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Abstract— For many tasks, including table tennis, catching,
and sword fighting, a critical step is intercepting the incoming
object with a robot arm or held tool. Solutions to robot arm
interception via learning, specifically reinforcement learning
(RL), have become prevalent, as they provide robust solutions
to the robot arm interception problem, even for high degree of
freedom robotic systems. Despite numerous solutions, there has
been little exploration into the factors of learning that impact
solution quality. Thus, there is little insight into what problem
features lead to better learning success. In this paper, we explore
the parameters that impact solution quality. We find that link
position observations outperform joint angle observations in
terms of learning speed, performance, ability to utilize more
than one frame of observation, and generalization to situations
not trained for. These results are immediately applicable to RL
for robot arm interception tasks.

I. INTRODUCTION

Interception of an object is a key problem in robotics, and
many important tasks rely upon successful interception. For
example, interception may be involved in catching [1]–[7],
batting [8]–[20], parrying [21]–[25], or otherwise controlling
an object through robotic motion [26], [27]. Interception
is difficult to perform, as it combines inverse kinematics
and prediction of dynamic projectiles, which in turn must
rely on potentially inaccurate sensor data. Deep RL [28]
is one approach used to train algorithms to handle such
difficult systems, and feature selection has a critical effect
on learning. This work evaluates the impact of using dif-
ferent representations of robot configuration as observation
feature choices, and the influence of these features on the
performance of the resulting interception algorithm.

Interception of projectiles, and other physical objects, by
robotic means has been considered before in several contexts.
For moving objects, inverse kinematics alone is not sufficient,
as the target interception point changes over time. A model
of the object’s motion is required to calculate the future
interception point, but creating accurate models is difficult
for real world objects. As an alternative approach, machine
learning can find a direct mapping from observations of
obstacles to robot motions, a policy, incorporating real world
dynamics into the solution [13], [15]–[21], [24], [27]. As we
show in this work, input feature choice can greatly influence
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Fig. 1: The simulation setup used in this work’s interception
learning. A fixed base 7-DOF KUKA robot arm, a) Robot,
is affixed with a stick, b) Stick. Projectiles, c) Projectile,
are thrown at the robot one at a time. A deep RL network
controls the robot joints by observing the robot and projectile
and setting joint accelerations. The effects of varying the
type of observations are examined in this work. The policy
receives reward if the stick hits the projectile, and penalty if
the projectile hits the robot or ground, or if the stick hits the
robot arm.

learned performance in terms of success rate of interception.
However, a study on these input feature choices for RL-based
interception learning, surprisingly, does not to the best of our
knowledge exist in the literature.

Through an analysis of the effect of selecting between
joint angles (‘Joints’) or link positions (‘Links’) as features
for an RL-based interception task, we contribute quanti-
tative measures on the effect of feature choice on policy
performance. Figure 1 shows the interception simulation
setup, in which a robot with a stick attached to an end
effector must hit a projectile with the stick without the
projectile hitting the robot or the ground, or the robot hitting
itself with the stick. To test the robustness of the resulting
systems to situations not encountered in training, the policies
are subjected to variations of horizontal projectile speeds,
projectile position observation noise, and perturbed object
trajectories. We find that not only can feature choice improve
training rates, it can also produce policies more resilient to
untrained-for observation noise and projectile dynamics. We
also release simulation and learning code, as well as the
trained policies for use with that code on our website. A
video with demonstrations is attached.

II. RELATED WORK

All interception approaches we found in the literature rely
on a pipeline which takes observation data, performs some
processing, and produces motor commands for the robot. We



will distinguish between three broad interception pipeline
categories. First, there are pure expert systems which do not
perform any learning. Second, systems may use supervised
learning to learn the motions of the object to be intercepted,
learn how to position the robot to intercept, and/or learn
to predict the often complicated behavior that occurs in
response to the impact of interception. Finally, interception
may be handled by RL, in which a function transforming
observations to actions is learned by optimizing for reward.

There are many interception problems that have been
addressed by expert systems. An early system for table tennis
used a complex model of ball trajectory and calculated motor
controls and higher level decisions from stereo observations
[8], while a later work used a racket rebound model together
with an aerodynamics model to calculate how to strike balls
to hit chosen target locations [14]. Faster, simpler ball models
have been compensated for with high speed vision and
manipulator speeds, such as one that uses joints with high
inertia to move the arm into general position while faster
joints continuously track predictions of ball interception
points [11]. Expert systems have also been used for catching,
creating direct mappings between ball trajectory observations
and robot trajectory generation [1], catching with minimal
impact [6] or minimal robot energy expenditure [3], and
catching without prehensile grasp [2]. Interesting expert sys-
tems for robot sword fighting skills have also been developed,
which detect a human’s attack and generate parries by inverse
kinematics [22], [23]. Despite successes, expert systems have
difficultly adjusting themselves to unexpected deviations due
to reliance on accurate models of the motion of the robot and
the object of interception. Learning algorithms, by contrast,
are well suited to addressing these issues.

Supervised learning has been used to extrapolate the
trajectories of objects to be intercepted, generate interception
actions, and predict the behavior of objects after interception.
In table tennis, one work implemented a mapping between
ball observations and the ball hitting plane, encoding training
data with a KD-tree [9], while in a later work a locally
weighted regression was used to learn ball behavior, and iter-
ative learning control used to achieve desired stroke motions
[12]. Another table tennis work considered learning how
likely a robot is able to successfully land an incoming ball at
various parts of the table [10]. Learning has also been applied
to robot catching, considering the problems of catching non-
spherical thrown objects [5], catching multiple balls with a
flexible link robot [4], and early anticipation of ball trajectory
before it leaves the thrower’s hand [7]. In another instance of
interception learning, a system of multiple neural networks
handled the task of a virtual character performing sword
blocks, learning from motion capture data [25]. Although
supervised learning can be a straightforward and successful,
it does require a lot of data be collected in order to train,
which may be difficult to acquire. By contrast, RL can teach
itself, collecting training data in the process of performing
its task.

RL, the type of learning considered in this paper, optimizes
a policy incrementally based on reward and punishment

feedback. Deep RL has used self-play to learn policies for
dynamically complex interception tasks with multiple hu-
manoid agents, including soccer goal kicking and defending
[27]. In table tennis, RL has been used to learn when enough
observations have been made and the time to act [13], how
to weigh motion primitives for generalizing human strokes
[15], and adjust robot trajectories to better return the ball
[17]. Hierarchical RL systems for learning how to play table
tennis have been developed [19], as well as RL algorithms for
learning table tennis without a model of ball trajectory [20].
In virtual sword fighting RL, simulated defenders with sticks
have been trained to defend against computer generated stick
attacks [21] and recorded human stick swings [24].

The problem setup most similar to ours is in [24], which
uses RL to control an arm intercepting free-flying objects.
There, a virtual character’s arm with four actively controlled
degrees of freedom moved by discrete joint velocities was
used to intercept recorded human stick swing motions, and
focused on the development of the interception method. In
this work we consider a robot arm with seven degrees of
freedom moved by discrete joint accelerations to intercept
randomly generated projectiles moving under the effect of
gravity, and focus on examining the effects of observation
feature type on learning and on resilience to situations not
encountered in training.

III. PRELIMINARIES

In this section we present the interception learning prob-
lem, detail the network architecture, give details of the
simulation used for training and evaluation, and explain
episode initialization.

A. Learning Problem

Our deep RL problem is formalized as a Partially Ob-
servable Markov Decision Process (POMDP), given by the
tuple (S,O,A, T,R, γ). S is the simulation state space. This
includes the global Cartesian coordinates of the projectile
with origin at the robot base, the orientation of the projectile,
the linear and angular velocities of the projectile, and the
joint angle positions and velocities of the robot arm. O is the
observation space, which varies according to experimental
setup, to be described in further detail in Subsection IV-A.
In short, we consider robot observations as joint angles, link
positions, or both, and provide one or two time steps of
observation. A is the action space, one discrete acceleration
value (1, 0 or -1 radians per second squared) per joint. In
preliminary tests, using discrete velocity actions in place
of discrete acceleration actions lead to poor exploration of
the state space (specifically the robot would jitter mostly
in place, failing to ever encounter projectiles from most
directions). T is the transition function from a state and
action pair to a new state, here this function is the PyBullet
physics simulation. R is the reward function, which is 0
on all non-terminal time steps. There are four terminal
events: stick hit projectile, projectile hit robot, stick hit robot,
and projectile hit ground. We give a +1 reward on a stick
hit projectile terminal event, and -1 rewards on the other



Total Time Steps 109

Learning Rate 5× 10−5

Gamma (Discount Factor) 0.99
GAE Lambda (Smoothing Parameter) 1
Initial KL Coefficient 0.2
Rollout Fragment Length 200
Training Batch Size 4000
SGD Minibatch Size 128
Shuffle Sequences True
Number of SGD Iterations 30
Entropy Coefficient 0
PPO Clip Parameter 0.3
Value Function Clip Parameter 10
KL Target 0.01
Batch Mode Truncate Episodes
Number of CPUs 5
Environments per CPU 50
Number of GPUs 0

TABLE I: Network parameters for our fully connected actor-
critic RL networks. Optimization was performed by the
PPO algorithm. In training 5 CPUs with 50 simulation
environments each were used.

terminal events. An episode consists of any number of non-
terminal time steps followed by a terminal event time step.
Finally, γ ∈ [0, 1] is the discount factor which determines
preference for immediate versus long term reward, with
larger γ indicating higher preference for long term reward.

B. Network Implementation

A deep RL network is implemented using the RLlib [29]
RL library. Two parallel fully connected networks (actor
and critic), with 4 hidden layers each with 256 neurons per
hidden layer and ReLU activation for all but the output layer,
are used, one (the actor) producing output features, and the
other (the critic) outputting the value estimate. We use the
Proximal Policy Optimization (PPO) [30] with a Generalized
Advantage Estimator (GAE) [31] for policy optimization.
Additional network parameters are given in Table I. The
network learns a direct mapping from observations taken
every time step to joint accelerations applied to the robot’s
joints every time step.

C. Simulation Details

PyBullet [32] is used for physics simulation. We use three
models that come with PyBullet: a KUKA model for the
robot arm, a scaled rubber duck model for the projectile,
and a flat soccer field for the ground. We modeled the stick
as a thin cylinder with spheres at each end. The stick is
attached to the end effector of the robot arm. A time step of
0.01 seconds is used. Gravity in the downward direction of
magnitude 9.8 m/s2 is applied to both projectile and robot.

D. Episode Initialization

The robot arm is initialized at the start of each episode
as follows. Joints are enumerated from 0 to 6, with 0 being
the closest to the base along the kinematic chain. Joint 0
of the arm is set to a joint angle uniformly at random in
the valid joint range, joint 1 is set to −90◦, and all other
joints are set to 0◦. This corresponds with an arm that is

outstretched in a random valid direction, with the stick held
upward perpendicular to the ground.

The projectile is initialized at the start of each episode
as follows. The projectile is positioned 1 m above the
ground and 2 m away from the robot in a random horizontal
direction. The horizontal velocity of the projectile has a
magnitude HSpeed and is directed toward the robot, this
magnitude is equal to 3 m/s unless noted otherwise. The
initial vertical velocity of the projectile is a uniform random
value in the range of [0, 2.5]m/s in the upward direction. The
projectile’s orientation is chosen uniformly at random. An
angular velocity chosen uniformly in [−10π, 10π] radians/s
is applied to each axis.

IV. METHODS

In order to evaluate the effect of observation type on
learned interception performance, we define a set of pa-
rameters that are varied during training and post-training
evaluation, perform a series of evaluations, and use metrics
to assess performance of the interception task. We also detail
the hardware used to run the evaluations.

A. Varied Training Parameters

Input features (belonging to a observation space) are pre-
sented to the policy as a flat vector concatenation of floating
point values. We logically divide input features into frames.
Each frame contains the observations of one simulation time
step. A frame consists of floating point data for a robot
observation, a projectile observation, and an indicator of
whether the projectile has been hit by the stick. We vary
the robot observation type, to be described in the following
paragraph. All projectile observations are global Cartesian
coordinates of the center of the projectile at the observed
time step. The indicator of whether the projectile has been
hit by the stick is 0.0 except on a terminal time step where the
stick hit the projectile, in which case it is 1.0. The indicator
exists for a generalization to multiple projectile interception,
not considered in this work.

We consider three robot observation types: Joints, Links,
and Both. The Joints type consists of 7 float joint angles
corresponding to the 7 degrees of freedom of the robot. The
Links type consists of 30 floats, corresponding to 10 links
positions with 3 global Cartesian coordinates each. The Both
type consists of the concatenation of the Joints and Links
observations. We consider two frame counts: 1 Frame, where
the input feature is based on the most recent simulation state,
and 2 Frames, where the input feature is the concatenation
of the observations of the previous and current simulation
time steps. The previous frame of 2 Frames is initialized to
the values of the current frame at time step 0.

B. Evaluations Performed

• Training Evaluation: For each robot observation type
(Joints, Links, or Both) and frame count (1 Frame or
2 Frames) combination, we train 5 replicate policies
for one billion time steps, recording evaluation metrics
periodically. The purpose of this evaluation is to analyze



(a) Joints, 1 Frame (b) Links, 1 Frame (c) Both, 1 Frame

(d) Joints, 2 Frames (e) Links, 2 Frames (f) Both, 2 Frames

Fig. 2: Training Evaluation, Success and Failure Rates. This figure presents success and failure rates of the six observation
types considered in this paper over the course of RL training.

Final Events Joints, 1 Frame Links, 1 Frame Both, 1 Frame Joints, 2 Frames Links, 2 Frames Both, 2 Frames
Stick Hit Projectile 88.8%± 1.9% 92.0%± 1.0% 94.6%± 1.1% 86.2%± 2.6% 96.9%± 1.5% 96.8%± 0.6%
Projectile Hit Robot 6.3%± 1.4% 4.0%± 0.7% 2.7%± 0.6% 7.8%± 0.7% 1.3%± 0.9% 1.6%± 0.3%
Stick Hit Robot 0.8%± 0.2% 0.8%± 0.2% 0.5%± 0.3% 0.6%± 0.4% 0.5%± 0.1% 0.4%± 0.2%
Projectile Hit Ground 4.1%± 0.8% 3.3%± 0.5% 2.3%± 0.5% 5.3%± 1.7% 1.4%± 0.6% 1.3%± 0.3%

Steps, Success ≥ 85% 368.85M 198.55M 193.15M 609.25M 269.5M 244.25M

TABLE II: Training Evaluation, Statistics. This table shows mean and standard deviations for success and failure rates for
the six observation types considered. It also shows the mean number of time steps to reach 85% success rate. Statistics are
over 5 runs for each observation type.

learning rates and long-run performance of different
robot observation types with different frame counts.

• Post-Training Evaluations: For each trained policy, we
run without further training one hundred thousand time
steps for a baseline (no simulation parameters changed
from training) and situations not experienced in training,
recording evaluation metrics.

– Projectile Horizontal Speed Variation: We vary
the horizontal speed of the projectile (abbreviated
HSpeed). In training and for the baseline, HSpeed

is fixed at 3 m/s. We examine the effect of instead
varying HSpeed uniformly at random in the ranges
[2, 4] m/s and [1, 5] m/s. This is done to assess the
learned policies’ generality to parabolic trajectories
not encountered during training.

– Noisy Projectile Observations: Here we apply, at
every time step, Gaussian noise of zero mean to the
global X, Y and Z coordinates of the observation

of the projectile’s true position. The baseline used
in training is no observational noise. To explore
the policies’ resilience to untrained-for noisy obser-
vations we evaluate the trained policies with 0.05
m and 0.25 m standard deviation Gaussian noise
applied to the projectile position observation.

– Non-Parabolic Projectile Trajectories: We wish
to evaluate the trained policies’ generality to funda-
mentally different (non-parabolic) trajectories than
the ones for which they were trained. We do this
by applying Gaussian perturbations with zero mean
to the projectile’s X, Y and Z components of
linear velocity every time step. The baseline is a
parabolic trajectory as encountered in training. We
consider 0.05 m/s and 0.25 m/s standard deviation
perturbations to projectile linear velocity.
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Fig. 3: Projectile Horizontal Speed Variation Evaluation.
Stacked bar plots show mean success and failure rates under
the effect of different HSpeed ranges. Here ‘1F’ is short for
‘1 Frame’ and 2Fs is short for ‘2 Frames’.

Success Rate Ratio: HSpeed Variation / Baseline
HSpeed ∈ [2, 4]m/s HSpeed ∈ [1, 5]m/s

Joints, 1F 82.77%± 3.19% 58.42%± 5.10%
Links, 1F 91.30%± 0.61% 71.30%± 1.81%
Both, 1F 90.69%± 1.68% 70.51%± 2.56%

Joints, 2Fs 78.62%± 0.82% 52.17%± 1.34%
Links, 2Fs 93.96 ± 1.13% 76.70%± 4.17%
Both, 2Fs 93.24%± 1.79% 74.97%± 2.14%

TABLE III: Projectile Horizontal Speed Variation Evaluation,
Statistics. This table shows mean and standard deviation of
the success ratio of an untrained-for situation to the baseline.

C. Evaluation Metrics

In order to assess interception performance we consider
evaluation metrics related to the frequency of success and
the three different kinds of failures. Success: Stick Hit Pro-
jectile means the stick successfully intercepted the projectile
before a failure case could occur. Failure: Projectile Hit
Robot means the projectile touched the robot arm before
the projectile was intercepted by the stick. Failure: Stick
Hit Robot means the stick touched the robot arm before the
projectile was intercepted by the stick. Failure: Projectile Hit
Ground means the projectile touched the ground before the
projectile was intercepted by the stick.

D. Hardware and Software Used

The training evaluation was run on a machine with four
Intel Xeon Gold 6148 Processors with 20 cores each (2.40
GHz) with 512 GB of RAM running Ubuntu 18.04.3 LTS.
Post-training evaluations were run on a laptop with an
AMD Ryzen 7 Pro 3700U Processor (2.30 GHz, 4 Cores,
8 Threads, 4 MB Cache) and 8 GB DDR4 2400MHz RAM
running Ubuntu 20.04.2 LTS. RL networks were imple-

mented using RLlib 1.0.0 [29]. The robot-projectile system
was simulated in PyBullet 3.0.6 [32].

V. EVALUATION RESULTS

A. Training Evaluation

The frequency of outcomes as training progresses can be
seen in the shaded regions of Figure 2, and the final outcome
rates and steps taken to reach a desired success rate of 85%
can be found in Table II.

1) Joints versus Links, the 1 Frame Case: For this case,
Links outperforms Joints in terms of both learning rate and
performance at the end of training (Figure 2 a, b). To reach
the 85% threshold, Joints, 1 Frame policies took 358.85
million time steps while Links, 1 Frame policies took only
198.55 million time steps. That is, the Joints policies took
185.8% more time steps to reach the threshold success rate
than the Links policies. At the end of training, Joints, 1
Frame policies had a mean success rate of 88.8%, while
the Links, 1 Frame policies had mean success rate 92.0%, a
difference of 3.2%. Thus, the choice of features used to rep-
resent the robot in an interception learning task can influence
the rate of learning and the ultimate success of the policy.
One possibility is that the learning task requires closing
the distance between stick and projectile while keeping the
distance of the projectile and stick from the robot body above
thresholds. The positions of pieces of the robot body and
stick are directly available from to links based policies, while
joints based policies must spend additional time and tuned
parameters learning a mapping from joints to positions first
before calculating an embedded representation of distances.

The failure rates post-training are listed in Table II. The
occurrence of failures decrease or stay the same for Links
relative to Joints, however, projectile-robot collision events
account for 56% of failures for Joints but only 49% for Links
(1 Frame). Again, links as features directly represent posi-
tions, allowing for easier accounting of distances between
the projectile and robot. This could explain the reduction of
failures seen here.

2) Joints versus Links, 1 Frame versus 2 Frames: In the
case of 2 Frames as input features, the policy is provided
velocity information. Moving to 2 Frames helps Links, but
is detrimental to Joints. Using 2 Frames increases the time
steps to reach an 85% success rate threshold for both robot
observation types. Joints, 2 Frames (Figure 2 d) takes 165.2%
the time steps taken by Joints, 1 Frame (Figure 2 a), while
Links, 2 Frames (Figure 2 e) takes 135.7% the time steps
taken by Links, 1 Frame (Figure 2 b). The mean success
rate at the end of training decreased for Joints (by 2.6%) but
increased for Links (by 4.9%), relative to their one Frame
counterparts. It is surprising that Joints, 2 Frames has a lower
success rate than Joints, 1 Frame. Likely Joints, 2 Frames has
not completely converged in the time step limit. The increase
in final success rate for Links type in contrast likely means
that the access to velocity information is what allows the
Links, 2 Frames setup to find a policy that outperforms the
position-only Links, 1 Frame setup.
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Fig. 4: Noisy Projectile Observations Evaluation. Stacked bar
plots show mean success and failure rates under the effect of
different amounts of projectile observation noise. Here ‘1F’
is short for ‘1 Frame’ and 2Fs is short for ‘2 Frames’.

Success Rate Ratio: Noisy Observation / Baseline
Std = 0.05m Std = 0.25m

Joints, 1F 96.06%± 1.92% 49.70%± 6.37%
Links, 1F 97.09%± 0.78% 56.82%± 3.71%
Both, 1F 98.41%± 0.39% 70.89%± 2.26%

Joints, 2Fs 94.64%± 2.05% 55.48%± 5.91%
Links, 2Fs 98.25%± 0.51% 67.96%± 3.02%
Both, 2Fs 98.57%± 0.36% 77.10%± 3.02%

TABLE IV: Noisy Projectile Observations Evaluation, Statis-
tics. This table shows mean and standard deviation of the
success ratio of an untrained-for situation to the baseline.

When adding another frame of observation (2 Frames), the
failure rates worsen for Joints and improve with Links except
for stick-robot collision events using Joints. Projectile-robot
collisions are the most affected, with a 1.5% increase for
Joints and a 2.8% decrease for Links. This suggests the
implied velocity only obtained through Link observations is
useful to the policy.

3) Joints, Links, or Both: Here we evaluate the Both
observation type. Both, 1 Frame observations outperformed
Links, 1 Frame observations. However, Both, 2 Frames
performed about equally with Links, 2 Frames (Figure 2 e,
f). In terms of success rates, summarised in Table II, the
Both observation type with 1 Frame performs better (94.6%)
compared to Joints, 1 Frame (88.8%) and Links, 2 Frames
(92.0%). For 2 Frames, Links and Both perform about as
well (an average success rate difference of 0.1%), however
Links, 2 Frames take longer on average to reach an 85%
success rate than Both, 2 Frames (269.5 million steps versus
244.25 million steps). Thus, there are advantages to giving
both joint angles and link positions as features to a policy.

Combining Joints and Links into one observation type

(Both) yields an improvement overall in final success rates,
but only for 1 Frame observations (a 2.6% difference in
failure rates). For 2 frames, there is only a 0.1% difference
in failure rates between Links and Both, with Both failing
0.3% more to robot-projectile collisions but 0.1% less to
stick-robot and ground-projectile collisions. The penalty for
each failure are weighted equally, so it may be that policies
based off Links and Both find different approaches to attain
similar success rates when using 2 frames.

B. Post-Training Evaluation

To assess the degree to which trained policies generalize,
we evaluate the previously trained policies under noise and
dynamics that were not present during training: varying
the projectiles’ horizontal speed, observed position, and
trajectory dynamics. The change in success rate relative to
the original policies’ performance (without changes) when
subject to these variations is recorded to measure robustness.
We collect success and failure rates over the course of one
hundred thousand time steps for each trained policy, and
present the ratios of success in novel situations to baseline.

1) Projectile Horizontal Speed Variation: In Figure 3,
we show the success and failure rates for the baseline
and two varied horizontal projectile speeds with values
in Table III. Links, 2 Frames and Both, 2 Frames retain
better performance than the other observation types when
variations in speed are introduced. Relative to baseline,
policies trained on Links maintain more of their original
performance than those trained on Joints. For example, for
the HSpeed ∈ [1, 5] m/s case, the Links, 1 Frame policies
outperform the Joints, 1 Frame policies by 12.88%. When we
compare the relative success rates of 1 Frame and 2 Frames
policies, using multiple frames relative to a single frame
results in worsened retention of the original performance for
Joints but an improved retention of the original performance
for Links. Concretely, for HSpeed ∈ [1, 5] m/s, success
retention for Joints, 2 Frames is decreased −6.25% relative
to Joints, 1 Frame, while Links, 2 Frames increases success
retention relative to Links, 1 Frame by 5.4%. Again, the
Links features can be directly related to the features of the
obstacle in both position and velocity, and it is important
to know the direction and speed the obstacle is moving for
interception. Therefore, the benefit unique to the Links type
networks when given velocity information could be the result
of learning both the inverse kinematics of the robot and
dynamics for the obstacle. Note that the Both observation
types are not significantly different from Links here.

Policies based off Joints have the most significant in-
creases in failures, especially when using 2 frames of obser-
vation. Compared to baseline, trials of [1,5] m/s for Joints (2
Frames) have a 30% increase in projectile-ground collisions
and a 9% increase in projectile-robot collisions. With Links
(2 Frames) these are only 15% and 4%, respectively. Links
policies likely learn more generally to close projectile-stick
distance while maintaining safe projectile-robot distance,
while policies that use joints may prioritize actions for
specific situations, which do not generalize as well.



2) Noisy Projectile Observations: It is important for sim-
ulation trained policies to be robust to noise, so we consider
the effect of adding Gaussian noise with zero mean to each
component of the projectile’s position observation each time
step, see Figure 4 and Table IV. For large noise added to
projectile position observations, Both outperforms the other
observation types. Compared to baseline, there is only a
small effect of adding noise with 0.05 m standard deviation.
For 0.25 m standard deviation, however, there is overall low
success retention compared to baseline. Policies trained on
Links still maintain a higher success rate than the Joints
policies, with Joints, 1 Frame’s success retention on average
7.12% worse than Links, 1 Frame and Joints, 2 Frames’
success retention on average 11.14% worse than Links, 2
Frames. There is better performance of Both observation
types than the associated Links type for large noise in pro-
jectile position observation. We suspect position uncertainty
is reduced using multiple observation types.

For failure cases, all observation types see marked in-
creases in projectile-robot and projectile-ground collision
failures under 0.25 m projectile noise, however, these in-
creases are less for links (2 Frames). For links, projectile-
robot collisions increase 15% and projectile-ground colli-
sions increase 12%, as opposed to 18% and 19% for Joints.
For 2 frames of observation, policies trained on Links seem
to be more resilient.

3) Disturbed Projectile Trajectories: So far, we have only
considered parabolic projectile trajectories, but not every
object in a real environment would have easily predictable
dynamics. To see how well the different observation types
handle a violation of this property, we add Gaussian pertur-
bations to the components of projectile linear velocity every
time step with zero mean. Note, this change means that the
policies, which receive at most two frames of state, can not
predict exactly where the projectile will be in the future.
The success rates relative to baseline are shown in Figure 5
and listed in Table V. With large trajectory disturbances,
Links, 2 Frames and Both, 2 Frames outperform the other
observation types. With 0.05 m/s perturbations there is not
much effect. With 0.25 m/s perturbations, however, there is a
drastic increase in the projectile hitting the ground, however
the increase is greater for Joints types (by 36.2% for 1 Frame
and by 39.52% for 2 Frames) than for Links types (by
20.53% for 1 Frame and by only 14.48% for 2 Frames).
Policies trained on Links still maintain a higher success
rate than the Joint policies, with Joints, 1 Frame’s success
ratio on average 19.7% worse than Links, 1 Frame and
Joints, 2 Frames’ success ratio on average 31.58% worse than
Links, 2 Frames. The policies trained on Links observations
still outperform the Joints policies when presented with
uncertain dynamics and benefit from velocity information (2
Frames) whereas the Joints policies did not. Policies trained
on multiple frame observations using link features produce
policies that respond immediately to each individual state.
Even though the velocity is varied at each time step, the
resulting individual states were still familiar to the policy, so
the retained success rate is to be expected. The performance

No Perturbation

Joints, 1
F

Links, 1
F

Joints, 2
Fs

Links, 2
Fs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 a

n
d

 F
a

ilu
re

 R
a

te
s

Std = 0.05 m/s

Joints, 1
F

Links, 1
F

Joints, 2
Fs

Links, 2
Fs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 a

n
d

 F
a

ilu
re

 R
a

te
s

Success: Stick Hit Projectile

Failure: Projectile Hit Robot

Failure: Stick Hit Robot

Failure: Projectile Hit Ground

Std = 0.25 m/s

Joints, 1
F

Links, 1
F

Joints, 2
Fs

Links, 2
Fs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 a

n
d

 F
a

ilu
re

 R
a

te
s

Fig. 5: Disturbed Projectile Trajectory Evaluation. Stacked
bar plots show mean success and failure rates under the effect
of different disturbances to velocity of the projectile. Here
‘1F’ is short for ‘1 Frame’ and 2Fs is short for ‘2 Frames’.

Success Rate Ratio: Noisy Projectile Velocity / Baseline
Std = 0.05m/s Std = 0.25m/s

Joints, 1F 97.70%± 1.15% 55.13%± 5.62%
Links, 1F 99.45%± 0.46% 74.83%± 2.49%
Both, 1F 98.88%± 0.43% 73.89%± 2.58%

Joints, 2Fs 96.02%± 1.21% 49.22%± 2.42%
Links, 2Fs 99.49%± 0.75% 80.80%± 3.68%
Both, 2Fs 99.34%± 0.84% 79.68%± 2.93%

TABLE V: Disturbed Projectile Trajectory Evaluation, Statis-
tics. This table shows mean and standard deviation of the
success ratio of an untrained-for situation to the baseline.

of the Both observation types are in line with the associated
Links type for a given degree of trajectory disturbance and
number of frames.

For 0.25 m/s perturbations, projectile-ground and stick-
robot collision failures are increased compared to no per-
turbations, while projectile-robot collision failures are not
as affected. The worst increases are for Joints, with a 40%
increase in projectile-ground collisions compared to only a
14% increase for Links (2 Frames). This again suggests that
policies trained on Links may be learning to minimize the
distance between the stick and the projectile, while the those
trained on Joints are instead memorizing mappings from
observations to behaviors, which we would expect to be less
resilient to situations that did not occur in training.

VI. CONCLUSIONS

Learning how to intercept is a fundamental component
of many robotic tasks. In our experiments we find that
joint angle observations, a standard choice in robotics, do
not perform well compared to link position observations in
either learning to intercept or generalizing to untrained-for
projectile noise and dynamics. This is perhaps surprising,



because it is well known that link positions can be derived
from joint angles by learning the forward kinematics. The
poor performance of the Joints observation type is perhaps
because joint angle feature policies do need to encode
computations similar to forward kinematics in order to be
able to calculate an embedded representation of distances,
whereas link position feature policies don’t have to learn
forward kinematics and can allocate those saved neurons
otherwise. We also note that Links observations are able
to better employ temporal information (two time steps of
observations) than Joints, maybe because Joints have to learn
a form of forward kinematics, whereas Links do not.

Having combined link and joint observations helps in some
situations, but not others. Future work should address, for
instance, how much Links information must be added to
Joints for it to perform better: e.g., is stick position enough
to improve performance or is more positional information
needed. Future work should also examine if these trends
extend to robots with fewer or more DOFs, or different
DOF types, and demonstrate interception on real robots.
It is also important to determine if these results extend to
other interception problems, such as catching, batting or
sword fighting. Feature set selection greatly impacts RL
performance, and future effort should seek to find more
general relations across a variety of interception tasks.
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