
Dynamic Obstacle Avoidance with PEARL: PrEference Appraisal
Reinforcement Learning

Aleksandra Faust1, Hao-Tien Chiang1, Nathanael Rackley1 and Lydia Tapia1

Abstract— Manual derivation of optimal robot motions for
task completion is difficult, especially when a robot is required
to balance its actions between opposing preferences. One
solution has been to automatically learn near optimal motions
with Reinforcement Learning (RL). This has been successful
for several tasks including swing-free UAV flight, table tennis,
and autonomous driving. However, high-dimensional problems
remain a challenge. We address this dimensionality constraint
with PrEference Appraisal Reinforcement Learning (PEARL),
which solves tasks with opposing preferences for acceleration
controlled robots. PEARL projects the high dimensional con-
tinuous robot state space to a low dimensional preference
feature space resulting in efficient and adaptable planning. We
demonstrate that on a dynamic obstacle avoidance robotic task,
a single learning on a much simpler problem performs real-
time decision-making for significantly larger, high dimensional
problems working in unbounded continuous states and actions.
We trained the agent with 4 static obstacles, while the trained
agent avoids up to 900 dynamic obstacles in a highly constrained
space. We compare these tasks to traditional, often manually
tuned solutions for these high-dimensional problems.

I. INTRODUCTION

There are many high-dimensional, motion-based robotic
tasks, including multi-robot coordination and control of
complex kinematic linkages. These complex robotic prob-
lems often require planning high-dimensional motions that
complete the task in a timely manner. Motion and trajectory
planning identifies a sequence of actions that move the robot
in accordance to its dynamics (physical constraints) and the
task objectives. Since manually accounting for all possibili-
ties is often infeasible, sampling-based, learning-based, and
other intelligent methods are the norm [15]. Reinforcement
learning (RL), in particular, has been successful for robotic
task learning [12] in several problems such as table tennis
[18], swing-free UAV delivery [5], and a self-driving car [9].
However, traditional RL methods do not handle continuous
and high-dimensional state spaces well [8].

A primary challenge in these problems is task description.
The task goals and constraints that the robot must obey
are often unknown or difficult to calculate. For example,
consider a simple manipulation task; a robot is required
to set a glass on a table without breaking it. We do not
know precisely the amount of force that causes the glass
to shatter, yet we can describe our preferences: low force
and fast task completion. Preference reinforcement learning
learns and performs preference balancing tasks (PBTs) with
desired qualities (preferences). These tasks cannot be easily

1Computer Science Department, University of New Mexico,
USA {afaust@cs.unm.edu, lewispro@unm.edu,
futuredragon@gmail.com, tapia@cs.unm.edu}

demonstrated, but the set of preferences can be described
[25].

We present PrEference Appraisal Reinforcement Learning
(PEARL) for solving high-dimensional motion-based PBT
problems (Figure 1). PEARL trains the planning agent on
small problems, and transfers the learned policy to be used
for planning on high-dimensional problems. The key to
PEARL is the feature selection method that constructs task-
preference features invariant to the robot’s state space dimen-
sionality. Because the method learns and performs the task
in the feature space, such transfer is possible. Previously, we
empirically showed that, using hand-crafted features, batch
RL learns in small spaces and acts on larger problems [7],
[6], but did not address when learning transfer is possible and
how to do it for an arbitrary problem. This paper formalizes
the feature selection and the conditions under which transfer
is possible so that it can be applied for classes of PBTs. We
include preferences that increase over time as well.

We demonstrate PEARL on the obstacle avoidance prob-
lem. The case study shows that the method is fast, easy
to use, successful for high-dimensional problems, and is
a useful tool in a RL-based motion planning toolbox. An
agent is required to move to the goal without colliding with
hundreds of stochastically moving obstacles. PEARL learns
the task with only four static obstacles, and plans trajectories
in densely populated environments with up to 900 obsta-
cles. In real-time, at 10 Hz, the planner generates shorter
trajectories of higher success rates compared to a traditional
Gaussian Artificial Potential Field (APF) obstacle avoidance
method, which requires extensive manual tuning [14]. In
addition, trajectories generated by PEARL are shorter and
have success rates comparable to state of the art collision
avoidance algorithms, such as ORCA [23].

The contributions of this work are: 1) a solution for plan-
ning high-dimensional, preference-balancing, motion-based
problems (PEARL), and 2) continuous RL solutions to dy-
namic obstacle avoidance. These contributions are achieved
by Markov decision process formulation for PTBs, and
obstacle avoidance tasks, formalizing the preference feature
selection method, including preferences that increase over
time, and appraising the preferences on small tasks with
continuous action RL.

II. RELATED WORK

Reinforcement Learning: Function approximation RL
methods typically assume user-provided features [1]. Yet,
selecting good features is very difficult because they map
the entire robot’s state subspace to a single point, and



Fig. 1. PrEference Appraisal Reinforcement Learning (PEARL)
framework for learning and executing PBT. The user-provided
preferences are encoded into polymorphic features. The learning
agent appraises preference priorities on a low-dimensional training
problem. The planner takes an initial state of a high-dimensional
problem and produces actions in a closed feedback loop.

RL is very sensitive to feature selection [1]. Classically,
two feature types are used in RL: discretization, and basis
functions [26]. Discretization partitions the domain, scaling
exponentially with the space dimensionality. Basis functions,
such as kernels and radial basis function networks, offer
more learning flexibility. These functions, however, can
require manual parameter tuning, and the feature number
increases MDP formulation for multi-robot systems and dy-
namic obstacle avoidance tasks exponentially with the space
dimensionality [26]. PEARL proposes a feature selection
method that solves a particular class of motion tasks for
acceleration-controlled robots. PEARL features exploit task
knowledge. Their number is invariant to the problem di-
mensionality, and the computation time scales polynomially
with the state space dimension. In related work, Voronoi
decomposition solves high dimensional manipulation prob-
lems by projecting the robot’s configuration space onto a
low dimensional task space [20]. The features we propose
define a basis in the preference-task space as well. However,
PEARL autonomously learns the relationship between the
features. Another RL approach solves manipulation tasks
with hard [21] and soft [13] constraints. Our tasks, however,
do not have known constraints and bounds; they are set
up as preferences to guide dynamically feasible trajectory
generation.

In summary, PEARL takes task preferences as objectives,
and generates features. It appraises the features to come
up with weights. Another approach, Weighed Real-Time
Heuristic Search (RTHS) [19], uses the weights along the
search during planning. PEARL uses RL, which intrinsically
includes weights to balance short and long term gains. In
addition, PEARL learns weights between the features to find
a good balance of priorities among opposing preferences.

Dynamic Obstacle Avoidance: Planning motions in dy-
namic environments is challenging because plans must be
frequently adjusted due to moving obstacles. Sampling-based
methods provide low cost solutions to high-dimensional

planning problems in dynamic environments [10], [11], [17].
For example, lazy Probabilistic Roadmaps (PRM) accom-
modate moving obstacles by rechecking edge validity [10],
[11], while [17] pre-building a Rapidly-exploring Random
Tree (RRT) that is modified whenever obstacle changes are
detected. Artificial Potential Fields (APF) provide low-cost
solutions to dynamic environments by using only local infor-
mation near the robot [14]. Nevertheless, several parameters
impact the performance, such as the relative strength between
the repulsive and attractive potentials and the size of the
repulsive potential. ORCA is a state-of-the-art, multi-agent
collision avoidance algorithm [23]. Each agent computes the
velocity obstacle posed by other nearby agents and plans an
action that reciprocally avoids collision. It can be modified
for single agent, multiple dynamic obstacles planning [3].

III. BACKGROUND

We consider robots as mechanical systems that can be
moved using an external force, and model their motion with
a special case of nonlinear systems, a discrete-time control-
affine system [15]. Consider a robot with m degrees of
freedom (DoF). If an acceleration a(n) ∈ Rm is applied to
the robot’s center of mass at time-step n, the new position-
velocity vector (state) s(n+ 1) ∈ R2m is,

D : s(n+ 1) = f(s(n)) + g(s(n))a(n), (1)

for some functions f , g. A Markov decision process (MDP),
a tuple (S,A,D,R) with states S ⊂ R2m and actions
A ⊂ Rm, that assigns immediate scalar rewards R : S → R
to states in S, formulates a task for the system (1) [1]. A
solution to a MDP is a control policy π : S → A that
maximizes cumulative discounted reward over the agent’s
lifetime, value, V (s(0)) =

∑∞
i=0 γ

iR(s(i)), where 0 ≤
γ ≤ 1 is the learning constant. Approximate value iteration
(AVI) [4], finds a solution to a continuous state MDP by
approximating state-value function V with a linear map

V̂ (s) = θTF (s). (2)

AVI takes a feature vector F (s) and learns weights θ
between the features by sampling the state-space and observ-
ing the rewards. It iteratively updates θ in an expectation-
maximization manner.

After the parameter learning is completed, batch RL enters
a planning phase. The planner takes the value function
approximation (2), an initial condition, and generates a
trajectory using the closed-loop control with a greedy policy
with respect to the state-value approximation,

πV̂ (s) = argmax
a∈A

V̂ (s′); (3)

where state s′ is the result of applying action a to state
s. Action selection in continuous spaces, which calculates
the greedy policy (3), is a multivariate optimization over
an unknown function. Several sampling-based methods that
approximate the policy efficiently exist, such as Hierar-
chical Optimistic Optimization applied to Trees (HOOT)
[16]. HOOT uses hierarchical discretization to progressively



narrow the search on the most promising areas of the
input space, thus ensuring an arbitrarily small error [16]. In
practice, HOOT works well for single-agent planning with
value functions that have many small-scale maxima.

IV. METHODS

Our aim is to solve tasks that can be described with a set of
goals (attractors), and obstacles (repellents) for acceleration-
controlled robots with unknown dynamics. We require that
the solution, PEARL, is efficient and adaptive. By efficient,
we mean that PEARL controls agents in real-time in fully
continuous and physically unbounded spaces; by adaptive,
we mean that a single learning can be applied to a number
of tasks.

PEARL solves PBT in two phases, learning and acting
(Figure 1), adhering to the batch RL paradigm. To start
the learning phase, a user provides PEARL with basic
information about the problem; the robot’s DoFs, maximum
accelerations, etc., and a set of objectives (preferences). The
basic system information is encoded into a MDP as presented
in Section IV-A. Meanwhile, given the preferences, which
consist of task goals and obstacles, PEARL generates the
features using the methods described in Section IV-B.

With the MDP and features setup, the learning phase
uses one of the AVI-based RL algorithms on a simplified
problem space to discover the relative weights between
the preferences (preference appraisal). The value function
is approximated with Equation (2) and is a linear map of
preference-based features. Once the preference weights are
learned, they are handed over to the planner, and the acting
phase can begin.

The acting is a closed-loop feedback system, or a decision-
making that can work online, or plan trajectories offline in
simulation. The planner solves problems with larger state
and action domains, because the features are valid in the
larger domain and capture the important elements of the task,
rather than the physical space. The features enable both the
efficiency, by learning on small problems, and adaptation,
by allowing the policy transfer to larger problems. It is the
use of the polymorphic, automatically generated features that
separates PEARL from standard batch RL, and creates a
virtually tuning-free task learning and completion method.

A. MDP Setup

For the General PEARL Formulation, we assume the
robot works in continuous state and action spaces, is con-
trolled through acceleration applied to its center of mass, and
has dynamics that are not explicitly known. Let s, ṡ, s̈ ∈
Rdr be the robot’s position, velocity, and acceleration, re-
spectively. The MDP state space is S = Rds , where ds =
2dr, where dr is the robot’s DoFs. The state s ∈ S is joint
vector s = [s, ṡ]T , and action a ∈ A = Rm is the joint
acceleration vector, a = s̈. The state transition function that
we assume is unknown, is a control-affine dynamical (1).

We assume for training purposes the presence of a sim-
ulator or dynamics samples for the robot. The reward R
is set to one when the robot achieves the goal, and zero

otherwise. The tuple (S,A,D,R) defines the MDP for the
robot problem.

For the Dynamic Obstacle Avoidance Task, the MDP
setup is the joint vector of robot position and velocity, S =
R4. The action space is the acceleration on each axis with
dimension A = R2.

B. Feature Selection

For the General PEARL Formulation, we define a PBT
with no objectives, o1, ...,ono

, and preferences with respect
to the objectives. The objectives, points in positional or
velocity space, oi ∈ Rdri , i = 1, .., no, either attract or repel
the one or more agents. We call preferences that attract the
agent distance-reducing, whereas the preferences that repel
it are intensity-reducing; both preference types have the goal
of reducing their measure to an objective.

To learn PBT with no objectives, o1, ...,ono , we form a
feature for each objective. Assuming the low dimensional
task space and high-dimensional MDP space no � ds, we
consider task-preference features,

F (s, ds) = [F1(s, ds), ..., Fno
(s, ds)]

T .

Parametrized with the state space dimensionality, ds, the
features map the state space S to the preference space,
and, depending on the preference type, measure either the
squared intensity or distance to the objective. Let poi(s) be
a projection of the robot’s state onto the minimal subspace
that contains oi. For instance, when an objective oi is a point
in a positional space, poi(s) is the robot’s position. Similarly,
when oi is a point in a velocity space, poi(s) is the robot’s
velocity. Then, distance-reducing features are defined with

Fi(s, ds) = ‖poi(s)− oi‖2, (4)

and intensity-reducing features are defined with

Fi(s, ds) = (1 + ‖poi(s)− oi‖2)−1. (5)

Algorithm 1 summarizes the feature selection procedure.

Algorithm 1 PEARL feature selection.
Input: o1, ...,ono objectives, pt1, ..., ptno preference types
Input: MDP (S,A,D,R),
Output: F (s, ds) = [F1(s, ds), ..., Fn(s, ds)]

T

1: for i = 1, . . . , no do
2: if pt1 is intensity then
3: Fi(s, ds) = (1 + ‖poi(s) − oi‖2)−1 {inensity

preference}
4: else
5: Fi(s, ds) = ‖poi(s)− oi‖2, {distance preference}
6: end if
7: end for
8: return F (s, ds)

For the Dynamic Obstacle Avoidance Task, there are two
natural preferences: 1) minimize the distance to the goal, and
2) maximize the distance from obstacles. The feature vector
is then formulated as the combination of the two preferences:



F (s) = [F1(s) F2(s)]T . Providing Algorithm 1 with the
goal’s and obstacle’s coordinates, the features are F1(s) =
‖s−G‖2, and F2(s) = (β + d2)−1, where G is the goal’s
position, d is the minimum distance to the closest obstacle,
and β is a constant empirically selected to be 0.01.

V. ANALYSIS

Feature properties: Features selected in this manner
have the following properties allowing PEARL to have the
potential to learn on small problems and transfer the learning
to larger problems:
• Feature domain: The features are Lipschitz continuous

and defined for the entire state space, Fi : Rm →
R, i = 1, .., ds, in contrast to tiling and radial basis
functions [26], [1] that are active only on a section of
the problem domain.

• Projection to preference space: Features project the
state subspace into a point that measures the quality
of the preferences. Thus, the state-value function ap-
proximation from (2) is an ds-dimensional manifold in
the preference space, and their number does not change
as domain space change.

• State space polymorphism: Because they are based
on the vector norm and projection, the features are
polymorphic with respect to the domain dimensionality.
Since the learning is more computationally intensive
than the planning, we use lower-dimensional problems
for training. The feature vector size is invariant to
the number of agents, state space dimensionality, and
physical space dimensions. If the agents operate in 2D
space, the features consider only planar space. But,
when the same agents are placed in a 3D environment,
the feature set remains unchanged even though the 3D
space is considered in feature calculations [6].

• Polynomial computation time: The feature computation
time is polynomial in state space dimensionality.

Local minima analysis: For tasks with mixed objectives,
such as moving obstacle avoidance, the agents follow pref-
erences, but there are no formal completion guarantees. In
fact, the value function (2) has potentially two maxima, one
on each side of the obstacle.

Since a straight line is the shortest path between an agent
an its attractor, we analyze the value function restricted to
that line with varying obstacle distances. To simplify, without
loss of generality, we rotate and scale the coordinate system,
such that the attractor is in the origin, and the agent is on
the x−axis. The two nearest obstacles lay on (1, d), and (1,
−d). Let c be ratio between learned weights for the obstacle
and the attractor feature. The value function after the affine
transformation is Vx(x) = V (x, 0) = x2 + c

(x−1)2+d2 . By
examining the first and second derivative V̇x, and V̈x as
a function of the obstacle distance d in relation to c, we
conclude that (1) all learned weights must be negative in
order for the agent to approach the attractor, and (2) the
value function either has a single maxima near an attractor
(pink, and blue lines in Figure 2), has two maxima (blue and

green line), or has an inflection point near the obstacles (red
line). An empirical study evaluates the method. Inspection
of the partial derivative ∂V

∂y at the minima points in Figure
2 reveals that these points are saddle points.

In summary, when the obstacles are far enough apart there
is only a global maximum. As the obstacles come closer
together, a new region of attraction forms on the other side
of the obstacle. If the agent gets into the local maximum
region of attraction, gradient-descend methods will trap it.
Sampling-based greedy methods such as HOOT, however,
might get the agent out of the region of attraction if it is
sufficiently close to the boundary.

−6 −4 −2 0 2 4 6

−40

−35

−30

−25

−20

−15

−10

−5

x

 

 

d = 0.001
d = 0.005
d = 0.1
d = 0.2
d = 1

Fig. 2. Value function inflection points for c = 100.

VI. RESULTS

We now demonstrate PEARL for the Dynamic Obstacle
Avoidance Task. PEARL was implemented in MATLAB and
executed on an Intel i5-4200U with 4GB RAM.

Figure 3 illustrates the testing environment and task for
the point-like holonomic robot to navigate from the starting
location to the goal without colliding with circular obstacles.
The robot observes only the current position of the closest
obstacle, and has no information about its heading. Each
obstacle has a constant heading, but the speed is sampled
stochastically every ∆Tsample = 1 second.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

G S

Fig. 3. Dynamic Obstacle Avoidance Task initial environment with
900 moving obstacles and an example path. The point-like robot
must travel from the start (S) to the goal (G) while avoiding
obstacles.

Learning Setup: We use 4 stationary obstacles placed at
[3 m, 0 m], [0 m, 3 m], [0 m, −3 m], [−3 m, 0 m] to learn the



Number of Obstacles
300 450 600 750 900

Su
cc

es
s R

at
e 

%

0

20

40

60

80

100
PEARL
α = 0.1
α = 0.01
α = 0.001
off
ORCA

(a) Success rate
Numer of Obstacles

300 450 600 750 900

Ta
sk

 F
ini

sh
 T

im
e 

(s
)

150

200

250

300

350

400
PEARL
α = 0.1
α = 0.01
α = 0.001
off
ORCA

(b) Task Finish Time
Number of Obstacles

300 450 600 750 900

R
un

ni
ng

 T
im

e 
Pe

r P
la

nn
in

g 
St

ep
 (m

s)

0

5

10

15

20
PEARL
ORCA

(c) Running time

Fig. 4. Trajectory characteristics for environments with varied complexity (number of obstacles). The agent planned with the same policy,
learned with four static obstacles averaged over 100 trials. (a) Collision-free success rate of finishing the task, (b) Amount of time for
the agent to reach the goal without collision, (c) and running time per planning step. The black line in (a) is the limiting case where the
robot stops seeking the goal when any obstacle is within 2m. PEARL has comparable success rate and running time per planning step.

weights between the two features. The goal is at the origin.
The sampling space is inside a two-dimensional hypercube
[−5 m, 5 m]2. The robot has a maximum speed of 0.36 m/s,
and a maximum acceleration of 3 m/s2. We run AVI [4] with
HOOT policy approximation [16], as the learning agent in
PEARL for 300 iterations to learn the feature vector weights.

Learning Result: The resulting weights are θ = [−0.23 −
0.1696]T . All simulations are done at 10 Hz. The time to
learn is 123 s.

Planning Environment Setup: The planning task envi-
ronment is illustrated in Figure 3. The robot must travel
from the start position [25m, 0m] to the goal at [−25m, 0m]
under the same speed and acceleration constraints as used
for learning. The environment has N = {300, 450, 600,
750, 900} randomly placed moving obstacles following
the constant heading with stochastic speed dynamics. The
obstacles are circles with radius robs = 0.5 m. The set
of possible linear velocities is {0.1 m/s, 0.2 m/s, 0.5 m/s,
0.7 m/s} with probabilities {0.3, 0.2, 0.3, 0.2} respectively.
The average speed of obstacles is identical to the maximum
speed of the robot.

We maintain the constant density of moving obstacles by
restricting the robot and moving obstacles to lie in a circle
with radius 50 m. When an obstacle hits the boundary of the
circle, it is transported to the antipodal position on the circle
and continues evolving from this new position. The resulting
density of moving obstacles is similar to [2].

We compared our method with two methods that only
consider the current position (and velocity) of obstacles.
The Gaussian APF method considers only the position of
obstacles. It combines a linear attractive potential toward
the goal and a repulsive potential from obstacles [14]. The
obstacle potentials are Gaussians with σ = 0.45 m around
obstacles, tuned empirically for this problem. The relative
strength between the attractive and repulsive potential, α,
has a significant impact on the success rate and needs
to be manually tuned. Larger α represents a more goal-
greedy robot behavior. We compared various values of α
to our method. ORCA considers the position and velocity of
obstacles [23]. A C++ implementation of ORCA (executed
on the same machine as PEARL) was downloaded and

modified for a single robot with multiple obstacles from
[24]. We modified ORCA by disabling the velocity obstacle
calculation and reciprocal collision avoidance for agents
acting as moving obstacles. The agent acting as the robot
still calculates velocity obstacles in order to avoid moving
obstacles.

Planning Result: Figure 4a and 4b show that planning
with PEARL has a higher probability of successfully avoid-
ing obstacles, and reaches the goal in less time compared
to the Gaussian APF method. The success rate and task
finish time of the Gaussian method depends greatly on the
parameter α. This parameter has to be tweaked manually
or by optimization algorithms [22] after many planning
trials. PEARL balances the features (similar to finding the
optimal α) in the learning phase with a simplified scenario,
and is able to transfer the weights to the online plan
with comparable or better performance. ORCA and PEARL
have a comparable success rate (less than 11% difference),
indicating that it is a viable alternative method for dynamic
obstacle avoidance. The running time per planning step for
PEARL is comparable to ORCA, even though PEARL is
implemented in MATLAB and ORCA is in C++. PEARL
scales linearly with the number of obstacles and is capable
of generating trajectories real-time (Figure 4c).

VII. CONCLUSION

This paper presents PEARL, a solution for high-
dimensional preference-balancing motion problems, that is
efficient, adaptive, and controls the agent in real-time. The
method uses features that work in continuous domains,
scale polynomially with the problem’s dimensionality, and
are polymorphic with respect to the domain dimensionality.
PEARL was demonstrated on a complex Dynamic Obstacle
Avoidance Task where the agent has to progress toward the
goal while avoiding collision with 900 stochastically moving
obstacles. Our experiments show that PEARL outperforms
the traditional Gaussian APF method and is comparable to
ORCA, a state of art algorithm for the obstacle avoidance.



VIII. ACKNOWLEDGMENTS

This work is partially supported by National Science
Foundation Grant IIS-1528047.

REFERENCES

[1] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, Boca Raton, Florida, 2010.

[2] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia. Aggres-
sive moving obstacle avoidance using a stochastic reachable set based
potential fi eld. In Proc. Int. Workshop on Algorithmic Foundations
of Robotics (WAFR), 2014.

[3] H.-T. Chiang, N. Rackley, and L. Tapia. Stochastic ensemble simu-
lation motion planning in stochastic dynamic environments. In Proc.
IEEE Int. Conf. Intel. Rob. Syst. (IROS), 2015.

[4] D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel. Approximate value
iteration in the reinforcement learning context. application to electrical
power system control. International Journal of Emerging Electric
Power Systems, 3(1):1066.1–1066.37, 2005.

[5] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. Learning swing-
free trajectories for UAVs with a suspended load. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, pages 4887–4894, May 2013.

[6] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. Automated aerial
suspended cargo delivery through reinforcement learning. Artificial
Intelligence, 2014.

[7] A. Faust, P. Ruymgaart, M. Salman, R. Fierro, and L. Tapia. Continu-
ous action reinforcement learning for control-affine systems with un-
known dynamics. Automatica Sinica, IEEE/CAA Journal of, 1(3):323–
336, 2014.

[8] H. Hasselt. Reinforcement learning in continuous state and action
spaces. In M. Wiering and M. Otterlo, editors, Reinforcement Learn-
ing, volume 12 of Adaptation, Learning, and Optimization, pages 207–
251. Springer Berlin Heidelberg, 2012.

[9] T. Hester and P. Stone. TEXPLORE: real-time sample-efficient
reinforcement learning for robots. Machine Learning, 90(3):385–429,
2013.

[10] L. Jaillet and T. Simeon. A PRM-based motion planner for dynam-
ically changing environments. In Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), 2004.

[11] M. Kallman and M. Mataric. Motion planning using dynamic
roadmaps. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
4399–4404, 2004.

[12] J. Kober, D. Bagnell, and J. Peters. Reinforcement learning in robotics:
A survey. International Journal of Robotics Research, 32(11):1236–
1272, 2013.

[13] T. Kunz and M. Stilman. Manipulation planning with soft task
constraints. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1937–1942, October 2012.

[14] C.-P. Lam, C.-T. Chou, K.-H. Chiang, and L.-C. Fu. Human-centered
robot navigation towards a harmoniously human–robot coexisting
environment. TR, 27(1):99–112, 2011.

[15] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006.

[16] C. Mansley, A. Weinstein, and M. Littman. Sample-based planning
for continuous action markov decision processes. In Proc. of Int.
Conference on Automated Planning and Scheduling, 2011.

[17] M.Otte and E.Frazzoli. Rrt-x: Real-time motion planning/replanning
for environments with unpredictable obstacles. In Proc. Int. Workshop
on Algorithmic Foundations of Robotics (WAFR), 2014.

[18] K. Mülling, J. Kober, and J. Peters. A biomimetic approach to robot
table tennis. Adaptive Behavior, 19(5):359–376, 2011.

[19] N. Rivera, J. A. Baier, and C. Hernandez. Weighted real-time heuristic
search. In Proceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS ’13, pages 579–
586, Richland, SC, 2013. International Foundation for Autonomous
Agents and Multiagent Systems.

[20] A. C. Shkolnik and R. Tedrake. Path planning in 1000+ dimensions
using a task-space voronoi bias. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 2061–2067. IEEE, may 2010.

[21] M. Stilman. Global manipulation planing in robot joint space with
task constraints. IEEE/RAS Transactions on Robotics, 26(3):576–584,
2010.

[22] K. C. Tan and W. Ming-Liang. Evolutionary artificial potential fields
and their application in real time robot path planning. In Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on, pages 256–
263, 2000.

[23] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-
body collision avoidance. In Robotics research, pages 3–19. Springer,
2011.

[24] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha.
Rvo2 library: Reciprocal collision avoidance for real-time multi-agent
simulation. http://gamma.cs.unc.edu/RVO2/.

[25] C. Wirth and J. Fürnkranz. Preference-based reinforcement learning:a
preliminary survey. In ECML/PKDD-13 Workshop on Reinforcement
Learning from Generalized Feedback: Beyond Numeric Rewards, Sep
2013.

[26] C. Wu. Novel function approximation techniques for large-scale
reinforcement learning. PhD thesis, Northeastern University, Apr
2010.


