
The returned collision likelihood, collProb, is the sum of
Poccupation (from (1) in the obstacle’s relative coordinate)
considering obstacles within range dporizon. If collProb is

(b) Full Tree

Fig. 3:  Tree building with SES predictions for a
unicycle robot (gray shaded=static obstacle, square out-
lines=stochastic moving obstacles in linear trajectory,
green/blue=tree built from robot’s current position, an as-
terisk). (a) A goal tree plans a path directly toward the
goal if SES predicts the path has no likelihood of collision,
otherwise (b) a full tree is grown. Note that the RRT does
not extend in front of the obstacle left of the robot due to
future predictions given by SES.

(a) Goal Tree

smaller than some threshold Prqccept, conf is added to the
tree and the process continues until the temporary goal is
reached. Otherwise, potential collisions are detected along
the direct path and the subroutine returns with a flag to grow
a full tree.

In the case that a direct path leads to potential collisions,
a tree-based planning algorithm such as RRT [22] or EST
[23] can be used for growFullTree (shown in figure 3(b)).
The ordinary collision checking is replaced by the same
getCollisionProb function from line 5 of Algorithm 3
in order to utilize the predictions given by SES. If the
likelihood of collision is above Prgccept, this tentative node
is discarded, otherwise, the node is added to the tree and the
likelihood of collision is stored.

To extract a safe path from the tree while progressing
toward tempGoal, the get Path FromTree subroutine com-
putes a weight for each node i:

collProb() aecu
N(i)traversed

)

w(i) = € - distanceT oTempGoal (i) +
2

where collProb(i)accy is the accumulative likelihood of
collision from the root to node @; N(%)¢rquersea 1S the
number of nodes away from the root and e is the greediness
parameter. The subroutine picks the path with the lowest w
and checks if

N(i)traversed >= Nsafety (3)

is satisfied in order to ensure the T-safety [24] criterion, i.e.,
this path is safe for at least 7 = NyqferyA seconds in the
future. Provided 7 is big enough, this strategy greatly reduces
the probability of a chosen path leading to an inevitable
collision state since the robot has at least 7 seconds to replan
a safe trajectory at any time. A path is rejected if (3) is not
satisfied and the node with next lowest w is checked. If all



nodes are eliminated, the algorithm chooses the longest path
in the tree with collProb(i)gccu = 0.

Finally, the robot then executes the extracted path (line 12).
Every time a node is reached, checkF'utureN odes does the
same getCollisionProbability query for the next Nyqfey
nodes in the path. If any node has a likelihood of collision
larger than Prgccepe Or the remaining path is shorter than
Niafety, the current tree is discarded and a new tree will
be grown. This compensates for the approximate nature of
SES by constantly incorporating new information about the
current workspace, and allows the collision likelihood of a
node to come from more than one snapshot as illustrated in

Figure 4.
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Fig. 4: A robot progressing along a path (green) with a linear
stochastic obstacle (orange) predicted to be collision free
(left). As he reaches the next node on his path (right, A
seconds later), he updates the obstacle position and the SES
likelihoods, therefore predicting a collision and indicating
that replanning is needed.

VI. EXPERIMENTS

To demonstrate the SES planning algorithm, we tested
three different robots in three different environments with
stochastically moving obstacles. To maintain a constant
density of moving obstacles, we restrict the simulation en-
vironment of the robot and moving obstacles to a circular
or a spherical radius 50. When an obstacle reaches the
boundary, it is transported to the antipodal position with
velocity vector unchanged. All methods, other than ORCA,
were implemented in MATLAB. A C++ implementation of
ORCA was downloaded and modified for a single robot with
multiple obstacles from [25]. All experiments were run on
a single core of an AMD FX-8320 at 3.5GHz with 16GB
RAM. Experiments are repeated 100 times (10 times per
bin, based on 10 initial guidance paths) in order to compute
the average and standard deviation of success rate and path
length.

A. Experiment 1: 2D Open Environment

Experiment 1 is designed to compare SES planning with
Path-Guided APF-SR (PG-APF-SR) [11], Gaussian APF

Fig. 5: 2D open environment with 900 stochastically moving
obstacles (black squares). The robot starts at S (start) and
must traverse to G (goal). The blue line is the trajectory of
SES planning. Path-Guided APF-SR (red line) and Gaussian
APF (green line) failed to reach the goal due to collision.
The black dashed curve is the guidance path.

method [12] (abbreviated as Gaussian) with A (0,0.15%)
and ORCA [2]. The environment is 2D and has 300 to 900
stochastically moving obstacles (no static obstacles).
Setup: Obstacles: 300, 600 or 900 stochastically mov-
ing square obstacles with unit width. They move in a
fixed direction but their speed is stochastically-sampled
every Tsampie=1 second. The set of possible speeds is
{0.1,0.2,0.5,0.7} unit/s with probability {0.3,0.2,0.3,0.2}.
Robot: The robot is a holonomic point robot with a maximum
speed of 0.36 unit/s. It starts at (—25,0) and the goal is at
(25,0). PG-APF-SR and Gaussian have a goal bias of 0.01,
and this environment (shown in figure 5), is identical with
[11]. Ten guidance paths are generated by ten PRM roadmaps
created offline with 1000 nodes and edges selected by con-
necting nodes to their 10 nearest neighbor connections. SES
parameters: The simulation time horizon 7 in Algorithm
1 was set to 8 seconds, the simulation time step § = 0.01s,
and the ensemble size N = 500. The planning time step
A for SES planning was 0.2s. RRTs with a goal bias 0.05
and 1500 maximum getCollisionProb queries per tree was
used in growFullTree. We set Ngqfery = 10 to provide a 2
second 7-safety. The acceptance threshold Pryccep: Was set
to 1% and the greediness parameter € = 0.001. The robot is
only aware of obstacles within range dporizon = 5.7.
Results: Figure 6a shows the success rate of SES planning
exceeds comparison methods. The high success rate was
maintained even in the 900 obstacle extremely crowded envi-
ronment (81%, which exceeds comparison methods by 32%).
Gaussian and ORCA do not consider the stochastic changes
of the environment and thus result in a low success rate
(0 and 20%). In addition, the path length (shown in Figure
6b) of SES planning is consistently lower than Gaussian
and PG-APF-SR. This is because SES’s tree-based planner



does not have a local minima problem, unlike the APF
methods. Therefore, it was not stringently held to guidance
path following [11].
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Fig. 6: Performance comparison between SES planning,
Path-Guided APF-SR, Gaussian APF method, and ORCA.
The success rate of Gaussian with 900 obstacles was lower
than 1%, and therefore the path length was not calculated.

Table I shows the average running time per planning step
for all methods are in the same order of magnitude. Given the
planning time step A=0.2s for SES planning, our method is
online-capable. SES planning achieved this because it only
grows a tree when a potential collision is detected or the
robot has traversed near the end of a tree. In addition, it
attempts to grow a goal tree directly toward the goal if
possible, and only grow the expensive full RRT if necessary.
Our experiment in the 900 obstacle environment utilized
2444205 tree growth calls per trajectory and 27% of them
are the inexpensive growGoalT'ree.

# of Obstacles SES PG-APF-SR | Gaussian ORCA
300 6.0+26.4 4.6+1.8 43+£1.6 5.1£0.1
600 15.84+44.9 7.5+1.8 7.6£1.3 11.04+0.4
900 44.6+77.7 10.1£1.3 9.3+1.4 16.0£1.1

TABLE I: Average running time per planning step in a 2D
free environment in milliseconds

B. Experiment 2: Unicycle Robot in Environment with Static
Obstacles

Experiment 2 involves an unicycle robot in a 2D en-
vironment with either bug trap or narrow corridor static
obstacles in order to demonstrate the ability for SES to
handle nonholonomic robot dynamics and the integration
with guidance paths.

Setup: Obstacles: A bug trap environment (Figure
7a), with an escape opening 5 times the width of moving
obstacles and a narrow corridor environment (Figure 7b) with
openings of the same size were tested. 300 moving obstacles
(described in Experiment 1) are also present. Robot: The
robot has unicycle dynamics with a maximum turn rate of
m/5 per second and the maximum speed is the same as
Experiment 1. SES parameters: The same as Experiment
1. All static obstacles have the stochastic dynamics f = 0
since they are stationary.

Results: Table II shows that the more restrictive non-
holonomic robot dynamics and complex static terrain do not

(a) Bug trap (b) Narrow corridor

Fig. 7: Unicycle robot in environments with (a) bug trap
and (b) narrow corridor static obstacles. 300 stochastically
moving obstacles are shown as black squares with red
outline. The black line (under) is the guidance path and the
blue line (over) is the actual path take by the robot with SES
planning

Environment SES PG-APF-SR | Gaussian
Narrow Corridor 89+8% 88+9% T+1%
Bug Trap 85+t11% 79+18% 2+0%

TABLE II: Success rate comparison of unicycle robots in
environments with static obstacles.

impact the success rate severely for SES planning. This is
expected since tree-based methods were originally developed
to tackle nonholonomic and kinodynamic planning problems
[22]. Methods without any prediction such as Gaussian have
a significantly lower success rate.

C. Experiment 3: 7 DOF Robot in a crowded 3D environ-
ment

Experiment 3 demonstrates the algorithm’s ability to plan
for high DOF robots in the presence of stochastically moving
obstacles and modeled sensor uncertainty (which is currently
beyond the capability of SR or velocity obstacle based
methods). A 7 DOF holonomic robot must navigate through
a crowded 3D environment with 250 stochastically moving
obstacles and 50 moving obstacles with position/speed un-
certainty.

Setup: Obstacles: The radius 50 spherical environment
contains 300 moving spherical obstacles. 200 of these ob-
stacles have a radius of 0.5 and exhibit linear motion with
speed sampled every 1 second from the set {3.125,12.5}
with probability {0.5,0.5} (up to 4 times faster than the
robot). 50 random walk obstacles of radius 3.5 have a speed
of 1 but their direction is selected randomly every Tqynp1e=1
second. The last 50 obstacles have a radius of 3.5 and move
with a constant speed (1 unit/s) and direction. To simulate
sensor uncertainty, however, the robot samples the position
and speed of these obstacles by a Gaussian distribution of
10% standard deviation around their true position and speed.
Robot: The robot consists of 2 side spheres of radius 0.4
connected to a center sphere of radius 2.65. The length of
connections are 3 times the radius of the center sphere.
The robot is holonomic with a maximum speed of 3.125



and the linkages can rotate freely in any direction. The
robot therefore has 7 DOF in the configuration space (7
parameters for x,y,z coordinates for the center sphere, polar
and azimuthal angles of two side spheres). We compare SES
with a naive APF method [26] with a potential cutoff of 4
units. SES parameters: The same as Experiment 1, except
the robot is aware of obstacles within range dporizon = 50.

Results: As shown in table III, SES planning is able to
plan trajectories of higher success rate (about 30% higher)
than the comparison APF method, with less average running
time per planning step. This indicates SES planning is able
to generate safe trajectories even for for a high DOF robot
in a crowded dynamic environment, with stochastic obstacles
(motions and postion/speeds).

SES Naive APF
Success Rate 80+17% 53+11%
Running Time | 147 £90 ms | 160 15 ms

TABLE III: Performance comparison for a 7 DOF robot in
an environment with 300 stochastic obstacles.

D. Discussion

The 2D environments in Experiments 1 and 2 clearly show
that SES planning has a very high success rate and is capable
of online planning despite the large number of stochastically
moving obstacles. In all cases, SES planning has a higher
planning success rate, and the running time per planning step
is in the same order of magnitude of Path-Guided APF-SR,
Gaussian APF and ORCA. The 3D environment shows the
method can successfully find trajectories for a high DOF
robot in the presence of stochastically moving obstacles
and obstacles with uncertain position/speed, while having a
runtime cost comparable to a low cost APF method. Also,
it was able to achieve a higher success rate on the high-
dimensional problem, a problem Path-Guided APF-SR and
ORCA could not address.

SES-based planning reduces the number of expensive
growFullTree calls by planning directly toward the goal
(growGoalTree) when such a path is safe. Table IV shows
this happens 26% of the time, even in the crowded 900
obstacle environment. In the 900 obstacles environment,
the robot traversed the path in 110£16.8 seconds while
calling growFullTree 1894157 times. Therefore, each
growFullTree call has a real-time budget of 582 ms on
average (110 s/189 calls), an abundance compared to the
44.6 ms average running time per planning step. In addition,
since SES-based planning does not restrict to a specific tree-
based planner, techniques to speed-up tree-based methods
for real-time purposes such as [27] and [28] can be used in
order to meet real-time constraints. We also tried using EST
[23] instead of RRT and the resulting success rate and path
lengths were mostly within one standard deviation as shown
in Table V.

SES is an approximate method to predict stochastic en-
vironments. Empirical analysis shows that the success rate
is not highly sensitive to the size of the ensemble (which
determines the quality of the approximation). Table VI shows

# of Obstacles | growGoalTree Ratio | Total grow tree calls
300 67.8421.4% 107£136
600 46.0+24.8% 142+143
900 26.3£23.3% 2574205

TABLE IV: The ratio of growGoalTree calls and total
number of grow tree calls (full+goal). The setup is SES in
Experiment 1.

RRT RRT EST EST
# of obstacles | Success % PL Success % PL
300 94+10% 67+£5 94+5% T1+4
600 87+9% 79+4 80+£13% 9146
900 81+14% 95+7 81t14% 88+8

TABLE V: Performance comparison between RRT and EST
as the tree-based planner. (PL=Path Length)

that the success rates are within one standard deviation for
a wide range of ensemble sizes. This is likely because the
checkFutureNode subroutine compensated for the poor
approximation quality using methods described in section
V.

Size of Ensemble | Success Rate
100 76 £ 15%
500 81+ 14%
1000 80 + 12%

TABLE VI: Success rate for various SES ensemble sizes.
The setup is Experiment 1 with 900 moving obstacles.

VII. FUTURE WORK
A. Parameter Investigation

SES planning has several parameter such as Prgccept, €,
Nsafety, A and dporizon. These parameters are currently
hard-coded and set to empirically determined values. How-
ever, parameters can be related to each other. For example,
dhorizon should be larger than Nq fery X A X maximum robot
speed, otherwise the robot may not see the obstacle before
it’s too late. A systematic parameter relationship investiga-
tion help reduce the number of tweak-able parameters or give
bounds to parameters. In addition, it would be interesting to
see if SES is sensitive to certain parameters and how the
parameters differ in different environments.

B. Adaptive Node Acceptance Probability

Although SES planning is designed to choose the path
that balance progression toward the goal and path safety
with equation 1, our choice of setting the node acceptance
probability Prgcceps = 0.01 in our experiments limited the
exploration of escaping paths with finite collision probability.
This bias the algorithm to explore regions with very low
probability of collision efficiently as samples with collision
likelihood larger than 0.01 are discarded. However, there may
exist scenarios where all escape routes have probability of
collision larger than 0.01. Such escape path will never be
found with Pryccept set to a low value such as 0.01. On the
other hand, if Prgccept is set to a high value such as 0.5,



the algorithm may spend a large portion of time building
a tree with high likelihood of collision, reducing the safety
of generated path (regions with very low or zero likelihood
of collision is less explored). Therefore, an adaptive node
acceptance probability could explore regions of potential
collision when the tree length is short by increasing the node
acceptance probability, and otherwise focus on exploring
regions with no probability of collision.

C. Reduce SES Query Cost

shrink wrap and total prunning We mentioned one op-
tion in Section V for processEnsemble. The approximate
map of obstacle occupation likelihood approach allows the
planner to take an escaping path with non-zero collision
probability. However, in an environment with fewer moving
(hence plenty of escape path with zero collision probability)
but more obstacles types (i.e., many distinct obstacle dy-
namics and shapes), the obstacle occupation likelihood map
approach may take a long time to precompute all obstacle
types and requires lots of memory at runtime. A possible
alternative is, after the ensemble simulation generated the po-
sition for each simulated obstacle at each temporal snapshot,
a 3D polygon is generated to “shrink wrap” every simulated
obstacle in the ensemble. This can be done offline by 3D
graphics software such as Blender. This polygon represents
the region of non-zero obstacle occupation probability, and
the getCollisionProb subroutine becomes a simple CD
query between the robot and the shrink wrapping polygon.
This reduces the cost of SES planning query if the robot
has a complex geometry and must be described by a large
number of control points.

D. Obstacle-Obstacle and Obstacle-Robot Interaction

The insensitivity of SES planning to ensemble size may
enables the possibility of running SES online in order
to plan in environments with stochastic obstacle-obstacle
and obstacle-robot interaction. This is extremely challeng-
ing since the dimensionality of the configuration space for
obstacles grows exponentially with the number of interacting
obstacles, thus rendering reachability and velocity obstacle
based approach infeasible. Our method, with the sampling-
based nature (for both simulating and planning) and the
insensitivity to ensemble size may be a viable approach.
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