« IPAM - Random and Dynamic Graphs and Networks (Day 1) | Main | IPAM - Random and Dynamic Graphs and Networks (Day 3) »

May 08, 2007

IPAM - Random and Dynamic Graphs and Networks (Day 2)

This week, I'm in Los Angeles for the Institute for Pure and Applied Mathematics' (IPAM, at UCLA) workshop on Random and Dynamic Graphs and Networks; this is the second of five entries based on my thoughts from each day. As usual, these topics are a highly subjective slice of the workshop's subject matter...

Biomimetic searching strategies

Massimo Vergassola (Institut Pasteur) started the day with an interesting talk that had nothing to do with networks. Massimo discussed the basic problem of locating a source of smelly molecules in the macroscopic world where air currents cause pockets of the smell to be sparsely scattered across a landscape, thus spoiling the chemotaxis (gradient ascent) strategy used by bacteria, and a clever solution for it (called "infotaxis") based on trading off exploration and exploitation via an adaptive entropy minimization strategy.

Diversity of graphs with highly variable connectivity

Following lunch, David Alderson (Naval Postgraduate School) described his work with Lun Li (Caltech) on understanding just how different networks with a given degree distribution can be from each other. The take-home message of Dave's talk is, essentially, that the degree distribution is a pretty weak constraint on other patterns of connectivity, and is not a sufficient statistical characterization of the global structure of the network with respect to many (most?) of the other (say, topological and functional) aspects we might care about. Although he focused primarily on degree assortativity, the same kind of analysis could in principle be done for other network measures (clustering coefficient, distribution, diameter, vertex-vertex distance distribution, etc.), none of which are wholly independent of the degree distribution, or of each other! (I've rarely seen the interdependence of these measures discussed (mentioned?) in the literature, even though they are often treated as such.)

In addition to describing his numerical experiments, Dave sounded a few cautionary notes about the assumptions that are often made in the complex networks literature (particularly by theoreticians using random-graph models) on the significance of the degree distribution. For instance, the configration model with a power-law degree sequence (and similarly, graphs constructed via preferential attachment) yields networks that look almost nothing like any real-world graph that we know, except for making vaguely similar degree distributions, and yet they are often invoked as reasonable models of real-world systems. In my mind, it's not enough to simply fix-up our existing random-graph models to instead define an ensemble with a specific degree distribution, and a specific clustering coefficient, and a diameter, or whatever our favorite measures are. In some sense all of these statistical measures just give a stylized picture of the network, and will always be misleading with respect to other important structural features of real-world networks. For the purposes of proving mathematical theorems, I think these simplistic toy models are actually very necessary -- since their strong assumptions make analytic work significantly easier -- so long as we also willfully acknowledge that they are a horrible model of the real world. For the purposes of saying something concrete about real networks, we need more articulate models, and, probably, models that are domain specific. That is, I'd like a model of the Internet that respects the idiosyncracies of this distributed engineered and evolving system; a model of metabolic networks that respects the strangeness of biochemistry; and a model of social networks that understands the structure of individual human interactions. More accurately, we probably need models that understand the function that these networks fulfill, and respect the dynamics of the network in time.

Greedy search in social networks

David Liben-Nowell (Carleton College) then closed the day with a great talk on local search in social networks. The content of this talk largely mirrored that of Ravi Kumar's talk at GA Tech back in January, which covered an empirical study of the distribution of the (geographic) distance covered by friendship links in the LiveJournal network (from 2003, when it had about 500,000 users located in the lower 48 states). This work combined some nice data analysis with attempts to validate some of the theoretical ideas due to Kleinberg for locally navigable networks, and a nice generalization of those ideas to networks with non-uniform population distributions.

An interesting point that David made early in his talk was that homophily is not sufficient to explain the presense of either the short paths that Milgrams' original 6-degrees-of-seperation study demonstrated, or even the existence of a connected social graph! That is, without a smoothly varying notion of "likeness", then homophily would lead us to expect disconnected components in the social network. If both likeness and the population density in the likeness space varied smoothly, then a homophilic social web would cover the space, but the average path length would be long, O(n). In order to get the "small world" that we actually observe, we need some amount of non-homophilic connections, or perhaps multiple kinds of "likeness", or maybe some diversity in the preference functions that individuals use to link to each other. Also, it's still not clear what mechanism would lead to the kind of link-length distribution predicted by Kleinberg's model of optimally navigable networks - an answer to this question would, presumably, tell us something about why modern societies organize themselves the way they do.

posted May 8, 2007 10:52 PM in Scientifically Speaking | permalink