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Abstract

It is estimated that allergies afflict up to 40% of the world’s population. A
primary mediator for allergies is the aggregation of antigens and IgE ahtibo
ies bound to cell-surface receptors¢REt Antibody/antigen aggregate formation
causes stimulation of mast cells and basophils, initiating cellular degranulation
and releasing immune mediators which produce an allergic or anaphytectic
sponse. Understanding the shape and structure of these aggregate®wide
critical insights into the allergic response. We have previously developh-m
ods to geometrically model, simulate and analyze antibody aggregationeidspir
by rigid body robotic motion simulations. Our technique handles the large size
and number of molecules involved in aggregation, providing an advardegr
traditional simulations such as molecular dynamics and coarse-graneegetic
models. In this paper we study the impact of model resolution on simulations
of geometric structures using both our previously developed Monte Gianlgla-
tion and a novel application of rule-based modeling. These methodslearmipt
each other, the former providing explicit geometric detail and the lattefiging
a generic representation where multiple resolutions can be capturecex@lor
ration is focused on two antigens, a man-made antigen with three binding sites
DF3, and a common shrimp allergen (antigen), Pen a 1. We find that impac
resolution is minimal for DF3, a small globular antigen, but has a largeadatp
on Pen a 1, a rod-shaped molecule. The volume reduction caused lngshia
resolution allows more binding site accessibility, which can be quantified asing
rule-based model with implicit geometric input. Clustering analysis of outsim
lation shows good correlation when compared with available experimestalts.
Moreover, collisions in all-atom reconstructions are negligible, at ar@u2®b at
90% reduction.



1 Introduction

The human allergic immune response can be triggered by wddce molecule
aggregation, specifically a tyrosine kinase cascade tiaitiby the transmembrane sig-
nalling caused by the crosslinking of IgE4Rd (receptors) via antigen binding. This
crosslinking stimulates mast cells and basophils and iesldegranulation, resulting
in the release of histamine and other allergic responseat®di[52]. The ability to
predict the structures of these aggregates is key in detarglhow the spatial organi-
zation of receptors affects transmembrane signaling.

The geometric impacts of molecular aggregation have nat besdl studied due
to the fact that it is presently computationally infeasitdemodel hundreds of large
molecules at an all-atom resolution. The application obt@s-inspired methods to
molecular simulations has played a role in improving the gotational efficiency of
these types of simulations. Molecular interaction usinigoti-inspired techniques
have been developed to study ligand docking [8/ 1B, 22]. Hewehese methods are
generally applied to small scale problems (e.g. two mokesystems). Elastic network
models|[4] 7] have been used to determine molecular modegstdmand have been
extended in a variety of manners[54} 47, 1], but have not lbeed to study molecular
aggregation. Coarse-grained models have been develogadutate aggregation that
overcome long simulation times while preserving energeticit they are often either
lacking in geometric details or unable to simulate largdesaggregation [10, 45].

To address this gap across different simulation scalesawe previously presented
methods inl[40] to simulate and analyze aggregation usihgpa-based models gen-
erated from all-atom molecular structures. These polyigased models retain the ge-
ometric information about the molecular structure whilduging the computational
footprint by forgoing atom position data. Geometric comfileis an important fea-
ture of these molecular models because lower complexitgkates into fewer polygon
to polygon comparisons and faster run times at the expensedé! realism.

The overall goal of this research is to understand the pgakiprotein complexes
and to predict final assembled structures of aggregatedtuiele As part of this effort,
in this paper we simulate molecular aggregation at diffemeodel complexities within
our polygon-based model framework. In the scope of this papedel complexity is
analogous to model resolution of the molecules. Differesblutions are obtained by
changing the number of polygons composing each molecul'sticture. A central
guestion to be investigated in this analysis is whether wes@nificantly speed up our
simulation run times by lowering the resolution of the modkus enabling simula-
tion of even larger systems. However, a simulation speedufdlcome at the cost of
generating aggregate structures which are significarffigrdnt at various model com-
plexities due to steric effects that may appear at differeswlutions. We are interested
in quantifying the impact of model resolution on the assgnobblem. Preliminary
work in molecular multiscale modeling has begun to addiesse questions [58], fo-
cusing on the unification of different mathematical repnéaions of DNA and RNA
molecules.

In this work, we study how model complexity affects molecuaggregation by an-
alyzing its impact via two independent simulation techeisju-irst, we perform Monte
Carlo simulations of 3-D rigid body structures based oratdin protein structures at



different model complexities. Then, we approach this poblvith a novel implemen-

tation of rule-based modeling, a fast complementary sitiarahat does not explicitly

represent geometry but captures steric interactions gbithieins through ODEs, and
look for consistency in the results.

We present results on a synthetic antigen that has beerdtexiperimentally, DF3,
and a natural antigen, a common shrimp allergen Pen a 1. Bnéigens greatly differ
in size, structure and number of binding sites. Pen a 1 is kAjhiglevant allergen
due to its allergenic potency and unique structure. We filadl ithpact of resolution
is minimal for DF3, but has a larger impact on Pen a 1. A studyglo$tering of
receptor complexes bound to DF3 from our simulations shawesg agreement with
experimental data. We find that collisions in all-atom restaictions, another metric
to analyze the simulations, are negligible, at around 0.290% reduction. Lastly, we
use Monte Carlo data to fit the rates of our rule-based modgditointuition on how
reduction impacts packing structure.

2 Reated Work

Macromolecular Simulations. In the past 20 years, the biosciences have seen
great advances on a diverse range of research topics brondpytcomputational sim-
ulation of biological phenomena. Molecular dynamics (Muslations can determine
individual trajectories for each atom in a solvated prossistem. Despite considerable
success with small proteins and fast eventd (;s), simulations of biological processes
involving large molecules and over long time scales havegrdo be challenging. As
an effort to investigate larger systems, a recent papertteagrsan all-atom simulation
of a chromatophore membrane patch consisting of 20 milltoma. This simulation
was run simultaneously using three supercomputers ardiegddl50 ns MD trajectories
in total [11]. Although this system size is comparable to dhébody-antigen models
that we propose to study, the time scales that are feasitiealliatom MD simulations
are too short to explore the assembly structures that weainvéstigate.

In order to overcome these computational limitations, mémphes that effectively
reduce the number of degrees of freedom in the system haneddely used in mod-
eling large biological systems. In a coarse-grained amragroups of atoms are clus-
tered into coarse-grained charges [35,.34, 29] or point esagk3]. A variant of MD,
coarse-grained molecular dynamics is a multi-scale agpriteat simulates trajectories
of the coarse-grained units [6,/53/ 46} 31]. In general, smgrained MD can reduce
the number of particles about 10-fold, enabling simulatitmat contain about 10 mil-
lion atoms, and generating about 100 ns of MD trajectoriesday [31]. However, for
systems where structural conformation is highly relevamth as our aggregate struc-
tures, coarse-graining is disadvantageous as the reverslem of reconstructing the
all-atom structure from the coarse-grained model is niatr

Design of Assembled Molecular Structures. Methods for designing protein based
assemblies come in two forms: Stochastic (resulting igurkar structures with probability-
derived attributes), and deterministic (producing exesplecified geometric features).
Principles for the design of ordered protein assembliediaoeissed ir [33]. A majority
of the computational design methods have focused on iceedanstruction [25, 28],



but new methods go further and fully design self-assemhiiadecules([30]. These
methods are similar in that they generally start outperfiogmigid body docking fol-
lowed by iterative design/minimization steps to refine thteriface.

Molecular Aggregation Prediction. Many fields from medicine to industrial man-
ufacturing stand to benefit from the use of computationahodt to determine pos-
sible geometric structures of assembled molecules. Mogteomethods developed
use lattice models with force fields and focus on the int@astof proteins with both
denatured [10] and native [62] conformations. A coarsengdimolecular dynamics-
based approach to study polymer-drug aggregation was aoj#]. We note all of
these models have energetics included in their computatidnvould not be feasible
to simulate systems of the sizes we study.

IgE Aggregation Experiments. Studies using nanoparticles have shown that the
size and number of binding sites of the antigen impact dega#ion of rat basophilic
leukemia cells|[26]. Spatiotemporal analysis of IgE aggtiem has been done using
nanoscale imaging and motion tracking techniques. Mettmdsalyze clustering of
micrograph probes were developed lin! [61], including Ripleynd Hopkins statistic
calculations. The locations of static gold nanoparticleelad IgE-FeRI have been
imaged using transmission electron microscapy [57]. @patustering analysis of
IgE-F&RI has been done using methods from [61] as well as hieraicbiastering
techniques to quantify the numbers of sizes of clusters @ [Iracking of quantum
dot labeled IgE-F¢RI has determined temporal information such as diffusioes{3].
While these experimental methods have been able to meastibaitas about recep-
tor dynamics, none of them retain information about the egate binding patterns.
Because of this, distinguishing linked (bound) from simpigximal receptors is chal-
lenging.

Spatial Rule-Based Modeling. Protein complex formation can be difficult to
model due to the high number of distinct molecule speciesiples Rule-based mod-
eling provides a way to more compactly represent all possiigigregate structures.
Languages such as BioNetGenh [9] and Kappa [14] providelvateed modelers a way
to cleanly and efficiently represent biological systemsm8anethods have extended
rule-based modeling to incorporate spatial modeling,uidiclg SRSim [[20]. These
methods include spatial modeling, but still use simple getin representations of
the molecules and have not been applied to reconstrucoafl egpresentations. Rule-
based modeling has also been extended to multi-level sgstemL-Rules [41] which
uses a nested structure to establish a hierarchical model.

Rule-based modeling has been used to model antigen-aptibtedactions. A ki-
netic rule-based version of the trivalent antigens andémntaeceptors (TLBR) system
which accounted for two types of cycles, dimers and hexinveas introduced in_[60].
Note the antigens in a TLBR system have three binding site$ tlze receptors have
two binding sites. This method was based on a previous équith theory model [19].
The rule-based model was also extended to consider sterstramts|[43]. In this pa-
per, steric constraints are introduced through an extelatal structure, not in the rules
representing the binding events.

The novelty of our rule-based model lies in the ability to glate steric constraints
by designing rules that incorporate antigen conformatidetails. The protein struc-
ture is a crucial input in deciding how to generate rules eissed with ODEs repre-



senting protein aggregation.

3 Methods

We present two methods to simulate and analyze the geompetiing of protein
complexes, thereby predicting final assemblies. First, xypgaé the all-atom struc-
tures used in our simulations (Section]3.1). Next, we intoedthe components of
the Monte Carlo simulation, including: polygon-based medmd reductions (Sec-
tion[3:2.1), simulation methods for rotation and transiatf geometric structures and
aggregate formation (Sectibn_32.2), and analysis tedesidor the large geometric
structures (Sectidn 3.2.3). Finally, we present a novel-hased model that implicitly
represents the geometry of the molecules. This includesysis of steric effects of the
Pen a 1 all-atom structure (Sectlon 313.1), an explanafitmecassumptions made dur-
ing the construction of the model and details of the caleutedf aggregate formation
probability (Sectiom 3.312), a description of how rules defined and an explanation
of the rate constants of the model (Secfion 3.3.3), and aertetcompare the results
from the Monte Carlo and rule-based models (Sedfion3.3.4).

3.1 Antigen Structure and Binding Sites

There have been numerous studies of natural allergenatingi degranulation.
One that has been of particular interest is the common shallegen, Pen a 1. The
immune response is triggered by the shrimp tropomyosin cotde a 40 nm double-
stranded coiled coil structure, (Figdre 1), which crosdifgE. The allergen has been
predicted to have five binding regions in each of the straftissocoiled coil [5] and a
total of 16-18 binding sites [27, 51].

Figure 1. The molecular structure of Pen a 1, a common shritegan (tan). The
binding sites (various colors) are located in five regionshancoiled coil structure.

Alongside experimentation on natural allergens, syntteattigens have been gen-
erated to provide insights into antibody aggregation [49,35%]. These synthetic anti-
gens are primed with 2,4-dinitrophenyl (DNP), a linker usedind to engineered
antibodies. We explore the antigen DF3, a molecule withetiieding sites that has
been characterized in [38]. DF3, shown in Figure 2, is a triocfgpeptides represent-



ing the C-terminus of the T4 fibritin foldon domain with a DNRKer attached to the
N-terminus.

We focus our analysis on Pen a 1 and DF3 for two reasons: knavecuiar struc-
ture and high experimental relevance. There are many natigegens that have been
identified but many do not have molecular structures detegthiAlong the same lines,
there are synthetic antigens that induce a response buttdh@aw® well known binding
site positions|[59]. Synthetic DF3 has known binding sited available experimental
data. Pen a 1 aggregation is currently being studied expeatatly and has a known
structure and mapped binding sites.

Figure 2: The molecular structure of DF3 (tan), a synthetitgen. The trimer has
three DNP linkers (various colors) attached to the N-terwiirach subunit.

3.2 MonteCarlo Simulation
3.2.1 Modd Construction

Our method is based on simulating 3-D rigid body models ofréeeptor com-
plex and antigen molecules. We use our own generated maslelelbas contributed
models. An all-atom structure of the receptor complex wasludsom [38]. The IgE
structure, composed of both heavy and light chains, is neadiebund to thex sub-
unit of FRI. The receptor complex is made up of 1,709 amino acidsingtdl3,477
atoms.

The antigen DF3 was generated by starting with the baseiffitickdon domain
(PDB:1RFO) and adding DNP linkers to the N-terminus of eagbusit. DF3 is
comprised of 81 amino acids with 1,365 atoms total. Strattorodels for shrimp
tropomyosin were available in the Protein Data Bank (PDE1Land in the Struc-
tural Database of Allergenic Proteins (SDAP Model #284)e Hen a 1 model used
was composed of 568 amino acids totalling 4,580 atoms.

Since it would be computationally prohibitive to use theb&tm models at the
molecule counts we simulate, we reduce the computatiolgpfmt of the model by
using a polygon representation (Figlife 3). To constructhoadels, we begin with an
all-atom structure. Using the multiscale model extensibb@SF Chimera 1.9 [18],
we generate isosurface models of the molecules at a vafiegolutions, A for DF3
and & for the receptor complex and Pen a 1. The resulting modeh@efoccupied



volume, referred to henceforth as the base model, is camside be the model with
the highest resolution, i.e., the most detailed model.

All Atom Iso-Surface

50% Reduced 75% Reduced 90% Reduced

Figure 3: The model construction process starting with &atam model (FeRl),
generating the isosurface model, and then applying polygduction to the isosurface
model to generate models with lower resolution.

This base model can now be reduced in complexity using stenoialygon re-
duction technique:L_[_iZ] to produce models with tunable arnt®of detail as seen in
Figure[3. Since the amount of detail in the base model patgnliinders performance,
we want to observe the costs versus benefits of decreasingpithed resolution. We use
the polygon reduction feature in Ma;E_[42], a modeling safevpackage, that allows
the generation of models with a reduction specified in thegraage of polygons.

The binding sites are unique to each antigen, and thus hael teddeled accord-
ingly. DF3 with DNP linkers has very flexible binding sites8[3In order to capture
this effect, the model has the linkers compressed to half ldregth and has a binding
site located at the end of the linker. Then, we model a sphidrinding volume with a
radius of half the DNP linker length (7/35 that is centered at the end of the compressed
linker.

The binding sites of Pen a 1 are located on its surface. Thdrigrsite amino acid
sequences for Pen a 1 are documented ih [27]. Vertices fadlifgjinvere located on
the center of the binding site and exterior of the surface.irdibg radius of 3 was
used. The same binding site locations were used regardiéss mesolution since the



locations of the binding sites on the original all-atom stane do not change.

3.2.2 Simulation M ethods

As detailed in our previous publications [40, 39], the siatidn begins with all
molecules randomly placed on a grid in a collision-freessteith no molecules bound.
At each time step, every molecule gets an updated positidroeantation generated
via random sampling. Membrane bound receptors rotate éfwiniz-axis and translate
on a planar x-y cell surface. During the course of the sinmatall ligand molecules
are positioned at an ideal vertical distance from the celnbrane, in which ligand-
receptor binding events are possible at all times. The aesehligand diffusion in
the z-direction eliminates the effect of adsorption andbda#on of ligands from the
system. This assumption maintains the concentration ahtlg constant, considerably
simplifying the simulations. The updated positions anémtétions are generated with
the consideration of biological constraints, e.g., diffasconstants [3] and rotational
correlation times| [50]. Over the course of the simulatiome@eptor binding site will
end up within the binding volume of the antigen. The probgbdf a binding event
occurring is dependent on binding volume overlap and thecésson rates specified.
Dissociation rates are also used in the simulation, i.eryelvond that exists at a given
time step is evaluated for dissociation. Kinetics betwedPRpecific antibodies and
univalent DNP haptens [15] as well as DNP based synthetigen{59] have been
well studied and provide values for association/dissariatates. We use the rates
from DNP-BSA in [59] due to the fact that DF3 is multivaleritdi DNP-BSA, and it
is composed of peptide chains as opposed to a small moleswdbsas the haptens in
[15] and DCT2 in[[59]. These parameters are not known for Pénthus we cannot
determine kinetics from our simulation, only possible paglstructures.

3.2.3 Aggregate Modd and Analysis

To analyze the aggregation of molecules in the simulatiapse a graph model,
allowing us to utilize a repertoire of algorithms for stéitiollection. We define the
state of the system as grapH{ V, E'}, whereV is the set of molecules arfd is the set
of edges. Given two vertice;, v} € V, an undirected edge{v;, v} € F if and
only if v; andw, are bound. Since antigen only binds to receptors and vicayéne
graph is bipartite. Data about the overall aggregationgsscan be extracted from the
graph.

Due to motion and association, the antigen/receptor jpositivill become more
clustered as aggregates form. These clusters can be othsxperimentally, and a
theoretical study of clustering can be an instrument to @mpur model with ex-
periment. To quantify clustering in our models, we use a getoyrbased statistical
analysis of clustering tendency, the Hopkins statistid.[Z4e Hopkins statistic is a
measure of spatial randomness which utilizes nearestbeigdistance of randomly
sampled points and randomly selected probes (known madacétions). In line with
previous work|[61, 16], we only use receptor molecule posgiin our analysis. We
calculate the Hopkins statistic in a similar fashion as ifi [&nd for nearest neighbor
calculations, we use the Euclidean distance between twagdihe values calculated



for the Hopkins statistic range from [0,1]. The closer thekias statistic value is to
0.5, the more randomly spaced the points are, whereas therdhe value is to 1.0, the
more clustered the data is.

To gain further insights into the aggregate structures,ake bur modeled aggre-
gate structures and generate all-atom structures. Witdethi-atom models, we can
take measurements of the aggregate structure and anabizeefe of the aggregate
such as steric hindrance. We can also quantify the modetromtion quality. An
example Pen a 1 all-atom aggregate is shown in Figure 4.

Figure 4: A resulting aggregate structure generated usingnethod. The eight IgE-
FceRI (light/medium blue) are bound to the Pen a 1 antigen (tawpdous binding
sites on the antigen (various colors).

3.3 Rule-Based Modeling

In addition to the 3-D Monte Carlo simulations to determiggr@gate size, we cre-
ate rule-based models of IgE binding to Pen a 1 that incotpg@ometric information
in both the rules for aggregate formation and their assediedte constants. The rule-
based model is implemented with RuleBendel [56] using tldBtGen IanguagE|[9].
This method automates the generation of the coupled diffeeequations associated
with the creation of new molecule aggregates as IgE bindsgtatailable binding sites
of Penal.

3.3.1 Steric Effectsin a Protein Complex

Steric effects of receptors bound to an antigen with mutiphding sites in relation
to binding site exclusion has been analyzedﬂ [23]. Howeteay only investigated
low dimensional (1D and 2D) shapes with specific geometsastdce or array) and
either ordered or uniformly random binding site distribas. We analyze how the
conformation of the antigen affects steric constraintdhefsystem. A description for
dependency on neighbor occupancy is shown in Figure 5.cSterirance induced by
neighbor occupation can be broken down into three categoFiestly, IgE can easily
bind to a region if neighboring sites are free (Figlire 5 (8&condly, on the strand



with negative curvature around a region, occupation ofeganeighboring regions can
reduce accessibility of IgE to this region, effectivelyuethg the binding rate constant
(Figure[® (b)). Finally, on the opposite side with positivevature, IgE can still bind
to a region even if its nearest neighbors are occupied (Eifyc)). The binding rules
(listed in the appendix) are written with explicit neighlngy site dependency.
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Figure 5: Steric hindrance induced by neighbor occupatitime six binding regions
are labeledd, B, C, D, E, F. (a) No neighbors: receptors are free to bind, (b) Negative
curvature reducing binding rate constant, and (c) Pogitiveature with possible effect
on binding

rate.

3.3.2 Modd Construction and Calculations

From this geometric analysis, we know that a negative curedn the coiled coil
may introduce hindrances to the accessible surface arégEdninding and potentially
brings binding sites closer. This makes the accessibilitg ceceptor to a particu-
lar binding site dependent on whether its neighboring sitesbound to IgE or not
(namely their occupation states). However, because ther#6a18 available binding
sites in the antigen, the introduction of geometric effentsy lead to the number of
rules becoming too overwhelming to implement, as a depayden the occupation
state of neighboring binding sites has to be explicitly abltte some of the rules of
binding events. Therefore, we make a few assumptions angligations to generate
the rules and associated ODEs:

e We assume that IgE binds to a single binding site in Pen a.lbireling events
in which IgE binds to two sites on the same Pen a 1 are forbidden
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e To compare with the Monte Carlo simulations, which were iedriout for a
single Pen a 1 molecule, we do not allow crosslinking throlggh binding to
two or more different Pen a 1 molecules.

e We significantly reduce the number of rules (and ODESs) byragsyithat each
IgE binds to a region on Pen a 1 known to have one or more birsiti@g. This is
a reasonable assumption as binding sites in the same ragi@toge € 5 nm):
In the event of IgE binding to one binding site in a particukegion, the other
binding site(s) in the same region may be automaticallyksdc

e Because the binding region on the tail of Pen a 1 is longer thamthers (see
Figure[1), for the purpose of our rule-based simulationsspli this longer re-
gion into two independent ones, resulting in each strantetoiled-coil struc-
ture having six binding regions.

e We can further decrease the number of rules by consideratgetich strand in
Pen a 1 binds IgE independently of the other, i.e., the odtupatate of any
binding site on one strand of the coiled coil is independdrthe occupation
state of any binding site on the other strand. Since eachdshras six regions, the
maximum number of configurations of IgE binding for eachrsdres 2¢ = 64.
The aggregate sizes of IgE-Pen a 1 with 12 binding regionevisgiven by the
combined independent probability of the aggregate foiwnaiti each strand of
the coiled coil.

The probability of finding aggregates of size zero to 12 iswalted by simulating
each strand of the coiled coil separately, with differetesulepending on the positive

or negative curvature of the strand. The probabiftyn) to form an aggregate of size
n is given by:

P(n<6) = Y Pi(m)Pr(n—m)

m=0

)

6

Z Pr(m)Prr(n —m),

m=n—6

P(n > 6)

where P;(;1)(n) is the independent probability of forming an aggregate »é siin
strandI (I1).

3.3.3 Modd Rate Constants

In order to analyze the influence of both rules and rate catstan our rule-based
modeling results, we create a set of rules for Pen a 1.Qéweralrule set in Tablekl4
and[3 takes into account neighboring binding site intevastiand employs hierarchi-
cal binding rate constants. This means that when IgE bindsyositei on Pen a 1,
the associated rate constant depends on the occupaticnradatest (first-order) and
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next-nearest (second-order) neighbors. We define fouatuieies of binding, thus the

binding rate constants are four independent parametesuiibinding rate constants
are equal t@.01 s~! for all aggregate formation rules. Neighbors are defineddsy g
ometry: as the Pen a 1 molecule has a slight S-shaped cwyainding sites on the

concave sides of the molecule (with negative curvature)chrser than sites on the
convex side of the molecule (positive curvature).

Resolution changes can be simulated in two ways: by fixindthding rates and
changing the rules for each resolution or by keeping rulesifand changing the bind-
ing rates associated with each rule. The former requiresyacaeful analysis of the
geometry of the receptor/antigen system at each resolulioa latter only needs a set
of rules that roughly represents the site interactionsrgifie curvatures of the protein
complex, and rates can be changed as binding to partictiée isi allowed or disal-
lowed. Therefore, we focus on an implementation of the Hdtyegenerating a set of
rules which capture the geometric constraints of the mdédscand define rate constants
that are dependent on the occupation of neighboring sites.

The advantage of using independent rate constants as garamadated to neigh-
bor occupation is that we can simulate high and low resatugtadies by turning rules
on or off. The rate constant of a given rule determines whether orhetule ison
(non-zero rate constant) off (rate constant set to zero). Rules that favor the forma-
tion of large aggregates are turnedfor low resolution. As our Monte Carlo results
indicate, the loss of detail leads to a reduced volume of Peraad receptors, thus
exposing possible binding sites. At high resolution, their@ of receptors is larger
and the extra detail can reduce binding site availabiligyifumber of sites are already
occupied. This indicates that the binding rate constantsules associated with the
formation of large aggregates should be turpedfor more binding events), and for
formation of small aggregates some of these rate constaotstdsbeoff, thus allowing
fewer binding events.

The four binding rate constants are assigned to the ruledlews$: k;, is assigned
to rules that specify that none of the neighboring bindirgjaoes are occupieds ¢,
is assigned to rules that specify that one nearest-neigiegion is occupiedk s is
assigned to rules that specify that one next-nearest neighlbccupied, and, is
assigned to rules that specify that two nearest neighb@&®ecupied. As the tail
region in Pen a 1 was split into two independent regions foneadel, (regionsr and
Finthe rule set, as seen in Figlile 5) we treat these regionsgecil case and assign
the ratek, to the E and F binding rules that specify that nearest-neigkbor F is
occupied.

We demonstrate how the rules were selected using the ridesiaged with binding
region A as an example. Region B is a nearest neighbor tonelico we specify
region B as a region that affects the binding rate of region e rules for A binding
for both strands. On strand I, the next nearest neighbogiome?, region C, is located
in a region of positive curvature (see Figlie 5c for an iliason of positive curvature).
Therefore, in the A binding rules for strand I, we do not sfye@gion C as a neighbor
that affects the binding rate of region A. On strand Il, reg®is located in a region
of negative curvature (see Figurke 5b for an illustration efiative curvature) along
with region A. Therefore, in the A binding rules for strangvle specify region C as a
neighbor that affects the binding rate of region A.
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We use theGeneralrule set (Appendix) to illustrate how the influence of neighb
occupancy hierarchy on binding site probability favordigatar aggregate sizes. If all
rules areon with identical binding rates = 1.0 molecule's™!, the distribution of
aggregate size is skewed to larger aggregates. Howeveg agmrulesoff by setting
their associated binding rates to zero in hierarchic ordegér to smaller aggregates),
we see the progression shown in Figlire 6, until we obtain glesipeak at aggregate
size 4 if all nearest and next-nearest neighbors toisieed to be empty for a binding
event to occur. Note that binding affinities are not knowntfer binding sites of Pen a
1, so we use values known for DF3. Since our system is finiteza the association
rate unit of molecule's™! is used (further discussed in Sectionl4.1).
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Figure 6: For the sam@eneralsets of rules, we selectively turn hierarchic ratasind
off. On binding rates have their value fixed at 1.0 molect! andoff binding rate
constants are set to zero. As we make the rules more redtristeller aggregates are
formed. The purple peak at 12 is labeled “None” for having e&tnictions on binding
due to neighborskyi, k2, k3, andkys areon). This is why the largest possible
aggregates are formed almost 100% of the time. The dataeldiBlegion” (blue)
allows for binding to a site even if nearest and next-neareighbor sites are bound
(ks1, kg2, andk 3 areon; k4 is off). First order interactions (nearest-neighbors, green)
are not allowed for this data sét/{; andkss areon; ko, andky, areoff). The peak in
red (second order) does not allow binding to sites if botlir thearest and next-nearest
neighbors are occupied f; ison; ks, k¢3, andk, areoff).

The analysis shown in Figuké 6 indicates that it is possibline tune a particular
aggregate distribution by choosing the rule set wiselyétlam geometric input) and
by setting binding rate constants appropriately. Findipgaper rule set is one of the
main difficulties of this method, but PDB structures and fesk from Monte Carlo
3-D rigid body simulations can give crucial input on thispst&inding rate constants
can be varied as well. Our Monte Carlo simulations assumenatant binding rate
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of £ = 1.0 molecule 's~! for all sites. However, to mimic loss of accessible volume
to a particular binding site on Pen a 1, the rates can be vaigdprove fits to data.
These rates are considered free parameters of the sinm.detibthey represent physical
binding rates qualitatively.

3.34 Comparison Analysis

In order to quantify the difference between the Monte Canld mule-based model-
ing aggregate sizes for each resolution, the residual desge@res (RSS) normalized
by the number of possible aggregate sizes (13) was caldutateach resolution. The
equation used to calculate the normalized RSS is:

ros - 2im1(Piso = Phpu)’
N

whereN is the total number of possible aggregate sizes in a histogeach histogram
has the same number of possible aggregate siZég).is the occurrence probability of
theith aggregate size of the Monte Carlo data, &g, ,, is the occurrence probability
of theith aggregate size of the rule-based modeling data.

Since the data points used in this calculation are proligsilithe maximum possi-
ble normalized RSS is one, and the minimum possible noretRSS (corresponding
to two identical histograms) is zero.

4 Results
4.1 Experimental Setup

Monte Carlo Simulation. For our Monte Carlo simulations, we simulate a dis-
crete patch of membrane 200 nm x 200 nm (40,008)nim all simulations we apply
reflecting boundary conditions, ensuring that the numbenai&cules is kept constant
as they are not permitted to exit the area representing thebmaame patch when a
boundary is reached.

We simulate 24 receptors for all experiments, resultingdamsity of~600 receptorg/m?.
In two different experiments, we simulate twelve DF3 andBagr a 1 antigen molecules
at four distinct resolutions, reducing the models of bottigem and receptor by 0%,
50%, 75% and 90%. Due to the presence of multiple DF3 molsecitles possible to
observe crosslinking in the DF3 simulations. However, nigan-mediated crosslink-
ing can be observed in the Pen a 1 simulations as only one nieletPen a 1 is simu-
lated in each 3-D Monte Carlo experiment. We use the diffusimefficient 0.02m?/s
of IgE-FcRI found in [3] for all molecules. We use a time step of A®and run ex-
periments for 500,000 time steps, long enough for the sitionia to reach a steady
state. Association and dissociation rates of 1.0 molecdwie' and 0.01 s!, were
used for both antigens. Since our system is finite in sizeas®ociation rate unit
molecule 's~! was calculated from the original units of Mis~! using calculations
from [43]. The dissociation rate from [59] is used unchangdurty (30) runs of each
experiment were performed.
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As IgE aggregates get larger, they have been shown to slow {lfjwSince this
reduction in speed has not been fully quantified, we use adtieal basis for modeling
the slow down in our system [17,/32]. While many slow down medm=uld be em-
ployed, we decided to use a model where we use receptor coansirogate for size
measurement to determine relative slow down. The slow dewmcorporated into the
simulation by diffusing aggregates inversely proportidoatheir size, i.e., the diffu-
sion coefficient of an aggregate linking three receptorgdoithe original coefficient.
We note that our slow down scheme does not account for pHysicaers that exist in
the cell membrane that may induce slowing/immobilizatilke(those in[[44]). Also,
the geometric analysis in this paper emphasizes packingtste rather than aggrega-
tion kinetics, so the choice in slow down method should nqtaot aggregate structure
packing at steady state. Rotations of large aggregatesnated by the diffusion rate
of the fastest moving receptor. The receptor furthest fioercenter of the aggregate is
limited by its diffusion constant, thus limiting the amouwiftrotation an aggregate can
make. For Hopkins statistic calculations, we set the nurobareasurements taken to
five and repeat the calculation 1000 times. These valuesharedither averaged or
sorted into bins to produce histograms used to quantifyteting.

Monte Carlo simulation code was developed using the Paidstibn Planning
Library (PMPL). Simulations were run on a supercomputerseduat UNM utilizing
single cores of Intel Xeon E5645 processors with 4 GB of RAMpecessor.

Rule-Based Modeling. For the rule-based modeling, we specified the rules in
the BioNetGen language and conducted ODE simulations W&iolgetGen (Version
2.2.6) via the RuleBender software package (Version 2203856]. We simulated
100 Pen a 1 antigen and 1000 receptors in each experimene B&simulated strands
individually, we ended up with a population of 100 strand llecoles, 100 strand Il
molecules, and 1000 receptors. These were simulated ugimgatep of 0.01 s and
run for 1000 time steps.

We obtained optimum rate constants using single-pararaattdouble-parameter
scanning. We conducted single-parameter scans for the @tectien, varyingk s,
from 0.0 to 1.0 molecufe's™!, and for the 90% reduction, varyirig, from 0.0 to
0.05 molecule!s—!. We used a step size of 0.001 for these scans. We also codducte
double-parameter scans for the 0%, 50%, and 75% reduciiomghich we scanned
all possible values of ;3 from 0.0 to 1.0 molecufe's™! while scanning all possible
values ofk ¢ such that: s, is less than or equal tys, using a step size of 0.01.

4.2 Monte Carlo Results

421 Volumeand Timing

We begin with an analysis of the impact of polygon reductionbe volume of the
model. Tablé1l shows the number of polygons and volume fdr eaadel. The poly-
gon reduction algorithm works by specifying a percentagghefpolygons to reduce,
leading to the close correspondence between the reduatiroemage and the number
of polygons. We find that volumes decrease with increasedctamh. Such decrease
is expected, and can be quite dramatic (nearly 50% for 90%cestiPen a 1). We
note that volume reduction does not necessarily mean lafistieresults; “soft dock-
ing” approaches [21] allow a certain degree of inter-profegnetration to approximate

15



flexibility given rigid structures.

Table 1: Model reduction statistics including polygon ctsuand volumes of the molec-
ular models generated at a variety of resolutions.

Molecule Model Model Percent Reduction
Name Property 0% 50% 75% 90%
Polygons (#) 4876 2438 1216 490
Receptor Volume (nn¥) 234.98 | 227.90 | 208.73 | 162.31
Volume (%) 100.00 | 96.99 | 88.83 | 69.07
Polygons (#) 1208 604 302 120
DF3 Volume (nn¥) 15.83 | 14.90 | 13.16 | 9.74
Volume (%) 100.00 | 94.13 | 83.13 | 61.53
Polygons (#) 2328 1164 582 234
Penal Volume (nn) 51.60 | 49.95 | 44.86 | 28.80
Volume (%) 100.00 | 96.80 | 86.94 | 55.81

As seen in Figurgl7, the reduction in polygons has a cleactedfie runtime. We
see a linear increase in runtime versus model polygon cdinis.is due in part to the
nature of the rigid body modeling; collision detection is ajan factor in computation
time and is highly dependent on model complexity. We attelthe calculation of
binding site interactions, whose costs depend on valendynamliecule size, to the
difference in slope between DF3 and Pen a 1 runtimes.
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Figure 7: Runtimes of the different resolutions of the sanoeleh Thez-axis is the
sum of the number of polygons used to describe all of the nsddelany given exper-
iment. They-axis is the runtime in hours.
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4.2.2 Impact of Resolution on Quality of Results

Simulations are run until a steady state is reached. To erkarsystem is stable,
we count the number of bonds between molecules, i.e., thebeuof edges inG
(Figurel8). Figuré8a shows the number of edges iior DF3 in blue. We see that for
DF3, all of the reductions generate similar numbers of cotioes. The more reduced
models produce slightly more connections but all of the agerines are very close.
The mean of each reduction is contained in the overlap ofttredard deviation of all
reductions.

In Figure 8b we see that Pen a 1 model resolution has a higlpaicinon the number
of connections that are made. The 90% reduced model madeesagavnearly two
more connections than the 0% reduced model for a singleamtighis is one of the
side effects of reducing model volume. With the reductibey¢ is more open volume
around the binding site, reducing steric hindrance of rexsgrying to bind to sites in
the same or adjacent regions.

To further analyze the implications of model reduction, i@ pistograms of ag-
gregate size versus percentage of occurrence (Figure Qe®m Figuré 3a that there
is minimal impact on aggregate size distributions for the8@kperiment. The distri-
bution for each model reduction seem to be the same.

This is not the case for Pen a 1, seen in Figure 9b. The difitibhas the two
least reduced models peaking near aggregates of size 7agheetwo most reduced
models peak near aggregates of size 8. This is attributdebteadiume reduction of the
model which in effect relaxes the steric constraints. Wigrealler volume, more free
space is available for a molecule to pack into a tight spatiginva given aggregate.

4.2.3 Clustering Analysis of DF3

To quantitatively analyze the clustering of the system, weasure the Hopkins
statistic of the receptors over the course of the simulatidile focus on the analysis
of clustering for DF3 due to the availability of experimdntata [38]. Unfortunately, a
similar analysis for Pen a 1 does not result in significara datthere is only one Pena 1
allergen in each simulation run. To evaluate clustering, Hopkins statistic values
were calculated over the course of the simulation and thédtsegre an average of the
simulations for each experiment as seen in Figule 10. Thalsew are then plotted
and compared to the values obtained experimentally in [g8%hown in Figure 10.

For a baseline, we performed a Hopkins statistic calcuidiio a simulation with
only receptors and no antigen and produced the plot in Fifil0ge We find that for
the no antigensimulation, the value does not change and is hovering atndroub,
indicating that the receptors are essentially randomliridiged. We compare ouro
antigensimulation with the 0 nM experiment in [38] (Figure 10a, ressbed line). Our
value (mean 0.5) differs from what is seen experimentallggmO0.74); however, this
difference can be attributed to the fact that cell membranesent topological inhomo-
geneities that result in natural receptor organization &6 2, 37]. These features are
not incorporated in our simulations for simplicity. Theyed we observe no clustering
instead of the slightly clustered distribution observepdeskmentally.

Based on the conclusion of |[38] where the authors imply thatligand-induced
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Figure 8: Influence of model resolution on the number of catioes made during a
given simulation. For these plots, theaxis is simulation time step and theaxis is
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model resolution. In (b), Pen a 1 binding is affected by theeafdifferent resolutions;
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aggregate state can influence cell signaling, we assumfrthbtgand-receptor aggre-
gate size can be associated with cellular degranulations, Tl analyze clustering in
the presence of antigen, we compare the Hopkins statigtidtssfrom the experiment
in [38] that resulted in optimal histamine secretion (10 nMD&-3) to the Hopkins
statistic obtained from our Monte Carlo simulations. We fimakt the Hopkins statistic
value at equilibrium from experiment has a mean value of @i@berror bars between
0.82 and 0.89 (Figure_IDb, red dashed line), while our sitinla give a mean of
0.88+0.05. This overlap indicates similar clustering observebidth our Monte Carlo
simulation and experimentally derived results. In additiwe observe that model reso-
lution does not impact the amount of clustering that ocoorF3, as all of the values
converge to the same result, as seen in Figure 10.

To verify whether the averaged values are representatitieeainderlying cluster-
ing, we plot the histograms of the Hopkins statistic valuglswated at the beginning
and end of each experiment. These histograms are plott@gsaganormal distribution
representing uniformly random distributed data to pro\adentuition of the amount
of clustering. For each experiment, we performed 30 runsh eantributing 1000
calculations, resulting in a total of 30000 measurementfijgéogram. The beginning
histograms are taken 1000 steps into the simulation to etsamolecules move away
from their initial grid state, which brings bias into the @alation. We see in Figufe L1
that in theno antigenexperiments, there is no change between the histograms at th
beginning of the experiments (Figure_11a) to the histograhtke end of the experi-
ments (Figur@ T1b), and both histograms are very close todhmal distribution (red
line) indicating no clustering.

However, for DF3, we see (Figutell12) that there is a signifishift in the his-
togram from start to end. The beginning of the experimentsaif as a random
distribution (Figuré 12a). By the end of the experiment, @€ a shift in the histogram
away from the red normal distribution line (Figure 12b),igading clustering in the
simulations. We note this shift is consistent for all resiolu models of DF3.

424 Analysisof Model Quality

We also investigate the impact of model reduction on aliredggregate structures.
In order to evaluate this, after aggregates are construgtadow-resolution polygon
models, we construct the corresponding all-atom structure

However, since the polygon models are much simpler thanlbztan structures,
there may be unintended interactions. For example, wherbonoded atoms are too
close, repulsion may occur due to van der Waals interactionsrder to evaluate the
possible effects of transitioning between polygon anétiin models, we counted the
number ofC,, atoms and DNP linker carbon rings withi 7for IgE-FceRI and DF3.
For Pen a 1, distances were calculated betwiegatoms for the aggregated molecules.
In order to indicate these proximal non-binding residuesy&fer to them apotential
collisions Also, antigen binding sites are not included in the enutimra

We can see from the results in Table 2 that model resolutienamaimpact on
the number opotential collisionghat exist in aggregate structuré®tential collision
residues increase as resolution decreases. We see tha B#Zignificantly impacted
by model resolution up to 75%. However, at 90%, there is amrood magnitude
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Table 2: Percentage (%) of residues that exhilpibgential collision Antigen residues
involved in binding are not included.

Antigen Model Percent Reduction
Simulated 0% 50% 75% 90%
DF3 0.0074% 0.0122% 0.0215% 0.1016%
Penal 0.0158% 0.0350% 0.0816% 0.2238%

increase impotential collisions We see that Pen a 1 model reduction generally has a
higher percentage of residuesaatential collisioncompared to DF3. This is attributed
to the flexibility of the DF3 binding site. The DNP linker hasaage, relatively open
volume that can be bound. The binding sites of Pen a 1 are emial/olume since
they are on the molecular surface and are partially occupyetie molecular volume.
Therefore, the antibodies have to be closer to the allergdace in Pen a 1.

We note that overall, the number of residuepatential collisionis minimal. Even
at 90% reduced for the Pen a 1, aggregates generated havweOatfduof residues in
potential collision These interactions could be first addressed through joesélu-
ated energetics and perturbations.

4.3 Rule-Based Modeling Results

So far, we have presented the results of our Monte Carlo atiouk for different
resolutions, which explicitly include geometric effeatsdaggregate formation. Rule-
based models of aggregate formation, on the other hand,toesttode all geometric
information in the rules of antibody-antigen binding andittbinding/unbinding rate
constants.

Our approach is to vary the binding rates to reproduce thecggte size distribu-
tion at a particular resolution for th@eneralrule set. One way to achieve this is by
doing a multi-parameter optimization of the four bindingeraonstants. This is espe-
cially useful when fitting the model to experimental data.Figure[13, we compare
the aggregate size distribution for the rule-based mod#l e values found from the
Monte Carlo simulation.

Most of the results shown in Figukel13 were obtained by amadythe rates via
single and two-parameter scans. For the 0% and 50% reswytiee fixedk s, to unity
in all runs and performed scans/of; from 0.0 to 1.0 molecule's~* andk ¢, from 0.0
molecule 's™! to k3, both at 0.01 intervals. For the 90% resolution, we fixged =
ks> = kg3 = 1.0 molecule 's™! and variedk 4 from 0.0 to 0.05 molecule's™! by
0.001 increments. In all cases, the value chosen for thahlarparameter was the one
that resulted in the smallest RSS from the Monte Carlo dataveiter, it is important to
highlight that even though the RSS from the Monte Carlo datereasonable measure
of comparison between the two methods, our Monte Carlo dat abtained from
30 independent runs, and additional runs could change taealbdistribution of the
histograms, thus changing the RSS significantly. For trasag, we use this number
mostly as a guide and avoid fitting rates to exactly reprodieévonte Carlo data.
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Figure 13: Comparison of Monte Carlo (Blue) and rule-basedeh(Red) results for
the Generalrule set with variable rates for different resolutions. é&aind RSS values
are shown in Tablgl3.

The rates listed in Tablg 3 for the 75% resolution were fitteenf the trends of
kri = ks = 1.0 molecule's™! and increasing: s2, k4 for lower resolutions, and
they show a sulfficiently close result to the Monte Carlo d&igure[13). The trend
of increasing rate values @f, (binding with one nearest neighbor occupied) &ng
(binding with two nearest neighbors occupied) reinforaeitttuition that the volume
loss due to resolution reduction impacts the binding of miedging regions.

At the 75% resolution, a two-parameter scankes andk s yields a slightly bet-
ter RSS fork o = kg3 = 0.12 molecule 's™! at fixedks; = 1.0 molecule's™! and
k¢a = 0, which deviates from the parameter trends. This partia@sult also seems
misleading because at higher resolutions one would expatkt}; < ks, due to re-
strictions on neighbor interactions. However, it is expddhat multi-parameter scans
may lead to numerous minima of RSS, thus the best-fit solutiay not be unique.

5 Conclusion

In our effort to study geometric packing of large protein gbexes, we have in-
vestigated the impact of model resolution on aggregatedton and clustering. The
interest in working with lower resolution models is to impeocomputational perfor-
mance while preserving packing structures. In the casetaferreceptor binding, it
is believed that larger clusters are associated with ag#moallergic reaction. The fo-
cus on Pen a 1 in this work is due to its particular shape arighfisrtance as a strong
allergen.

We have shown that model resolution has negligible impadd©8, and minimal
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Table 3: Binding and unbinding rate constants and RSS dififegs for the rule-based
model to capture the aggregate size distributions of differesolutions.

Rate Model Percent Reduction

Value 0% 50% 75% 90%
k¢1 (molecule!s~1) | 1.00 1.00 1.00 1.00
ko (molecule!s~1) | 0.07 0.12 0.50 1.00
k3 (molecule!s~1) | 1.00 1.00 1.00 1.00
kf4 (molecule!s~1) | 0.00 0.00 0.00 0.006
k. (s™Y) 0.01 0.01 0.01 0.01
RSS 0.001367 | 0.002283 | 0.002731 | 0.001135

impact on Pen a 1. This may be due to the geometric nature girtiteins: While
DF3 is small and globular, Pen a 1 is long and rod-like, ancefloee more affected by
volume reduction. While volume reduction is quite dramasicesolution is lowered,
potential collisions among bound receptors and antigemsjaite small across all res-
olutions (highest value of 0.2% for 90% reduced Pen a 1), védsonable variation
among resolutions of about one order of magnitude. Thesdtsesill guide future
work by informing us how to tailor the amount of reduction te ttype of molecu-
lar shape. The basic shapes of DF3 and Pen a 1 are very simgleyeaare able to
determine the well defined characteristics of their geoimedductions. Information
reported here alongside additional future surface/vottimanalysis will be necessary
to ensure our model construction/reduction appropriatajyture molecular topology
when dealing with more complex molecular structures.

We performed a clustering analysis of the DF3 and recepgiesyat different res-
olutions to compare with experimental data from [38]. Owufes were able to repro-
duce the experimental Hopkins statistic metric of clustemiation at a non-saturating
concentration of DF3 and receptors. More importantly, oalsis shows that aloss in
resolution does not affect the results. This implies thatoethod can efficiently com-
pare an experimental observable to simulated data for daeyg system of molecules.
This is currently infeasible for state-of-the-art molessullynamics and coarse-grained
simulations. Granted, our method is not yet able to calewdatergetics of the inter-
actions between molecules. All physical information abihet system is included in
the binding/unbinding rates, diffusion coefficient (Moarlo), and aggregation rules
(rule-based method). As our focus is on geometric packingcstres, this level of
theory has been shown to be sufficient by the agreement witkremental results.

Our study of aggregate formation with a rule-based modelesf & 1 is a novel
contribution of this paper. The ODE-generating rules asetan the inherent geom-
etry of Pen a 1. a slight S-shaped coiled coil, double-stdmatotein. Binding sites
in regions of negative curvature are affected differerthntbinding sites in regions of
positive curvature during binding events. Our rule set walt to reflect these steric
constraints. The assumption of hierarchical binding r#tes are varied depending
upon the accessibility of sites on the Pen a 1 surface allene unvestigate differ-
ences in aggregate formation across resolutions. We sethéhaule-based model acts
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as a complementary method to our original Monte Carlo 3-idltigdy model. Where
one is fast (a single run lasts about 10 seconds) but doeges#mnt explicit consider-
ation of geometry (rule-based model), the other is still éamsidering the number of
molecules and detail of the system (a single run takes 2-B@sHor Pen a 1), but is
advantageous as geometry is explicitly modeled and geanpetcking can be easily
tracked throughout the simulation.

For our future work, we aim to include joint flexibility in thegid body models
for the Monte Carlo simulation. This will allow for the gemgion of distinct packing
structures where overall volume becomes another obseradbhterest. Accessible
volume may change even for the same number of receptors liotinel antigen. More
importantly, the incorporation of flexibility will allow ut expand our analysis to the
results of other experimental methods, including eleatntaroscopy (EM). Fitting EM
density data of molecules like IgE would require jointed migdor fitting due to the
amount of flexibility in the molecule. Determining the sttwre of large heterogeneous
aggregates is a difficult problem in EM, and we see the patkiati using our method
for fitting.

We also are interested in running more simulations for mami@te statistical
analysis. A simulation of multiple Pen a 1 antigens crog&stig through receptor bind-
ing is also of interest. There is much potential in develgpar version of the geomet-
ric rule-based model, as it can be applied to a variety ofgimathapes to study how
conformation affects aggregate formation.
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Appendices

Table 4: Rule Set for Strand TY) of Pen a 1 in pseudo BioNetGen language format.
Letters in parentheses represent free binding sites. ilggarentheses represent occu-
pied binding sites with the subscript indicating which $#t@ccupied. Omitted letters
represent binding sites not included in the rule (can bedrecupied). Dissociations
are addressed with complementary rules (not shown), witlsia = 0.01 s

Binding  Reaction Binding

Site Rule Rate

A Tr(AB) + IgE — T (IgE4,B) kfl
Tr(AlgEp) + IgE — T (IgE A IgER) Kfo

B T7(A,B,C,D) + IgE— T (A,IgEp,C,D) K1
T](|gEA,B,C) +IgE— T[(|gEA,|gEB,C) kfz
Ty(AB,IgE¢c) + IgE — T (AIgE 5,IgE() Kfo
T7(A,B,C,IgEp) + IgE — T7(A,IgE,C,IgED) Kss
T1(19E4,B,IgEC) + IgE — Ty (I9E 4 I19E B I9EC) Kfa

C T;(B,C,D,E,F) + IgE— T7(B,IgE-,D,E,F) kf1
T;(IgEg,C,D) + IgE— T (IgEB,IgE-,D) Kro
TI(B,C,|gED) + |gE~) TI(B,|gEc,|gED) kfg
T;(B,C,D,IgEg) + IgE — T7(B,IgE-,D,IgEE) Kfs
T7(B,C,D,E,IgEr) + IgE — T (B,IgEc,D,E,IgEr) kss
T1(IgEB,C,IgEp) + IgE — T (IgEp,IgEc,IgED) Krq

D T;(B,C,D,E,F) + IgE— T7(B,C,IgEp ,E,F) Ke1
Tr(IgE¢,D,E,F) + IgE— T;(IgE¢,IQEp ,E,F) Kra
T;(C,D,IgEg) + IgE — T7(C,IgEp,IgEE) Kso
Ty(C,D,E,lgEr) + IgE — T (C,IgEp,E,IgEFr) Kfo
Tr(IgEg,C,D,E,F) + IgE— T} (IgEg,C,IgEp ,E,F) Ke3
T1(I9Ec.D,I9EE) + IgE — T'1(I9Ec,I9E D, I9EE) Kya
T;(I9gEc,D,E,IgEr) + IgE — T7(I9E¢,I9Ep ,E,IgER) Ksa

E T7(C,D,E,F) + IgE— T (C,D,IgEg,F) K1
T;(IgEp ,E,F) + IgE— T (I9Ep,IgEE,F) ke
T;(IgE¢,D,E,F) + IgE— T} (IgE¢,D,IgEE ,F) K
T1(E.IgEF) + IgE — T1(I9EE,IgEF) Kra

F Ty(C,D,E,F) + IgE— T (C,D,E,IgEr) Ks1
Tr(IgEp ,E,F) + IgE— T (I9Ep ,E,IQEr) kf2
Tr(IgE¢,D,E,F) + IgE— T;(IgE¢,D,E,IgEr) Kps
Tr(I9EE,F) + I9E— T (I9Eg,I9EF) Kfa
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Table 5: Rule Set for Strand IT{;) of Pen a 1 in pseudo BioNetGen language format.
Letters in parentheses represent free binding sites. llggarentheses represent occu-
pied binding sites with the subscript indicating which giteccupies. Omitted letters
represent binding sites not included in the rule (can bedrecupied). Dissociations
are addressed with complementary rules (not shown), wigsfta = 0.01 s ™.

Binding  Reaction Binding
Site Rule Rate
A T11(AB,C) + IgE — T77(IgE.A,B,C) Kr1

Trr(AI9ER) +19E — T (I9E4,I9ER) Kya
Tr1(AB,IgEC) +I9E — T (IgEA,B,IgEC) Kys
B T11(A\B,C,D) + IgE— T;1(AIgE 5,C,D) Kr1
Tr1(19EA,B,C) + IgE— T7;(I9EA,IgER,C) Kr2
Tr1(AB,IgEc) + IgE — T11(AI9E ,IgEC) Kya
Tr1(AB,C,IgEp) + IgE — T77(AIgEB,C,IgED) kf3
Tr1(I9EAa,B,IgEc) + IgE — T (I9E A, IgER,IgEC) Krg
C Tr7(A,B,C,D) +IgE— T77(A,B,IgE-,D) kf1
Tr1(I9EB,C,D) + IgE— T (I9EB,IgEc,D) Kra
Tr1(B,C,IgEp) + IgE — T (B,IgEC,IgED) Kro
T[[(|gEA,B,C,D)+ IgE— T11(|gEA,B,|gEc,D) kfg
Tr1(I9EB.C,IgEp) + I9E — T (I9EB.I9EC,I9ED) Kra
D T;;(B,C,D,E,F) + IgE— T7;(B,C,IgEp ,E,F) kf1
T[[(|gEc,D,E,F) + IgE— T[[(|gEc,|gED,E,F) kfg
Tr1(C,D,IgEg) + IgE — T7;(C,IgEp,IgEE) Kra
T77(C,D,E,lgEr) + IgE — T7(C,IgEp ,E,IgEr) kfg
T]](|gEB,C,D,E,F) + IgE— T]](|gEB,C,|gED,E,F) kfg
Tr1(I9Ec,D,IgEg) + IgE — T (I9Ec,I9E D, I9EE) Kra
Tr1(IgEc,D,E,IgEr) + IgE — Ty (I9EC,I9ED,E IgEF) Kra
E Tr7(D,E,F) +1gE— T7;(D,IgEE,F) kfl
Tr7(I9gEp E,F) + IgE— T7;(IgEp,IgEE,F) kf2
Tr1(EIgEF) + IgE — T17(I9ER,IQEF) Krg
F Tr7(D,E,F) +IgE— T7;(D,E,IgEr) k‘fl
Tr1(I9Ep.E,F) + IgE— T11(I9Ep,E,IQEF) Kra
Tr1(I9Eg F) + IgE— Tr(I9E g I9EF) Kra
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