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Abstract— Motion planning in stochastic dynamic uncertain
environments is critical in several applications such as human
interacting robots, autonomous vehicles and assistive robots. In
order to address these complex applications, several methods
have been developed. The most successful methods often predict
future obstacle locations in order identify collision-free paths.
Since prediction can be computationally expensive, offline
computations are commonly used, and simplifications such as
the inability to consider the dynamics of interacting obstacles or
possible stochastic dynamics are often applied. Online methods
can be preferable to simulate potential obstacle interactions,
but recent methods have been restricted to Gaussian interaction
processes and uncertainty.

In this paper we present an online motion planning method,
Runtime Stochastic Ensemble Simulation (Runtime SES) plan-
ning, an inexpensive method for predicting obstacle motion
with generic stochastic dynamics while maintaining a high
planning success rate despite the potential presence of obstacle
position error. Runtime SES planning evaluates the likelihood
of collision for any state-time coordinate around the robot by
performing Monte Carlo simulations online. This prediction is
used to construct a customized Rapidly Exploring Random Tree
(RRT) in order to quickly identify paths that avoid obstacles
while moving toward a goal. We demonstrate Runtime SES
planning in problems that benefit from online predictions,
environments with strongly-interacting obstacles with stochastic
dynamics and positional error. Through experiments that ex-
plore the impact of various parametrizations, robot dynamics
and obstacle interaction models, we show that real-time capable
planning with a high success rate is achievable in several
complex environments.

I. INTRODUCTION

Motion planning in environments with a large number
of stochastically moving obstacles is critical in applications
such as flight coordination [1], human interacting robots
[2], assistive robots [3] and autonomous vehicles [4]. Real-
world robots often operate among moving obstacles, e.g.,
pedestrians, animals and vehicles, while utilizing imperfect
sensors. These obstacles tend to interact with each other
in a stochastic manner. As a result, a motion planner must
consider both sensor uncertainty and generic stochastic inter-
obstacle dynamics in order to safely navigate through an
environment. Due to the cost of simulating obstacle interac-
tions, online methods that restrict the computational expense
of prediction are often preferred.

Recently published methods that applied stochastic dy-
namic environments include artificial potential fields biased
by stochastic reachable sets (APF-SR) [5] and stochastic
ensemble-based (SES) planning [6]. These methods predict
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Fig. 1: The Elastic Ricocheting environment with 50 moving
obstacles with stochastic dynamics and inter-obstacle interactions
where obstacles ricochet off each other elastically. The robot (red
disk) starts at S and must navigate to G while avoiding stochastically
moving obstacles (yellow disks, arrows indicate obstacle velocity).
The green circle shows the robot obstacle detection radius and
predicted positions of obstacles are indicated by gray circles. Snap-
shots at world times ¢ = Os through ¢ = 3s and the corresponding
predictions made at ¢ = Os are shown in (a-d) respectively.

stochastic obstacle motion offline using stochastic reacha-
bility [7] and Monte Carlo (MC) simulation, respectively.
Although these methods were shown to have high success
rates, they are restricted by the use of offline computation
that restricts the stochastic dynamics of obstacles to either
non-interacting or weakly-interacting. This is because of the
computational intractability of predicting strongly-interacting
obstacle trajectories.

Online planners that consider strongly-interacting obsta-
cles are common in crowd simulation, human-robot inter-
action and multi-agent motion planning. Velocity Obstacles
(VOs) [8] were developed to avoid collision with other agents
based on instantaneous velocities. The Social Force Model
(SFM) models crowd behavior using artificial forces [9] and
was used to navigate a robot [10], [11]. Despite considering
inter-obstacle interactions online, one drawback of these



methods is that they do not have a robust way of handling
sensor uncertainty and generic stochastic obstacle interaction
dynamics, resulting in lower planning success rates for these
types of problems. A recent online method considers both
generic stochastic obstacle interaction dynamics and sensor
uncertainty [12]. However, the dynamics and sensor uncer-
tainty in that method were limited to Gaussian processes.

In this paper, we propose Runtime Stochastic Ensemble
Simulation (Runtime SES) planning, which extends our pre-
vious work, SES planning, in order to address more complex
stochastic obstacle dynamics and uncertainty through online
simulation. Runtime SES planning is a general method that
considers generic strongly interacting stochastic obstacle
dynamics, robot sensor uncertainty and robot dynamics con-
straints. The method works by alternating between obstacle
motion prediction for nearby obstacles and planning at
runtime. The obstacle stochastic motion prediction was done
by flexible MC simulations to capture sensor uncertainty
as well as generic strongly-interacting stochastically moving
obstacles. Using the results of this prediction, the likeli-
hood of collision can be estimated for any State-Time (ST)
coordinates around the robot. The planning of the method
then utilizes these likelihood estimates with a custom RRT
which samples and locates nearest neighbors in ST space. To
increase safety, the robot executes the path extracted from the
tree, and Runtime SES planning checks the future path for
likelihood of collision through the incorporation of the new
prediction results.

The main contributions of this paper include: 1) The
proposed Runtime SES planning is an inexpensive method to
predict obstacle motion and estimate likelihood of collision.
It can capture a wide range of environmental uncertainty,
such as robot sensor error and strongly-interacting generic
stochastic obstacle dynamics. 2) A customized RRT im-
plementation that treats state and time on equal footings.
We empirically show that it generates straighter paths and
increases success rates compared to traditional RRTs. 3)
Evaluation of our method against current state of the art
planning methods capable of generating real-time solutions
in environments with sensor uncertainty and up to 50
stochastically moving, strongly-interacting obstacles (shown
in Figure 1). These methods include: SES [6], APF-SR
[5], VO [8] and Gaussian APF [13]. The enclosed video
submission contains examples of simulations in two different
environments.

II. RELATED WORK

Monte Carlo (MC) simulation is a powerful technique
to predict stochastic obstacle motion and handling sensor
uncertainty. SES-based planning captures stochastic obstacle
motion and sensor uncertainty through the use of an offline
MC simulation [6]. The simulation portion of SES occurs
within continuous space and can capture a wide range of
stochastic obstacle dynamics. The algorithm queries the
offline simulation result at runtime and plans with a tree-
based planner in State Time (ST) space to quickly find
collision free paths. Rather than running MC simulations in

continuous space, [15] simulates stochastic pedestrian motion
and pedestrian position uncertainty on a grid. The result of
the simulation is fed to an Anytime RRT [16] to generate a
collision free path. Instead of simulating obstacles and plan-
ning with a tree-based method, [17] generates trajectories for
both robot and obstacle independently with MC simulation. It
then picks a path for the robot that minimize a cost function
combining the probability of collision and distance to goal.
The MC simulations employed by these methods capture
both sensor uncertainty and stochastic obstacle motion but
are limited to obstacles with either non-interacting or weakly-
interacting dynamics since the obstacle prediction is done
offline.

Agent interactions are crucial for both crowd simulation
and multi-agent motion planning. Artificial Potential Field
(APF) based methods such as SFM are widely used to sim-
ulate crowd motion or navigating a robot around pedestrians
[9], [10], [11]. Velocity Obstacles (VO)s [18] are also widely
used for crowd simulation and navigation between moving
obstacles [8]. Similar to SFM, [19] proposed a human-
friendly reactive planner to navigate multiple robots with
Gaussian position uncertainty. Despite the fact that these
methods consider inter-obstacle interaction, it is difficult
to incorporate robot sensor uncertainty (such as obstacle
position uncertainty) or obstacle stochastic dynamics into
them. In addition, these methods are typically designed for
environments with one specific obstacle dynamics such as
pedestrians or other agents implementing the same algorithm.
In contrast, our method is designed to handle generic obstacle
dynamics.

Trautman [12] proposed using a Gaussian processes to
approximate inter-obstacle interaction in order to predict
obstacles’ future position. The prediction result is then in-
tegrated with a custom Receding Horizon Controller (RHC)
to direct the robot. While this method incorporated inter-
obstacle interaction, sensor uncertainty and stochastic ob-
stacle dynamics similar to our proposed method, the error
model and the stochastic dynamics in this case are restricted
to Gaussian processes whereas Runtime SES planning is
able to handle generic processes by means of flexible MC
simulations.

III. METHODS

Similar to our previous method SES [6], Runtime SES
planning also has two components: the obstacle prediction
component and the motion planning component. The primary
difference between SES and Runtime SES is that the obstacle
prediction is done online instead of offline.

Runtime SES planning works by alternating between plan-
ning and prediction. The prediction of stochastic obstacle
motion was achieved using MC simulations of nearby obsta-
cles in order to find the likelihood of collision at any given
ST coordinate near the robot. A variant of RRT utilizes this
information in order to plan trajectories with high success
rates and short finish time. By alternating online between
planning and prediction, Runtime SES planning provides
the following benefits: 1) Virtually any complex stochastic



changes to the planning environment such as sensor error and
obstacle stochastic dynamics can be approximated with little
cost. This includes environments that involve strong inter-
obstacle interactions. 2) Resulting trajectories have higher
success rates by considering inter-obstacle interaction.

A. Runtime Stochastic Ensemble Simulation (Runtime SES)

Runtime SES predicts the future positions of strongly-
interacting stochastically moving obstacles through a MC
simulation as shown in Algorithm 1.

Algorithm 1 Runtime SES

Input: Number of nearby obstacles N, Number of MC
trials M, Simulation time horizon 7}, Simulation time
resolution §, Planning time resolution A

QOutput: Snapshots of  future nearby obstacle
i position for each MC trial j: x, =
{2ij(0),2i(A), 2i;24), ..., i 5(Th) }, j =1~ M

1 k=1

2: for each MC trial j =1 ~ M do

for each nearby obstacle i =1 ~ N do
4 %; = x;,;(0) = getPosFromErrorModel(i)
5 0; = v;,;(0) = getVelFromErrorModel (i)
6: end for
7

8

9

(95}

: end for
: for each MC trial j =1~ M do
fort=0,t<=T),;t=t+06 do

10 for each nearby obstacle t =1 ~ N do
11: f = computeForces(i,T1.N,U1~N,t)
12: U; = modznyel(f, 17727£'1~N7771~N7t)
13: T; =T; + A7

14: /I Record snapshots

15: if ¢ = kA then

16: I77J(kA) =T

17: k++

18: end if

19: end for

20:  end for

21: end for

Runtime SES starts by randomly sampling the posi-
tion and velocity of nearby obstacles (within distance d
from the robot) using a sensor error model for each
MC trial (lines 4-5). In getPosFromErrorModel and
getVelFromErrorModel, the robot reads the position and
velocity (XsensorReading) Of an obstacle ¢ from a simulated
sensor which returns a position (Xqmpie) that deviates from
the truth using a generic sensor error model. In this paper,
we applied no noise, uniform noise (1), constant variance
Gaussian (2) noise and distance-dependent variance Gaussian
(3) noise position error models:

XsensorReading+U('e7e) (1)
N<XsensorReadinga U) (2)
N(XsensorReadingv 0’(0/1"2)) (3)

Xsample =

where a is a constant and 7 is the distance between the robot
and the obstacle. The distance-dependent variance Gaussian
error model is similar to the depth error of structured light
depth sensors such as Microsoft Kinect [20].

After sampling the initial position and velocity, Runtime
SES conducts a MC simulation consisting of M trials (lines
8-21). For each MC trial, the total force exerted on obstacle i
is computed (line 11). The computeForces and modi fyV el
methods have complete phase space and time information
for all nearby obstacles in the simulation and can therefore
capture the stochastic dynamics of virtually any moving
obstacle, including inter-obstacle interactions and boundary
conditions (which is typically not described by forces). We
demonstrate two complex stochastic obstacle dynamics with
strong inter-obstacle interactions in this paper, the details
of which can be found in Section IV. The MC simulation
integrates the obstacle trajectory (line 13) with simulation
time resolution ¢ and records the position every A seconds
(lines 15-18).

The output of Runtime SES consists of a series of
snapshots (one series for each MC trial) of future obstacle
positions at various time intervals (A apart). This approxi-
mates the future evolution of nearby stochastically moving
obstacles to time horizon 7T},. The simulation results of
Runtime SES and the actual evolution of obstacles are shown
in Figure 1 (predictions made at ¢ = Os and M=50).

B. Runtime SES Motion Planning

Since Runtime SES approximates the evolution of nearby
obstacles (the snapshots store various possibilities of obstacle
positions at specific times), we can estimate the likelihood of
collision in state-time (ST) space coordinates near the robot
in the following way:

collProb(zg,t) = % Z CD(zg,x;;(t) (1)

Jj=11i=1

where ¢ = round(t/A) * A, zg is the robot state and the
function C'D returns 1 if z and x; ;(¢) are in collision
and 0 otherwise. Runtime SES planning utilizes a custom
Rapidly-exploring Random Tree (RRT) [21] with time step
A in Algorithm 2. Each node in the tree corresponds to a
particular snapshot kA, k € N and can therefore be checked
for potential collision using the coll Prob function.

In contrast to SES, Runtime SES planning predicts the
trajectory of nearby obstacles every Tp,eqict seconds (Al-
gorithm 2, lines 2-5) instead of offline. This allows the
predictions to include strongly-interacting stochastic obstacle
dynamics.

Like SES, the algorithm first attempts to grow a tree
directly toward the goal in growGoalTree (line 9, details
can be found in [6] section IV.B). If this tree growth results
in potential collisions (coll Prob > P,.. for any node in the
goal tree), a custom RRT is grown from the robot’s current
position via growFullTree (line 11).

Our custom RRT modifies the random sampling and the
nearest neighbor selection of standard RRT. Traditional RRT



Algorithm 2 Runtime SES Motion Planning

Input: Snapshots of future nearby obstacle
i position for each MC trial j: z, =
{2ij(0),2i(A),2i3(24), ., wij(Th) }, j =1~ M,
Robot Current State x.,., Planning Time step A, World
simulation time step Ayor1d

1: for t =0; t < maxTime ; t =t + Ayorig do
2 if t — tp > Tpredict then

3 ty=t

4 RuntimeSES() // Algorithm 1

5:  end if

6: if reGrowlree == true then

7 Tree : T= pruneTree(currentNode)

8

9

tiastPlan =1
(growFull,T) = growGoalTree(zr, xp, t,t,)

10: if growFull == true then

11: T=growFullTree(zr,t,T,zp, tp)
12: end if

13: P = getPathFromTree(T)

14:  end if

15: TR = TR+ Aworld : getAction(P, t— tlastPlan)
16:  reGrowT'ree = checkFutureNodes(P,xr,t,tp)
17: end for

implementations randomly sample in state space and connect
to the nearest neighbor according to a cost metric that
considers only the distance in state space. Our custom RRT
randomly samples in state space as well as time (ST space):

Trand = TR + U(_VmamThy VmamTh)

2
trana =1+ U(07 Th) ( )

where ¢ is the current simulation time and V/,,,,. is the max-
imum speed of the robot. In addition, the nearest neighbor
metric is defined as:

C(.’l?,t/) = H.’l? - xrandH + ‘(t/ - trand)|vmam (3)

for a node that is positioned at x and has time ¢'. It is
important to note that although many RRT variants plan in
ST space [22], [15], [23], to our best knowledge no RRT vari-
ant samples and find nearest neighbors as described above.
This custom RRT has the following benefits when combined
with Runtime SES planning: 1) The randomly sampled point
has a specific ST coordinate and can therefore be checked
for potential collisions using the coll Prob function. In this
case, sampled points with excessively high likelihood of
collision will be discarded and therefore the resulting tree
grows toward the obstacle free regions in ST space. 2) We
determined experimentally that our custom RRT performs
better in both success rates and finish time than similar
methods. Further details can be found in IV-C.

After the local tree is grown (the leaf node of the goal
tree reaches Ty or the growFullTree calls collProb for
maxCD times), a path that satisfies the 7-safety criterion
[23] (at least 7 seconds long) and minimizes a weight

function that considers both safety and distance to the goal.
This path extraction procedure (line 13) is the same as that
of SES [6]. Like SES, if no path satisfies 7-safety criterion,
the longest path in the tree is used instead.

T=4.00s [

(b)

Fig. 2: Runtime SES prediction of future obstacle positions for
world time ¢ = 4s, starting at (a) ¢ = 1s and (b) ¢ = 3s. The robot
(red disk), obstacles (yellow disks) and predicted obstacle positions
(gray circles) are shown.

Following the local tree growth, the robot then executes
the path (line 15) and every time the robot reaches a node,
it checks future nodes (within 7 seconds of current time)
along the path for potential collision (line 16). This step
is crucial for Runtime SES planning in order to find paths
with high success rates. As time progresses and the robot
executes the path, new predictions of obstacle motion for a
given time in the future become increasingly accurate due
to a shorter prediction horizon. To illustrate this, Figure 2
shows two predictions for the same given world time ¢ = 4s.
Figure 2a shows the predicted environment starting at ¢t = 1s
and Figure 2b at ¢t = 3s. The latter has a shorter prediction
horizon (prediction time is closer to the given ¢ = 4s) and
a reduced spread in obstacle position (improved precision).
Obstacles to the right of the robot that were not predicted
in Figure 2a were predicted in 2b, demonstrating improved
accuracy. The method checkFutureN odes integrates infor-
mation from these new predictions in order to increase path
safety.

If checkFutureNodes finds any node with likelihood of
collision higher than P,.. or the robot traversed near the end
of a path, instead of discarding the entire tree as SES does,
the algorithm instead prunes nodes in the tree that are not
descendants of the current node (line 7) and grows from this
pruned tree (lines 8-13). We define traversing near the end
of a path as satisfying one of the two following conditions:
1) a path has less than 7 seconds left to execute, or 2) the
initial extracted path length is shorter than 7 seconds and the
robot has executed more than half of the path.

IV. EXPERIMENTS

To demonstrate Runtime SES planning, we tested two
different robots in two separate environments consisting of
moving obstacles with strongly interacting dynamics. The
world simulation time step A, g = 0.01s. The obstacles
and the robot are confined within a circle of radius 50m. An



obstacle ricochets off the world boundary by instantaneously
inverting the direction of the perpendicular velocity compo-
nent (velocity component that points toward the center of the
circle). All methods were implemented in C++. The Velocity
Obstacle (VO) algorithm was adapted from the RVO2 C++
code base [24] implementation of the Optimal Reciprocal
Collision Avoidance (ORCA) algorithm. This algorithm [25]
was modified to allow for single-agent collision avoidance,
removing the reciprocal aspect of ORCA while maintaining
many of ORCA’s linear programming optimizations. APF-
SR was implemented by mapping the offline computed SR
set to the instantaneous position and velocity of obstacles and
using this to compute a repulsive potential. All experiments
were run on a single core of an Intel 17-3720QM at 2.6GHz
with 16GB of RAM. All experiments were repeated 100
times. Uncertainty in success rates due the limited number
of experiments is captured using the 99% confidence level
derived from the central limit theorem [26].

A. Experiment 1: Elastic Ricocheting Environment

Experiment 1 is designed to compare Runtime SES plan-
ning with SES [6], APF-SR [5], Gaussian APF method
[13] (abbreviated as Gaussian) with A'(0,1) and VO [8],
[25] in an environment with highly stochastic and complex
obstacle dynamics. The environment is 2D and has 20 to
50 interacting disk-shaped (radius 2.5m) moving obstacles.
Robots were tested with a no position noise and a constant
variance Gaussian noise (¢ = 0.25m) model.

Obstacle Dynamics: The obstacle dynamics include in-
trinsic stochastic motion and deterministic interaction dy-
namics. An obstacle stochastically samples speed (with-
out changing its heading) every Tyqmpie = 0.1s. The
set of possible speeds is {1,2,5,7} m/s with probability
{0.4,0.1,0.2,0.3}, respectively. When two obstacles collide,
they bounce off each other elastically (changes occur to
both heading and speed). Simulating the system with elastic
collisions is difficult because these systems are known to be
chaotic. The Lyapunov exponent (which describes how the
distance between two nearby trajectories changes with time)
of such a system has been shown to be positive [14], and
therefore nearby trajectories diverge exponentially with time.
Our obstacle dynamics are even more difficult as obstacles
stochastically sample speed (rather than drifting between
collisions).

Setup: The robot is a holonomic disk robot with radius of
1m and a maximum speed of 3m/s (slower than the average
speed of obstacles at 3.7m/s). The robot starts at (—25m, Om)
and its goal is located at (25m, Om). The initial environment
and evolution with 50 obstacles is shown in Figure 1. The
APF-SR and Gaussian algorithms have a goal bias of 0.01.
Due to the stochasticity of obstacle motion, we empirically
determined that by padding the obstacle radii by 10%, this
particular perceived radius for VO yields the highest success
rates. The parameters employed by Runtime SES planning
are: Ty = 7s (time horizon), Tpreqict = 0.5s (prediction
interval), maxCD = 5000 (maximum number of coll Prob
calls), A = 0.2s (planning time resolution), M = 50

(number of MC trials), d = 24.5m (robot obstacle detection
range) and Pa.. = 0.05 (probability of acceptance).
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Fig. 3: Success rates and finish time comparison between Runtime
SES planning (RSES), APF-SR, VO, SES and Gaussian AFP

methods in the Elastic Ricocheting Environment. No position error
(a-b) and Gaussian position error with o = 0.25m (c-d) are shown.

Results: Figure 3a shows that the success rates of Runtime
SES planning exceed those of comparison methods in both
the no position noise and constant variance Gaussian model.
In the 50 obstacle environment, chaotic obstacle interaction
happens often (about 11.1%1.2 inter-obstacle collisions per
second). As a result, methods that perform well for non-
interacting stochastically moving obstacles such as APF-SR
and SES have success rates approaching that of VO instead
of clearly outperforming VO as reported in [6]. The finish
time of Runtime SES is higher than APF-SR and VO due
to the algorithm being sampling-based. Comparing SES and
Runtime SES, however, we find that Runtime SES has a
shorter finish time due to consideration of inter-obstacle
interaction and the employment of our custom RRT that
samples in ST space.

No Error
#0bs RSES SES APF-SR Gaussian VO
20 1.9+.1 443 .009+.003 | .004+.003 | .007+.003
30 4.5+5.5 3+2 .0124.005 | .005£.002 | .010+.010
40 6.71+3.3 A4+.4 .0164.006 | .005£.002 | .010+£.005
50 13.3£9.1 94.85 | .026£.018 | .007£.002 | .0104.004
Constant variance Gaussian Error
20 27424 445 .009+.006 | .008+.006 | .010+.004
30 52478 .6+.4 .0124+.007 | .005£.003 | .010+.010
40 8.5+134 T+.6 .0174.006 | .004+£.003 | .012+.006
50 13.3£10.0 9+.9 .029+.020 | .008+.004 | .015+.006

TABLE I: Average computation time per planning step in the Elastic
Ricocheting environment with no position error (top) and constant
variance Gaussian error (bottom). The units are in milliseconds.
RSES stands for Runtime SES.

Table I shows that Runtime SES is about 10 times slower
than SES and much slower than other methods. However,



Runtime SES finds a path with much higher success rates
and remains real-time capable even in the environment with
50 moving obstacles (13.3 ms per planning step). In addition,
the presence of position noise does not significantly impact
computation time per planning step for all methods.

B. Experiment 2: Electric Charge Environment

Experiment 2 is designed to demonstrate a strong long-
range inter-obstacle interaction that causes the obstacles to
change speed and heading at all times. In addition, we
demonstrate the ability for Runtime SES to handle nonholo-
nomic constraints with a unicycle robot and various types of
obstacle position error models. The combination of position
error and deterministic obstacle dynamics with uncertain
parameters (electric charge in this case) mimics real-world
scenarios as described in [27] and [15].

Obstacle Dynamics: For a given obstacle 7, the accelera-
tion is Coulomb-like:

N
C.C;
ai = Z l‘”ﬁ7 “4)
i=1,i%j J5t

where C; is the charge of obstacle ¢ and x;; is the vector
from the center of obstacle j to obstacle 7. The charge of each
obstacle is randomly sampled from U(1.5,6) charge units.
The environment and the random charge for each obstacle
are shown in Figure 4. Despite the fact that the dynamics of
(4) are deterministic, the robot can only observe the charge
of a given obstacle with a very noisy error model (a 50%
uniform error model is used).

(b)

Fig. 4: Electric Charge environment and example paths (red curves)
taken by (a) the holonomic robot and (b) the unicycle robot. The
robot is the red disk and the color of the obstacle represents the
amount of charge.

Setup: We tested both holonomic (with the same dynamics
as in Experiment 1) and unicycle robots. The unicycle robot
has a maximum turn rate of 7/5 rad/s and the same 3m/s
maximum speed. In addition to charge uncertainty, we also
tested three obstacle position error models: Uniform with
range e = (0.5m (20% of obstacle radius), constant variance
Gaussian with ¢ = 0.5m and distance-dependent variance
Gaussian with o = 0.00572. The parameters used in Runtime
SES are the same as Experiment 1 except for Tp,eqict = 28.
APF-SR and SES were not included in this experiment due
to the nature of the stochastic dynamics (which are caused by

uncertainty in parameters of obstacle interaction dynamics),
which are very difficult to compute offline.
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Fig. 5: Holonomic robot success rates and finish time comparison
between Gaussian APF (a-b), VO (c-d) and Runtime SES planning
(RSES)(e-f) methods in the Electric Charge environment. Three
error position models were tested and compared to the no error (NE)
model: Uniform (UNF), Constant Variance Gaussian (CVG) and
Distance-dependent Variance Gaussian (DVG). The missing finish
time data for Gaussian is due to success rates being lower than 1%.

Results: Figure 5a shows that reactive methods such as
Gaussian have low success rates and high finish times due
to high obstacle speed and density. VO computes velocity
obstacles based on the instantaneous velocity and inaccurate
positions to avoid collision. It does not take into account that
obstacles accelerate as a result of inter-obstacle interaction.
This results in low success rates comparable to Experiment
1 despite the system dynamics being deterministic (shown
in Figure 5c). In contrast, Figure Se shows Runtime SES
planning is able to predict obstacle motion despite large
uncertainties in both charge and position, resulting in very
high success rates in the holonomic case, even in the difficult
50 obstacles environment. In addition, Figure 5a, ¢ and e
show that various position error models severely impact the
success rates of Gaussian and VO while the success rates
of Runtime SES remain similar. This indicates Runtime SES
is more robust against obstacle position uncertainties. Figure
6 shows that the more constrained unicycle robot dynamics
yield lower success rates for Runtime SES for both no error
and uniform position error models. This is likely because the



Region of Inevitable Collision (RIC) [28] can be very large
due to the unbound obstacle speed and the unicycle robot is
less agile in moving away from RIC. The maximum speed
of heavily charged obstacles can often reach 9-12m/s, 3 to
4 times faster than the robot. Figure 5b, d and f indicate the
finish time of VO is similar to Runtime SES. This indicates
the constant acceleration and position sensor uncertainty give
rise to suboptimal velocity obstacle calculations.

100 70
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90 G- Gaussian APF UNF|

RSES NE
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Fig. 6: Unicycle robot success rates and finish time comparisons
between Gaussian APF and Runtime SES planning methods in the
Electric Charge environment. The Uniform (UNF) error position
models were tested and compared to the no error (NE). The missing

finish time data for Gaussian is due to success rates being lower
than 1%.

C. Discussion

Experiment 1 clearly shows that Runtime SES planning
has very high success rates and is real-time capable despite
the presence of a large number of moving obstacles with
chaotic motion, obstacle position error and stochastic interac-
tion dynamics. In all cases, Runtime SES has higher success
rates than comparison methods. Despite the runtime obstacle
predictions operating slower than comparison methods, these
predictions offer significant gains in success rates and shorter
finish times while remaining real-time capable. Experiment
2 demonstrates that Runtime SES can successfully plan for
dynamically constrained robots in the presence of strong long
range inter-obstacle interactions with large obstacle position
uncertainty. This is a problem that very recently published
methods such as APF-SR and SES could not address. Exper-
iments 1 and 2 have drastically different obstacle stochastic
dynamics, position error models and robot dynamics, but
Runtime SES is planning in both environments with only
the modification of the 7Tp,¢q4;ct parameter.

Figure 7a shows Runtime SES with a typical example of
our custom RRT that samples in ST space while Figure
7b shows Runtime SES with a traditional RRT. Table II
indicates our custom RRT generates, in general, straighter
paths without using expensive additional re-wiring and parent
search procedures like RRT* [29]. This allows the algorithm
to avoid obstacles more efficiently. As a result, it is more
likely to successfully reach the goal.

Table III shows the performance comparison between the
prunelree technique used in Algorithm 2 and discarding
tree employed in SES. By pruning the tree instead of
discarding, we observe the robot tends to maintain a better
path stability, i.e., the robot tends to follow a similar path

Fig. 7: (a) Custom RRT and (b) traditional RRT examples. The
green curve is the selected path and the red disk is the robot. In
general, (a) generates a straighter path compared to (b).

Tree Type Success Rates | Finish Time (s) | Comp. Time (ms)
Custom RRT 84+9% 27.3+6.1 9.1+6.4
Traditional RRT 75+11% 34.0+11.6 10.0£8.8

TABLE 1II: Performance comparison between custom RRT and
traditional RRT as used in Runtime SES. The environment is
identical with Experiment 1 and has 40 moving obstacles.

after the reGrowTree flag is raised and a new round of
tree growth started. This allows the robot to efficiently avoid
obstacles and increase success rates.

Technique Success Rates | Finish Time (s) | Comp. Time (ms)
Prune Tree 8449 27.3£6.1 9.1£6.4
Discard Tree T1£12 27.4+6.6 7.9+4.2

TABLE III: The impact of pruning and discarding trees. The
environment is Experiment 1 and has 40 moving obstacles.

Runtime SES predicts obstacle stochastic motion online
every Tjcqict seconds. Empirical analysis (Table IV) shows
that larger T'p,cq4;ct Values are detrimental to success rates but
frequent predictions do not incur much computational time
overhead. This is supported by the fact that Runtime SES
has a finite obstacle detection radius d, and with a larger
prediction interval of T'p,..q4;ct, there is a greater potential
that unpredicted obstacles may enter this radius. Running
the prediction over shorter time intervals allows for the
integration of new obstacle information and more accurate
obstacle position estimates.

TPredict (q)

Success Rates

Finish Time (s)

Comp. Time (ms)

0.1
0.5
1
2

90+8

84+9
74+11
62412

25.8+5.7
27.31+6.1
30.0+8.4
30.6+7.9

11.4£3.8

9.1+£6.4
8.9+11.7
14.1£29.8

TABLE IV: The impact of T’predict- The environment is identical
with Experiment 1 and has 40 moving obstacles with no noise.

Table V indicates that, unlike 7'p,cq4;ct, the success rates

are within one standard deviation for a wide range of MC
trials despite the presence of constant variance Gaussian
obstacle position noise with ¢ = 0.25m. This is likely
because the check FutureN ode subroutine compensated for
the poor approximation quality.



# of MC Trials | Success Rates | Comp. Time (ms)
25 70+12 5.7+4.2
50 7611 11.5+£9.7
100 82410 27.7+6.8
200 74411 32.14£32.7
400 78+11 55.9+57.8

TABLE V: The impact of the number of MC trials. The environment
is identical with Experiment 1 and has 40 moving obstacles and
constant variance Gaussian position error model.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed Runtime SES planning, a
novel motion planning algorithm for environments with
sensor uncertainty and obstacles with strongly-interacting
stochastic dynamics. We demonstrated that our algorithm
is highly successful in these types of environments by
alternating between obstacle prediction via MC simulations
and planning with a RRT that treats state and time in equal
footings. Our experiments also showed that Runtime SES
planning generates trajectories with higher success rates than
comparison methods in all cases and real-time capability.

In the future, we will explore Runtime SES planning
applied to robots with high degree of freedom and obstacles
with complex geometry. Due to the use of fast MC simula-
tions and a tree-based planning method, we expect planning
for high degree of freedom robots to be straightforward
with reduced geometry models to capture complex obstacles.
Also, comparisons to other planning methods that consider
obstacle interaction such as [11] and [12], and pedestrian
navigation are planned. Lastly, parameter sensitivity and
behavior analysis of our custom RRT could reveal insights
regarding its improved performance over traditional RRT.
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