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Abstract— Physical stochastic disturbances, such as wind,
often affect the motion of robots that perform complex tasksin
real-world conditions. These disturbances pose a control chal-
lenge because resulting drift induces uncertainty and changes
in the robot’s speed and direction. This paper presents an
online control policy based on supervised machine learning,
Least Squares Axial Sum Policy Approximation(LSAPA), that
generates trajectories for robotic preference-balancing tasks
under stochastic disturbances. The task is learned offline with
reinforcement learning, assuming no disturbances, and then
trajectories are planned online in the presence of distur-
bances using the current observed information. We model
the robot as a stochastic control-affine system with unknown
dynamics impacted by a Gaussian process, and the task as
a continuous Markov Decision Process. Replacing a traditional
greedy policy, LSAPA works for high-dimensional control-affine
systems impacted by stochastic disturbances and is linear in
the input dimensionality. We verify the method for Swing-free
Aerial Cargo Delivery and Rendezvous tasks. Results show
that LSAPA selects an input an order of magnitude faster
than comparative methods, rejecting a range of stochastic
disturbances. Further, experiments on a quadrotor demonstrate
that LSAPA trajectories that are suitable for physical systems.

I. INTRODUCTION

Real-world conditions pose many challenges to physical
robots. One such challenge is the introduction of stochastic
disturbances that can cause positional drift. These distur-
bances externally excite the system with a normally dis-
tributed intensity and direction, and their impact to the
system varies between consecutive observations. For exam-
ple, atmospheric changes, i.e. wind, are possible sources of
stochastic disturbances [3]. Stochastic disturbances, along
with complex nonlinear system dynamics, make traditional
solutions (e.g., adaptive and robust control modeling), which
solve this problem by explicitly solving the optimal control
problem, difficult or intractable [15]. We are interested in
a trajectory generation method that solves a particular class
of robotic motion planning tasks, rejects stochastic distur-
bances, and is computationally efficient enough to be used
on a high-dimensional system that requires frequent input
selection (50 Hz).

We considerpreference-balancing tasks[8], a class of
robotic motion planning tasks. Preference-balancing tasks
are robotic tasks characterized with a single goal state
and a set of often-opposing preferences, such as speed
and quality, that the robot should balance while meeting
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(a) Swing-free delivery (b) Rendezvous

Fig. 1. Preference-balancing task examples. Red arrows on robots are
examples of stochastic external input disturbances at timestep k after
learning without external disturbances.

task conditions. There are many examples of preference-
balancing tasks: swing-free aerial cargo delivery (Fig. 1a),
balancing an inverted pendulum [9], coordinated meeting
of two robots (Fig. 1b), etc. In each instance, there is a
defined, possibly unknown, and recognizable goal state. Yet,
it is difficult to manually identify a trajectory that solves
the task without violating its preferences. An interesting
characteristic of preference-balancing tasks is that humans
can easily describe them and judge their quality, but they
are difficult for humans to perform. To learn preference-
balancing tasks, we model robots as a kinematic, control-
affine systems (nonlinear dynamics, but linear in the input),
that are controlled through acceleration. In our experience,
this level of abstraction is enough for the trajectory gener-
ation, and a lower-level controller can be used to track the
kinematic trajectory.

Our previous work, PrEference Appraisal Reinforcement
Learning (PEARL) solves preference-balancing tasks on de-
terministic control-affine systems [8]. PEARL uses a batch
reinforcement learning (RL) framework, which means that
the learning and planning phases are separated. In the
learning phase, PEARL uses Continuous Action Fitted Value
Iteration (CAFVI) [11] with a state-value function approx-
imated with a linear combination of features, a specifically
selected functions of state. The state-value function is a
discounted cumulative reward that can be obtained from a
given state. The features are given as squared preferences
(Section III). Interacting with a system simulator, CAFVI
appraises the preferences and produces the feature weights.
In the planning phase, PEARL generates a trajectory in
real-time, selecting an input one step at the time with the
Deterministic Axial Sum (DAS) policy approximation [11].
The closed loop control policy, DAS, takes the current state



observation and relying on the learned weights, features,
and simulator, produces the next input to be applied on the
system. DAS scales linearly with the input dimensionality,
and under verifiable conditions is guaranteed to progress the
system to the goal [11], but it only works for deterministic
systems.

In this paper, we extend DAS to work under stochastic
input disturbances. To that end, we propose Least Squares
Axial Sum Policy Approximation (LSAPA). LSAPA, used
in the PEARL framework, enables learning preference-
balancing taskswithout disturbances, and preforming tasks
with stochastic input disturbances. This is achieved by using
supervised machine learning to find the best input with re-
spect to the current disturbance. A Gaussian process, defined
with its mean and variance, is used to model the disturbance
of the input [3]. We assume that its probability distribution
can be measured and estimated outside of LSAPA [30]. The
estimation can be done, for example, equipping the system
with an accelerometer, measuring the true acceleration of
the system, and estimating the error between the observed
and the LSAPA produced acceleration. The key extension
from [11] is the use of least squares linear regression in lieu
of interpolation to estimate near-optimal input on each axis.
This extension allows us to apply the method to non-zero
mean stochastic disturbances limited only by the system’s
physical limits.

This novel method, LSAPA, is applied in simulation
to the Swing-free Aerial Cargo Delivery and multi-robot
Rendezvous tasks (Fig. 1), and experimentally verified on
Swing-free Aerial Cargo Delivery. The method is evaluated
for computational efficiency, and trajectory quality by com-
paring it to DAS, Model Predictive Control (MPC), and
Hierarchical optimistic optimization applied to trees(HOOT)
[21]. A preliminary version of LSAPA was presented in an
unpublished workshop paper [9]. Here, we extend that work
with: 1) proof that the objective function is quadratic and has
a single global maxima, 2) computational-efficiency analy-
sis, 3) experiments on Swing-free Aerial Cargo-delivery, 4)
comparison with MPC and HOOT, and 5) evaluation on the
Rendezvous task.

II. RELATED WORK

Robot motion control under stochastic disturbance has
been studied on a number of problems. For instance, quadro-
tor trajectory tracking under wind-gust disturbances was
solved using piecewise linearization [1]. Path planning and
obstacle avoidance in the presence of stochastic wind for
a blimp was solved using dynamic programming and aug-
mented MDPs [14]. In another example, methods to handle
motion planning and trajectory generation under uncertainty
use low-level controllers for stabilization of trajectories
within reach tubes [7], or trajectory libraries [20]. Other
approaches to UAV control in environments with a drift
field explicitly solve the system dynamics [22], [26], or use
iterative learning to estimate repetitive disturbance [25], [23].
While these solutions are aimed at particular systems or

repetitive disturbances, our method works for a class of prob-
lems and systems influenced by the stochastic disturbance.

LSAPA, PEARL’s control policy, shares both similari-
ties and notable differences with Model Predictive Control
(MPC) [13]. MPC takes a cost function, set points, and
the system model, and generates a trajectory that minimizes
cumulative cost over the receding horizon. Both PEARL
and MPC are interested in selecting input that minimizes
the cumulative cost. MPC solves the optimization problem
numerically, while, PEARL constructs state-value function,
a discounted, infinite-horizon, cumulative cost (reward) prior
to task execution. PEARL’s control policy, LSAPA, uses the
state-value function during planning and only needs to solve
a one-step optimization problem with respect to the state-
value function. We use Nonlinear Model Predictive Control
(NMPC) [13] to track a deterministic trajectory, and compare
the results with the proposed LSAPA method.

DAS [11] solves input selection in linear time using
the divide and conquer. It finds optimal input for each of
the input axes independently with Lagrangian interpolation,
and then combines the single-axis selections. Although we
showed that DAS can compensate for some levels of zero-
mean noise [11], [12], the method stops working in the
presence of stochastic disturbances. This is because the exter-
nal disturbance induces unpredictable drift onto the system.
The method presented here, LSAPA, uses polynomial least
squares regression instead of interpolation to compensatefor
the stochastic disturbances.

RL is well-suited for solving stochastic Markov decision
processes (MDPs) and the current state of the art is ex-
panding the methods to domains with large and continuous
spaces, such as robotics [17]. Gradient descent methods for
policy approximation work well in some convex cases, but
require an estimate of the gradient, and can take a long time
to converge. Some other methods in use are Gibbs sampling
[16], Monte Carlo methods [18], and sample averages [2].
Finally, a new class of sampling methods optimistically
narrows the search space [4], [5], [21], [31]. Of this class we
compare LSAPA againstHierarchical optimistic optimization
applied to trees(HOOT), [21] a derivative-free optimization
that hierarchically discretizes the space into progressively
smaller cells.

We use a quadrotor with a suspended load as our bench-
marking platform because it is a popular research platform
leading to solutions for multiple robots [27], hybrid system
[6], differentially-flat approach [28], and load trajectory
tracking [24] among others.

III. PROBLEM FORMULATION

Our goal is to plan preference-balancing tasks on a control-
affine system in the presence of an external stochastic distur-
bance. Fig. 2 describes the planner’s flow. We assume that
a RL method provides a feature vector,F , and weights,θ,
learned with amethod without disturbances, such as CAFVI.
During the planning, we assume that we have a black-box
simulator of the system, which receives mean and variance



Fig. 2. Flow diagram for learning and planning preference-balancing tasks.

of the current probability distribution of the disturbance
N (µk, σk

2). The planner generates trajectories for a physical
system. At every time step,k, LSAPA, observes a state,
xk. By sampling the simulator, LSAPA finds a near-optimal
input, uk, to apply to the system.

We model a robot as a discrete time, control-affine system
with stochastic disturbance,D : X × U → X ,

D : xk+1 = f(xk) + g(xk)(uk + ηk). (1)

Statesxk ∈ X ⊆ R
dx belong to the position-velocity space

and the control input is acceleration,uk ∈ U ⊆ R
du . The

input space is a compact set containing origin,0 ∈ U .
The Lipschitz continuous functiong : X → R

dx × R
du

is regular outside the origin,xk ∈ X \ {0}. The drift
f : X → R

dx , is bounded and Lipschitz continuous. The
non-deterministic term,ηk, is an independent and identically
distributed random variable drawn from a Gaussian distribu-
tion N (µηk

, σ2
ηk
) known to the simulator, but not LSAPA;

it acts as an additional and unpredictable external force on
the system. Time stepk is omitted when possible.

As in [11], our goal is to learn a preference-balancing
task that takes the system to the origin in a timely-manner
while reducing along the trajectory preferences given by
matrix A = [a1 . . .adg

]. Each of the vectorsai defines a
task preference. For instance, vectorai that corresponds to
preference to reduce the displacement of the suspended load,
will have components that correspond to the position of the
suspended load set to one, while the rest of the components
will be equal to zero. VectorF (x) = [F1(x), ..., Fdg

(x)]T is
a feature vector, with componentsFi(x) = ‖aT

i x‖
2, i =

1, ..., dg.
The state-value function approximation is

V (x) =

dg
∑

i=1

θiFi(x) = xTAΘATx (2)

whereθ = [θ1, ..., θdg
]T is the parametrization that we learn,

andΘ(x) = θTIdg
is a diagonal matrix representation of

the parametrizationθ.
Greedy policy,h∗(x) = argmaxu∈U V (D(x,u)) is opti-

mal with respect to the state-value functionV . The problem
is that in continuous spaces greedy policy calculation be-
comes an optimization problem over an unknown objective

functionV ◦D.
RL literature often works withaction-value function, Q :

X × U → R, a measure of the discounted accumulated
reward collected when actionu is taken at statex [29].
In relation to the state-value function, V (2), action-valueQ
can be represented as

Q(x,u) = V (D(x,u)) =

dg
∑

i=1

θiFi(D(x,u)) (3)

Thus, we learn the approximation for the greedy policy
using

h∗(x) = argmax
u∈U

Q(x,u), (4)

and finding a near-optimal solutionh(x) for (4).

IV. METHODS

The Least squares axial policy approximation(LSAPA)
policy extends DAS to handle non-zero mean disturbances.
This is done by first learning feature weights off-linewithout
disturbances and then using those learned weights for online
trajectory planningwith disturbances. LSAPA bridges the
gap between learning without disturbances and planning
with them. The Lagrangian interpolation uses only three
points to interpolate the underlying quadratic function and
this compounds the error from the disturbances. In contrast,
our new method, LSAPA, uses least squares regression with
many sample points to compensate for the induced error.

Specifically DAS takes advantage of the facts that action-
value function,Q, is a quadratic function of the inputu
for any fixed arbitrary statex, in a control-affine system
(1) with state-value approximation (2) [11]. DAS finds an
approximation for the maximum localQ function for a fixed
statex. It works in two steps, first finding maxima on each
axis independently and then combining them together. To
find a maximum on an axis, the method uses Lagrangian
interpolation to find the coefficients of the quadratic poly-
nomial representing theQ function. Then, an action that
maximizes theQ function on each axis is found by zeroing
the derivative. The final policy is a piecewise maximum
of a convex and simple vector sums of the action maxima
found on the axes. The method is computationally-efficient,
scaling linearly with the action space dimensionality. It is
also consistent, as the maximum selections do not depend
on the selected samples. Because deterministic axial policies
are sample independent, they do not adapt to changing
conditions or external forces. We extend the deterministic
axial policies to the presence of disturbances via LSAPA.
LSAPA uses least squares regression, rather than Lagrangian
interpolation, to select the maximum on a single axis. This
change allows the LSAPA method to compensate for the
error induced by non-zero mean disturbances.

We first show that theQ function remains quadratic with
a maximum even when the system is influenced with a
stochastic term.

Proposition4.1: Action-value functionQ(x,u) (3) cor-
responding to state-value functionV (2), and a discrete-time



system (1) is a quadratic function of inputu for all states
outside the origin,x ∈ X\{0}. WhenΘ is negative definite,
the action-value functionQ is concave and has a unique
maximum.

Proof: The proof is similar to the proof of Proposition
3.1 [11], and relies on the fact that although the stochastic
disturbance changes the system dynamics at every time step,
it does not interact with the control input.

After rearranging terms we can write the dynamics (1) as

D : xk+1 = f1(xk,ηk) + g(xk)uk,

wheref1(xk,ηk) = f(xk) + g(xk)ηk does not depend on
input uk. Let us denoteΛ = AΘAT . For an arbitrary state
x and any value of the disturbanceη,

Q(x,u,η) = V (D(x,u,η)) (5)

= V (f1(x,η) + g(x)u) (6)

= (f1(x,η) + g(x)u))TΛ(f1(x,η) + g(x)u).
(7)

Thus,Q is a quadratic function of actionu at any fixed state
outside the origin,x ∈ X \ {0}, and fixed disturbanceη.

To show thatQ has a maximum, we inspectQ’s Hessian
for fixed statex and disturbanceη,

HQ(x,u,η) =







∂2Q(x,u,η)
∂u1∂u1

... ∂2Q(x,u,η)
∂u1∂udu

...
∂2Q(x,u,η)
∂udu∂u1

... ∂2Q(x,u,η)
∂udu∂udu







= 2g(x)TΛg(x),

which cancels the stochastic term, because the stochastic
term does not affect square of the inputu as seen in (7).
Becauseg(x) is regular for all statesx ∈ X \ {0} and
Θ < 0, the Hessian is negative definite, soQ is concave
with a maximum for an arbitrary state outside of the origin.

Next, we present finding the maximum on ith axis using least
squares linear regression with polynomial features.

Definition 4.2: Q-axial restrictionon ith axis is a univari-
ate functionQx,i(u) = Q(x, uei), whereei is a unit vector
along of ith axis.

Q-axial restriction onith axis is a quadratic function,

Qx,i(u) = pT
i [u

2 u 1]T , (8)

for some vectorpi = [p2,i p1,i p0,i]
T ∈ R

3 based on
Proposition 4.1. Our goal is to findpi by sampling the input
spaceU at fixed state.

Suppose, we collectdn input samples in theith axis,Ui =
[u1,i ... udn,i]

T . The simulator returns state outcomes when
the input samples are applied to the fixed statex, Xi =
[x′

1,i ... x
′

dn,i
]T , wherex′

j,i ← D(x, uj,i), j = 1, ..., dn.
Next,Q-estimates are calculated with (3),

Qi = [Qx,1(u1,i) ... Qx,dn
(udn,i)]

T , (9)

whereQx,j(uj,i) = θTF (x′

j,i), j = 1, ..., dn. Using the
supervised learning terminology the Q estimates,Qi, are the

labels that match the training samplesUi. Matrix,

Ci =









(u1,i)
2 u1,i 1

(u2,i)
2 u2,i 1

...
(udn,i)

2 udn,i 1









, (10)

contains the training data projected onto the quadratic poly-
nomial space. The solution to the supervised machine learn-
ing problem,

Cipi = Qi (11)

fits pi into the training dataCi and labelsQi. The solution
to (11),

p̂i = argmin
pi

dn
∑

j=1

(Cj,ipi −Qx,j(uj,i))
2 (12)

is the coefficient estimate of theQ-axial restriction (8). A
solution to dQx,i(u)

du
= 0 is a critical point, and becauseQ is

quadratic the critical point is

û∗i = −
p̂1,i
2p̂2,i

. (13)

Lastly, we ensure that action selection falls within the
allowed action limits,

ûi = min(max(û∗i , u
l
i), u

u
i ), (14)

whereul and uu are lower and upper acceleration bounds
on theith axis, respectively.

Repeating the process of estimating the maxima on all
axes and obtaininĝui = [û1, ..., ûdu

], we calculate the final
policy with

ĥ(x) =







hQ
c (x), Q(x,hQ

c (x)) ≥ Q(x,hQ
n(x))

hQ
n(x), otherwise

(15)

where

hQ
c (x) = d−1

u hQ
n(x) (convex policy)

hQ
n(x) =

du
∑

i=1

ûiei, (non-convex policy)

The policy approximation (15) combines the simple vector
sum of the non-convex policies (14) with the convex sum
policy. The convex sum guarantees the system’s monotonic
progression towards the goal for a deterministic system [11],
but the simple vector sum (non-convex policy) does not [11].
If, however, the vector sum performs better than the convex
sum policy, then (15) allows us to use the better result.
Disturbance changesQ function and the regression fits Q
to the observed data. Thus, the algorithm adapts.

Proposition4.3: The computational cost to calculating
LSAPA with (15) is O(dg · du · d2x · dn), assuming that
dg ≤ du ≤ dx ≪ dn.

Proof: Complexity of calculating x′

j,i for one-
dimensional input isO(dx). SinceF can be calculated in
O(dx), the complexity of (9) isO(dg · dn · d2x). Formulating
matrix Ci in (10) isO(dn). The solution to the regression
problem (11) and (12) is asymptoticallyO(dn) [19], since we
use polynomial of the second degree for the regression. Thus



the asymptotic complexity of calculating (13) isO(dg · dn ·
d2x)+O(dn)+O(dn) = O(dg ·dn·d

2
x). Finally, the complexity

of the final input selection (14) isO(dg · du · d2x · dn) after
repeating the process for all axes.
Therefore, LSAPA’s running time depends on the state and
input dimensions rather than their physical size. On the other
hand, its running time depends on the number of featuresdg
and samplesdn. Since the number of features is small and
fixed to the task, their impact to the complexity is minimal.
However, the algorithm is sensitive to number of collected
samples. In [9], we preformed a study that examined the
optimal number of samples to be used for the Flying Inverted
Pendulum task. The results showed that the trajectory quality
increases exponentially with the sample size, and beyond a
certain level the trajectories do not improve significantly.
Due to LSAPA’s complexity dependence on the sample
size, it is useful to perform a one-time empirical study to
find the optimal sample size, which produces good-quality
trajectories and retains fast run time.

V. RESULTS

We evaluate LSAPA’s 1) suitability for real-time planning
of high-dimensional control-affine discrete time systems that
require frequent input, 2) ability to complete preference-
balancing tasks in the presence of different stochastic input
disturbances, and 3) trajectories for feasibility on physical
systems. All simulations are performed in MATLAB 2014a,
on a single core of Intel Xeon CPU E5-1620 with 8 Gbs
RAM running Windows 7 Enterprise. Experiments were
performed on an AscTec Hummingbird Quadrotor equipped
with a 62-centimeter suspended load weighing 45 grams. The
quadrotor and load positions were captured with a motion
capture system at 100 Hz. Testbed’s internal tracking sys-
tem tracked the quadrotor position using LSAPA generated
trajectory as a reference.

A. Setup and Methodology

The Swing-free Aerial Cargo Delivery taskrequires a
quadrotor, carrying a load on a suspended rigid cable, to
deliver the cargo to a given location with the minimal resid-
ual load oscillations [10]. The task has applications in deliv-
ery supply and aerial transportation in urban environments.
The task is easily described, yet, it is difficult for human
demonstration as it requires a careful approach to avoid
destabilizing the load. The state space is 10-dimensional
joint system,x = [pq, η, ṗq, η̇]

T , of the quadrotor’s and
the load’s position and velocity, wherepq = [x, y, z]T is
the quadrotor’s position, andη = [φ, ψ]T is the load’s dis-
placement in polar coordinates. The input is a 3-dimensional
acceleration vector applied to the quadrotor’s center of mass,
u = [ẍ, ÿ, z̈]T with a maximum acceleration of 3m/s2.
The features are squared distances of quadrotor position,
F1(x) = ‖pq‖2, load’s displacement,F2(x) = ‖η2‖,
quadrotor’s velocity,F3(x) = ‖ṗq‖2, and the load’s angular
velocity,F4(x) = ‖η̇‖2.

The Rendezvous taskinvolves two heterogeneous robots,
an aerial vehicle with suspended load, and a ground robot.
The two robots work together for the cargo to be delivered
on top of the ground robot (Fig. 1b), thus the load must have
minimum oscillations when they meet. The state space is a
16-dimensional vector of the joint UAV-load-ground robot
position-velocity space,x = [pq, pg, η, ṗq, ṗg, η̇]

T , and
the action set is 5 dimensional acceleration vector on the
UAV (3 dimensions), and the ground robot (2 dimensions),
u = [p̈q, p̈g]

T . The maximum acceleration of the UAV is
3m/s2, while the maximum acceleration of the ground robot
is 2m/s2. Feature vectorF contains:F1(x) = ‖pqxy

−
pgxy
‖2, the distance between the ground and aerial robot’s

load x and y coordinates,F2(x) = ‖pqz − pgz − 0.6‖2,
the difference in high equal to the suspension cable length,
F3(x) = ‖ṗq − ṗg‖2, their relative speeds, andF4(x)‖ =
η‖2 and F5(x) = ‖η̇‖2 the load’s position and velocity
relative to the UAV.

First, we learn the tasks using deterministic CAFVI, which
results in the weightsθ = [−86290 − 350350 − 1430 −
1160]T for Swing-free Aerial Cargo Delivery, andθ =
[−92256−44767−866−336−107]T for Rendezvous. After
a single deterministic learning phase, we generate trajectories
for 25 different initial conditions using the learned weights,
θ, and varying disturbance distributions. The initial condition
for Swing-free Aerial Cargo Delivery are within5m from the
goal, and Rendezvous has the two robots start from within
10m from each other. Input disturbance distributions are
evaluated with a mean of 0, 1, and2m/s2, and a standard
deviation of 0, 0.5 and1m/s2. We run Rendezvous with
mean disturbance of up to 1m/s2 because the maximum
acceleration of the ground robot is2m/s2 and the system
cannot compensate for the larger disturbance.

We compare the proposed LSAPA to a DAS, HOOT,
and NMPC for Aeriel Cargo Delivery and to to a DAS,
HOOT for the Rendezvous task. HOOT uses three-level
hierarchical search, with each level providing ten times finer
discretization. NMPC tracks a trajectory generated assuming
no disturbances. It is implemented using the MATLAB
routine provided in [13] with a 5 time-step long horizon, and
cost functionJ(x,u) = E[‖p′ − pr‖2 + 0.1 · ‖ṗ′ − ṗr‖2]),
wherep′ is position of the state that results when inputu

is applied tox. pr is a position at the reference trajectory.
The expectation is calculated as an average of 100 samples.
NMPC uses the same disturbance-aware simulator used for
LSAPA, DAS, and HOOT. The simulator calculates closed-
loop optimization problem and simulates the plan.

B. Suitability for online input selection

Fig. 3 summarizes the planning results. Results in Fig.
3a show that for both tasks the time needed to calculate
next input with LSAPA is an order of magnitude smaller
than the20ms time step (green line), allowing ample time
to plan the trajectory in a real-time closed feedback loop.
DAS calculates the next input faster than LSAPA. This is
expected because the deterministic policy uses 3 samples
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Fig. 3. Summary of planning results with LSAPA, DAS, HOOT, NMPC policies for Swing-free Delivery and Rendezvous tasks averaged over 25 trials.
Time needed to select a single action (a), and distance from the goal during the last 1 second of the flight for Swing-free Delivery (b) and Rendezvous (c)
tasks. [n, m] signifies disturbance withN (m,n2). Y-axes are logarithmic. Results below green line are suitable for real-time application (a), and complete
the tasks (b) and (c).

per input dimension, while the stochastic policy in this case
uses 300 samples. In contrast, although HOOT performs
under20ms for the Swing-free task, it scales exponentially
with the input. As a result, HOOT takes50ms to calculate
input for the Rendezvous task, twice the length of the
minimal time step required for real time planning. NMPC
is two orders of magnitude slower for the lower-dimensional
Swing-free task, averaging about300ms to select an input,
over ten times that the available window for the real-time
control. NMPC for the Rendezvous task took 10 times longer
than for the Swing-free task, requiring about 3 hours to
calculate a single 15-second trajectory. Thus, we decided
against running systematic NMPC tests with Rendezvous
task because of the impractically long computational time.

Both LSAPA and DAS are computationally cheap, lin-
ear in the input dimensionality, while HOOT, and NMPC
scale exponentially. The timing results show that, assuming
LSAPA provides good quality trajectories, LSAPA can be
a viable method for input selection in real-time on high-
dimensional systems that require high-frequency control.

C. Trajectory quality in presence of input disturbances

Next, in Figs. 3b and 3c, we examine if the trajectories
complete the task, reaching the goal region of5 cm. Due to
the constant presence of the disturbance, we consider the av-
erage position of the quadrotor rather than simply expecting
to reach the goal region. Note that the accumulated squared
error, typically used to measure quality of tracking methods,
is not appropriate for LSAPA, HOOT, and DAS because
they generate trajectories on the fly and have no reference
trajectory. Thus, we measure if the system arrives and stays
near the goal. As a control case, we first run simulations
for repeatable disturbance (N (1, 02) andN (2, 02)). LSAPA,
NMPC, and HOOT methods complete the task (Fig. 3b).

For a small standard deviation of 0.5m/s2 LSAPA
performs similarly to HOOT on both tasks, producing tra-
jectories that complete the task, unlike DAS and NMPC.
DAS is able to compensate for zero-mean noise for the

Swing-free task (Fig. 3b), but its performance degrades in
the higher-dimensional Rendezvous (Fig. 3c). The quality
of NMPC solution also degrades with the disturbance (Fig.
3b). It is more pronounced than with DAS, because NMPC
makes input selection based on solving a fixed horizon opti-
mization problem. The optimization problem accumulates the
estimation error, thus invalidating the solution, and smaller
horizon lengths are not sufficient to capture good tracking.
For the larger standard deviation (1m/s2), both LSAPA and
HOOT create trajectories that still perform the tasks. But for
Rendezvous, LSAPA produces the comparable results in an
order of magnitude less time (Fig. 3a).

Figs. 4 and Fig. 5 show trajectories planned with LSAPA
and HOOT for Swing-free task under exertion of disturbance
with distributionN (2, 0.52) (Fig. 4c), and Rendezvous with
disturbance with distributionN (1, 12). Although both the
quadrotor’s and the load’s speeds are noisy (Figs. 4a and
4b), the position changes are smooth, and the quadrotor
arrives near the goal position where it remains. Similarly,
in Rendezvous the two robots meet in 4 seconds, after the
initial failed coordinated slow down at 1 second. Note, that
the targeted position for the quadrotor’s altitude is 0.6 meters
in order for the load to be positioned above the ground robot.
The results in Fig. 3 confirm that both methods produce
very similar trajectories, but recall that HOOT does not scale
well for larger problems and did not produce Rendezvous
trajectories in real-time. In contrast, LSAPA produced both
trajectories in real-time.

D. Trajectory feasibility for Physical System

To evaluate how feasible the LSAPA trajectory is on a
physical system and to assess the simulation fidelity, we com-
pare experimentally LSAPA and DAS planned trajectories.
We chose DAS for this experiment because it is the fastest
input selection method, and it performed better than HOOT
in previous experiments [11].

Fig. 6 shows the results of the experiment when a distur-
bance with distributionN (2, 0.52) is imposed on the system
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Fig. 4. Cargo delivery task - comparison of vehicle (a) and load (b) trajectories created with LSAPA and HOOT with disturbance ofN (2, 0.52) (c).
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Fig. 5. Rendezvous task - comparison of vehicle (a) and load (b) trajectories created with LSAPA and HOOT with disturbance of N (1, 12) (c).

(Fig. 6c). The quadrotor starts at coordinates (-1, -1, 1.2)
and the goal is at (0.5, 0.5, 1.2) meters. We notice (Fig.
6a) LSAPA experiences an overshoot of the goal after 2
seconds, but compensates and returns to the goal position.
The DAS trajectory, however, does not compensate and
continues with the slow drift past the goal. The load swing is
not very different between the two trajectories. The enclosed
supplied video contains the experiments and visualizationof
the simulations.

VI. CONCLUSIONS

We presented LSAPA, a policy approximation method
that extends PEARL to perform robotic preference-balancing
tasks in environments with external stochastic disturbances.
LSAPA scales linearly with the input dimensionality and
produces good quality trajectories. Because of these char-
acteristic LSAPA can be used to generate trajectories for
high-dimensional control-affine systems that require frequent
input, such as inherently unstable systems. We also showed
that LSAPA can be used on physical robots. This paper takes
an empirical approach to assess the safety of the policy. In
future research, we will look into finding sufficient conditions

for a goal’s asymptotic stability, in order to be able predict
the likelihood of system completing the task.
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