« 2006: a year in review | Main | Big brains and bird brains »

January 02, 2007

One brain, two brains, Red brain, blue brains.

Brains, brains, brains.
How do they do that thing that they do?

One of my first posts here, almost two years ago, was a musing on the structure and function of brains, and how, although bird brains and primate brains are structured quite differently, they seem to perform many of the same "high cognitive" tasks that we associate with intelligence. Carrion crows that use tools, and magpies with a sense of permanence (my niece just recently learned this fact, and is infinitely amused by it). From my musing in early 2005:

So how is it that birds, without a neocortex, can be so intelligent? Apparently, they have evolved an set of neurological clusters that are functionally equivalent to the mammal's neocortex, and this allows them to learn and predict complex phenomena. The equivalence is an important point in support of the belief that intelligence is independent of the substrate on which it is based; here, we mean specifically the types of supporting structures, but this independence is a founding principle of the dream of artificial intelligence (which is itself a bit of a misnomer). If there is more than one way that brains can create intelligent behavior, it is reasonable to wonder if there is more than one kind of substance from which to build those intelligent structures, e.g., transitors and other silicon parts.

Parrots, those inimitable imitators, are linguistic acrobats, but are they actually intelligent? There is, apparently, evidence that they are. Starting in 1977, Irene Pepperberg (Dept. Psychology, Brandeis University) began training an African Grey parrot named Alex in the English language [1]. Amazingly, Alex has apparently mastered a vocabulary of about a hundred words, understands concepts like color and size, can convey his desires, and can count. (Pepperton has a short promotional video (3MB) that demonstrates some of these abilities, although her work has been criticized as nothing but glorified operant conditioning by Noam Chomsky. Of course, one could probably also argue that what humans do is actually nothing more than the same.)

How long will it be, I wonder, before they stick Alex in an MRI machine to see what his brain is doing? Can we tell a difference, neurologically, between operant conditioning and true understanding? Can an inter-species comparative neuroscience resolve questions about how the brain does what it does? For instance, do Alex's cortical clusters specialize in tasks in the same way that regions of the mammalian brain are specialized? I wonder, too, what the genetics of such a comparative neuroscience would say - are there genes and genetic regularoty structures that are conserved between both (intelligent) bird and (intelligent) mammal species? Many, many interesting questions here...

[1] Sadly, I must admit, what brought Alex to my attention, was not his amazingly human-like linguistic abilities. Rather, it was an article in the BBC about another African Grey named N'kisi, who has been used to try to demonstrate telepathy in animals. N'kisi, trained by an artist Aimée Morgana, has a larger vocabulary than Alex, and also seems to have a (wry) sense of humor.

In the BBC article, there's a cryptic reference to an experiment that apparently demonstrates N'kisi's talent with language. But, a little digging reveals that this experiment was actually intended to show that N'kisi has a telepathic connection with Morgana. And this is what got the BBC to do an article about the intelligence of parrots, even though the article makes no overt mention of the pseudo-scientific nature of the experiment.

posted January 2, 2007 09:48 AM in Obsession with birds | permalink

Comments