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Abstract— Physical stochastic disturbances, such as wind,
often affect the motion of robots that perform complex tasksin
real-world conditions. These disturbances pose a controlhal-
lenge because resulting drift induces uncertainty and chages
in the robot's speed and direction. This paper presents an
online control policy based on supervised machine learning
Least Squares Axial Sum Policy Approximatio(LSAPA), that
generates trajectories for robotic preference-balancing tasks
under stochastic disturbances. The task is learned offline ith — =
reinforcement learning, assuming no disturbances, and the =
trajectories are planned online in the presence of distur- = -
bances using the current observed information. We model (a) Swing-free delivery (b) Rendezvous
the robot as a stochastic control-affine system with unknown Fig 1. Preference-balancing task examples. Red arrowsobats are

dynamics impacted by a Gaussian process, and the task as examples of stochastic external input disturbances at ttep k after

a continuous Markov Decision Process. Replacing a traditival  learning without external disturbances.

greedy policy, LSAPA works for high-dimensional control-fine

systems impacted by stochastic disturbances and is lineani

the input dimensionality. We verify the method for Swing-free .

Aerial Cargo Delivery and Rendezvous tasks. Results show task conditions. There are many examples of preference-
that LSAPA selects an input an order of magnitude faster balancing tasks: swing-free aerial cargo delivery (Fig), 1a

than comparative methods, rejecting a range of stochastic palancing an inverted pendulum [9], coordinated meeting

disturbances. Further, experiments on a quadrotor demonsate of two robots (Fig. 1b), etc. In each instance, there is a

that LSAPA trajectories that are suitable for physical sysems. defined, possibly UI.’lknO\;vn a.nd recognizable go’al state. Yet
it is difficult to manually identify a trajectory that solves

I. INTRODUCTION the task without violating its preferences. An interesting

Real-world conditions pose many challenges to physicgharacteristic of preference-balancing tasks is that msma
robots. One such challenge is the introduction of stochast¢an easily describe them and judge their quality, but they
disturbances that can cause positional drift. These dist@re difficult for humans to perform. To learn preference-
bances externally excite the system with a normally dif2@lancing tasks, we model robots as a kinematic, control-
tributed intensity and direction, and their impact to theaffine systems (nonlinear dynamics, but linear in the input)
system varies between consecutive observations. For exaffat are controlled through acceleration. In our expegenc
ple, atmospheric changes, i.e. wind, are possible sourfcesthis level of abstraction is enough for the trajectory gener
stochastic disturbances [3]. Stochastic disturbancesgal aFion, ar_1d a _Iower-level controller can be used to track the
with complex nonlinear system dynamics, make traditiondfinematic trajectory.
solutions (e.g., adaptive and robust control modeling)ctvh ~ Our previous work, PrEference Appraisal Reinforcement
solve this problem by explicitly solving the optimal cortro Learning (PEARL) solves preference-balancing tasks on de-
problem, difficult or intractable [15]. We are interested interministic control-affine systems [8]. PEARL uses a batch
a trajectory generation method that solves a particulasclareinforcement learning (RL) framework, which means that
of robotic motion planning tasks, rejects stochastic distuthe learning and planning phases are separated. In the
bances, and is computationally efficient enough to be uséeharning phase, PEARL uses Continuous Action Fitted Value
on a high-dimensional system that requires frequent inplteration (CAFVI) [11] with a state-value function approx-
selection (50 Hz). imated with a linear combination of features, a specifically

We considerpreference-balancing taskg8], a class of selected functions of state. The state-value function is a
robotic motion planning tasks. Preference-balancing staskliscounted cumulative reward that can be obtained from a
are robotic tasks characterized with a single goal stagiven state. The features are given as squared preferences
and a set of often-opposing preferences, such as spdé&gction lll). Interacting with a system simulator, CAFVI
and quality, that the robot should balance while meetingppraises the preferences and produces the feature weights

In the planning phase, PEARL generates a trajectory in
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observation and relying on the learned weights, featuremgpetitive disturbances, our method works for a class dfpro
and simulator, produces the next input to be applied on thems and systems influenced by the stochastic disturbance.
system. DAS scales linearly with the input dimensionality, LSAPA, PEARL's control policy, shares both similari-
and under verifiable conditions is guaranteed to progress thies and notable differences with Model Predictive Control
system to the goal [11], but it only works for deterministic(MPC) [13]. MPC takes a cost function, set points, and
systems. the system model, and generates a trajectory that minimizes

In this paper, we extend DAS to work under stochasticumulative cost over the receding horizon. Both PEARL
input disturbances. To that end, we propose Least Squaresd MPC are interested in selecting input that minimizes
Axial Sum Policy Approximation (LSAPA). LSAPA, used the cumulative cost. MPC solves the optimization problem
in the PEARL framework, enables learning preferencaiumerically, while, PEARL constructs state-value funefio
balancing tasksvithout disturbances, and preforming tasksa discounted, infinite-horizon, cumulative cost (rewandmp
with stochastic input disturbances. This is achieved by usirng task execution. PEARL's control policy, LSAPA, uses the
supervised machine learning to find the best input with restate-value function during planning and only needs toesolv
spect to the current disturbance. A Gaussian process, defiree one-step optimization problem with respect to the state-
with its mean and variance, is used to model the disturbangalue function. We use Nonlinear Model Predictive Control
of the input [3]. We assume that its probability distributio (NMPC) [13] to track a deterministic trajectory, and congar
can be measured and estimated outside of LSAPA [30]. Thke results with the proposed LSAPA method.
estimation can be done, for example, equipping the systemDAS [11] solves input selection in linear time using
with an accelerometer, measuring the true acceleration tife divide and conquer. It finds optimal input for each of
the system, and estimating the error between the observiae input axes independently with Lagrangian interpofgtio
and the LSAPA produced acceleration. The key extensicaand then combines the single-axis selections. Although we
from [11] is the use of least squares linear regression in liesshowed that DAS can compensate for some levels of zero-
of interpolation to estimate near-optimal input on eactsaxi mean noise [11], [12], the method stops working in the
This extension allows us to apply the method to non-zenaresence of stochastic disturbances. This is becausettre ex
mean stochastic disturbances limited only by the systemsal disturbance induces unpredictable drift onto the syste
physical limits. The method presented here, LSAPA, uses polynomial least

This novel method, LSAPA, is applied in simulationsquares regression instead of interpolation to compefsate
to the Swing-free Aerial Cargo Delivery and multi-robotthe stochastic disturbances.
Rendezvous tasks (Fig. 1), and experimentally verified on RL is well-suited for solving stochastic Markov decision
Swing-free Aerial Cargo Delivery. The method is evaluategrocesses (MDPs) and the current state of the art is ex-
for computational efficiency, and trajectory quality by com panding the methods to domains with large and continuous
paring it to DAS, Model Predictive Control (MPC), andspaces, such as robotics [17]. Gradient descent methods for
Hierarchical optimistic optimization applied to treéldOOT) policy approximation work well in some convex cases, but
[21]. A preliminary version of LSAPA was presented in anrequire an estimate of the gradient, and can take a long time
unpublished workshop paper [9]. Here, we extend that woro converge. Some other methods in use are Gibbs sampling
with: 1) proof that the objective function is quadratic arash [16], Monte Carlo methods [18], and sample averages [2].
a single global maxima, 2) computational-efficiency analyFinally, a new class of sampling methods optimistically
sis, 3) experiments on Swing-free Aerial Cargo-delively, 4narrows the search space [4], [5], [21], [31]. Of this clags w
comparison with MPC and HOOT, and 5) evaluation on theompare LSAPA againslierarchical optimistic optimization
Rendezvous task. applied to treeHOQT), [21] a derivative-free optimization

Il RELATED WORK that hierarchically discretizes the space into progresgiv

smaller cells.
Robot motion control under stochastic disturbance has e yse a quadrotor with a suspended load as our bench-

been studied on a number of problems. For instance, quadifarking platform because it is a popular research platform
tor trajectory tracking under wind-gust disturbances Wagading to solutions for multiple robots [27], hybrid syste

solved using piecewise linearization [1]. Path plannind anfg)  differentially-flat approach [28], and load trajector
obstacle avoidance in the presence of stochastic wind fgfcking [24] among others.

a blimp was solved using dynamic programming and aug-

mented MDPs [14]. In another example, methods to handle lll. PROBLEM FORMULATION

motion planning and trajectory generation under uncestain  Our goal is to plan preference-balancing tasks on a control-
use low-level controllers for stabilization of trajectsi affine system in the presence of an external stochasticrdistu
within reach tubes [7], or trajectory libraries [20]. Otherbance. Fig. 2 describes the planner’s flow. We assume that
approaches to UAV control in environments with a drifta RL method provides a feature vectdt, and weightsg,

field explicitly solve the system dynamics [22], [26], or usdearned with anethod without disturbancesuch as CAFVI.
iterative learning to estimate repetitive disturbancd,[Z3]. During the planning, we assume that we have a black-box
While these solutions are aimed at particular systems simulator of the system, which receives mean and variance



H
=

functionV o D.
F(x), 8 RL literature often works withaction-value function@ :
X x U — R, a measure of the discounted accumulated

Planner Robot reward collected when action is taken at stater [29].
LSAPA | H—u(t— In relation to the state-value function, V (2), action-vai
v x can be represented as
u‘!l; J
» Simulator Disturbance -
il Estimator Q(z,u) =V(D(z,u)) = ZeiFi(D(wa u)) 3)
. o i=1
Nu(t), o)) . . .
(0 Thus, we learn the approximation for the greedy policy
using
Fig. 2. Flow diagram for learning and planning preferenakahcing tasks. h*(z) = argnlljaXQ(m, u), (4)
ue
and finding a near-optimal solutidi(x) for (4).
of the current probability distribution of the disturbance V. METHODS

N (ux, or2). The planner generates trajectories for a physical . . o
system. At every time steps, LSAPA, observes a state, 1he Least squares axial policy approximatithSAPA)
;. By sampling the simulator, LSAPA finds a near-optimaPolicy extends DAS to handle non-zero mean disturbances.

input, uy, to apply to the system. This is done by first learning feature weights off-liwéhout
We model a robot as a discrete time, control-affine systeffisturbances and then using those learned weights foreonlin
with stochastic disturbancd) : X x U — X, trajectory planningwith disturbances. LSAPA bridges the

gap between learning without disturbances and planning
D @ppr = f@e) +g@n) (un + ). @) With them. The Lagrangian interpolation uses only three
Statesz;, € X C R’ belong to the position-velocity space points to interpolate the underlying quadratic functiord an
and the control input is acceleration;, € U C R%. The this compounds the error from the disturbances. In contrast
input space is a compact set containing origh,€ U.  our new method, LSAPA, uses least squares regression with
The Lipschitz continuous functiog : X — R% x R™  many sample points to compensate for the induced error.
is regular outside the origing;, € X \ {0}. The drift Specifically DAS takes advantage of the facts that action-
f: X — R%, is bounded and Lipschitz continuous. Theyalue function,@, is a quadratic function of the input
non-deterministic termy, is an independent and identically for any fixed arbitrary statez, in a control-affine system
distributed random variable drawn from a Gaussian distriby1) with state-value approximation (2) [11]. DAS finds an
tion N(fi,, 07, ) known to the simulator, but not LSAPA; approximation for the maximum locé) function for a fixed
it acts as an additional and unpredictable external force Gffates. It works in two steps, first finding maxima on each
the system. Time step is omitted when possible. axis independently and then combining them together. To
As in [11], our goal is to learn a preference-balancingind a maximum on an axis, the method uses Lagrangian
task that takes the system to the origin in a timely-manngfterpolation to find the coefficients of the quadratic poly-
while reducing along the trajectory preferences given bijomial representing th€) function. Then, an action that
matrix A = [a;...aq,]. Each of the vectors; defines a maximizes thep function on each axis is found by zeroing
task preference. For instance, vectorthat corresponds to the derivative. The final policy is a piecewise maximum
preference to reduce the displacement of the suspended logfla convex and simple vector sums of the action maxima
will have components that correspond to the position of thgund on the axes. The method is computationally-efficient,
suspended load set to one, while the rest of the componestsaling linearly with the action space dimensionality. dt i
will be equal to zero. VectoF (z) = [Fi(z), ---,nggfc)]T is  also consistent, as the maximum selections do not depend

a feature vector, with componeni(z) = |lafz[>, i = on the selected samples. Because deterministic axialigmlic
L,..,dg. are sample independent, they do not adapt to changing
The state-value function approximation is conditions or external forces. We extend the deterministic
dg axial policies to the presence of disturbances via LSAPA.
V(x) = Z 0:;F;(x) =" AGATx (2) LSAPA uses least squares regression, rather than Lagrangia
i=1 interpolation, to select the maximum on a single axis. This

wheref = [0, ...79dQ]T is the parametrization that we learn,change allows the LSAPA method to compensate for the

and ©(x) = OTIdg is a diagonal matrix representation oferror induced by non-zero mean disturbances.

the parametrizatiod. We first show that th&) function remains quadratic with
Greedy policy,h* (x) = argmax, ; V(D(x,u)) is opti- a maximum even when the system is influenced with a

mal with respect to the state-value function The problem stochastic term.

is that in continuous spaces greedy policy calculation be- Proposition4.1: Action-value functionQ(x, ) (3) cor-

comes an optimization problem over an unknown objectiveesponding to state-value functiéh (2), and a discrete-time



system (1) is a quadratic function of inputfor all states labels that match the training samplés Matrix,

outside the origing € X\ {0}. When® is negative definite, (ur:)?  wi; 1

the action-value functior is concave and has a unique o (ugi)?  wg; 1 10

maximum. i = : (10)
Proof: The proof is similar to the proof of Proposition (Udp,i)®  d,i 1

3.1 [11], and relies on the fact that although the stochast@ntains the training data projected onto the quadratig-pol
disturbance changes the system dynamics at every time stapmial space. The solution to the supervised machine learn-

it does not interact with the control input. ing problem,
After rearranging terms we can write the dynamics (1) as Cipi = Qi (11)
D: xpy1 = fi(xe, M) + g(Tr)ug, fits p; into the training data’; and labelsQ;. The solution
where f1 (zx,m.) = f(zx) + g(zi)ni does not depend on 10 (11),
input uy. Let us denote\ = A®@A”. For an arbitrary state . o )
z and any value of the disturbanee pi = ar%’man(CmPi = Qa,5(uj,i)) (12)
tog=1
Q(x, u,n) = V(D(z,u,mn)) (5) ’

is the coefficient estimate of th@-axial restriction (8). A
=V(fi(z,n) + g(x)u) (6)  solution tonwf’;’(“) =0 is a critical point, and becausg is
= (fi(z,n) + g(x)u)"A(f1(z,n) + g(x)u). quadratic the critical point is

(7) Ax ﬁl,i
. . . : ) u; = ———. (13)
Thus,(Q is a quadratic function of action at any fixed state 2p2,;
outside the origing € X \ {0}, and fixed disturbance. Lastly, we ensure that action selection falls within the
To show thatQ has a maximum, we inspe€l's Hessian @allowed action limits,
for fixed statex and disturbancey, ; = min(max (4}, ul), ut), (14)
2 2
% %ﬁ:’) where v/ anq u" are onver and upper acceleration bounds
HQ(x,u,n) = on thei'” axis, respectively.
Q@um)  PQzum) Repeating the process of estimating the maxima on all
a“d%aul Ouay, dua, axes and obtaining; = [ii1, ..., Giq, |, we calculate the final
=2g(z)" Ag(x), policy with
which cancels the stochastic term, because the stochastic hQ(x), Q(z,h%(x)) > Q(x,h(x))
term does not affect square of the inpwtas seen in (7). h(x) = (15)
Becauseg(x) is regular for all statese € X \ {0} and hQ(x), otherwise
® < 0, the Hessian is negative definite, §bis concave here
with a maximum for an arbitrary state outside of the o:gm. he (z) = d-hS (x) (convex policy)
du
Next, we present finding the maximum 6h axis using least hQ(x) = Z e, (non-convex policy)
squares linear regression with polynomial features. i1
Definition 4.2: Q-axial restrictionon it axis is a univari- ~ The policy approximation (15) combines the simple vector
ate functionQ.i(u) = Q(z, ue;), wheree; is a unit vector Sum of the non-convex policies (14) with the convex sum
along ofi*" axis. policy. The convex sum guarantees the system’s monotonic

progression towards the goal for a deterministic systerfy [11
but the simple vector sum (non-convex policy) does not [11].
Qz,i(u) = p [u? u 1]7, (8) If, however, the vector sum performs better than the convex
for some vectorp, = [pa; p1. po,i]T € R3 based on sum policy, then (15) allows us to use the better result.
Proposition 4.1. Our goal is to fing; by sampling the input Disturbance change® function and the regression fits Q
spaceU at fixed state. to the observed data. Thus, the algorithm adapts.
Proposition4.3: The computational cost to calculating
[-SAPA with (15) is O(dy - d. - d; - d,), assuming that
dy < dy, < dy < d,.
Proof: ~ Complexity of calculating’, for one-
dimensional input iS9(d,,). Since F' can be calculated in
T O(d,), the complexity of (9) i<0(d, - d,, - d2). Formulating
Qi = [Qa,1(u1) - Qua, (ua,.i)]" ©)  matrix ¢; in (10) is O(d,,). The solution to the regression
where Q. ;(u;:) = HTF(m;-_’Z-), j =1,..,d,. Using the problem (11) and (12) is asymptotically(d,, ) [19], since we
supervised learning terminology the Q estima@s, are the use polynomial of the second degree for the regression. Thus

(-axial restriction oni™™ axis is a quadratic function,

Suppose, we colleet, input samples in thé” axis,U; =
[u1; ... ug, ;)T. The simulator returns state outcomes whe
the input samples are applied to the fixed stateX; =
[, ..z |7, wherex); < D(z,u;;), j=1,..,dn

Next, Q-estimates are calculated with (3),



the asymptotic complexity of calculating (13) @(d, - d,, - The Rendezvous taskvolves two heterogeneous robots,
d2)+0(d,)+0(d,) = O(d,-d,-d%). Finally, the complexity an aerial vehicle with suspended load, and a ground robot.
of the final input selection (14) i©(d, - d,, - d> - d,,) after The two robots work together for the cargo to be delivered
repeating the process for all axes. B on top of the ground robot (Fig. 1b), thus the load must have
Therefore, LSAPA's running time depends on the state ardinimum oscillations when they meet. The state space is a
input dimensions rather than their physical size. On therth16-dimensional vector of the joint UAV-load-ground robot
hand, its running time depends on the number of featdges position-velocity spacez = [p,, Py, N, Py, Py, )", and
and samplegl,,. Since the number of features is small andhe action set is 5 dimensional acceleration vector on the
fixed to the task, their impact to the complexity is minimal UAV (3 dimensions), and the ground robot (2 dimensions),
However, the algorithm is sensitive to number of collectedt = [p,, p,]7. The maximum acceleration of the UAV is
samples. In [9], we preformed a study that examined th&m/s?, while the maximum acceleration of the ground robot
optimal number of samples to be used for the Flying Inverteis 2m/s?. Feature vectotF contains: Fy(z) = ||p,,, —
Pendulum task. The results showed that the trajectorytgualip, , ||*, the distance between the ground and aerial robot's
increases exponentially with the sample size, and beyondaad = and y coordinates,F»(z) = |p,. — p,. — 0.6]%,
certain level the trajectories do not improve significantlythe difference in high equal to the suspension cable length,
Due to LSAPAs complexity dependence on the samplés(xz) = ||p, — py||?, their relative speeds, anbl,(z)| =
size, it is useful to perform a one-time empirical study to||?> and F5(z) = ||9||?> the load’s position and velocity
find the optimal sample size, which produces good-qualitselative to the UAV.
trajectories and retains fast run time. First, we learn the tasks using deterministic CAFVI, which
results in the weight® = [-86290 — 350350 — 1430 —
V. RESULTS 1160]7 for Swing-free Aerial Cargo Delivery, an@ =

T
We evaluate LSAPAss 1) suitability for real-time planning [_92256 — 44767 —866 —336 —107]" for Rendezvous. A_\fter
a single deterministic learning phase, we generate tajest

of high-dimensional control-affine discrete time systehrat t : o . . )
'gh-cl ! I I I y for 25 different initial conditions using the learned weiigh

require frequent input, 2) ability to complete preference . ) TR - N
. . . .. 0, and varying disturbance distributions. The initial cdiufi
balancing tasks in the presence of different stochastlutlnpfor Swing-free Aerial Cargo Delivery are withlfn from the

disturbances, and 3) trajectories for feasibility on pbabi _
systems. All simulations are performed in MATLAB 201461,goal, and Rendezvous has the two robots start from within

on a single core of Intel Xeon CPU E5-1620 with 8 Gbslom from each other. Input disturbance distributions are

: : : : [ 2 and a standard
RAM running Windows 7 Enterprise. Experiments ereeva!ua_\ted with a mean of 0, 1, adn/s", an .
unning WInGow i xper v viation of 0, 0.5 and m/s?. We run Rendezvous with

performed on an AscTec Hummingbird Quadrotor equippegie . 5 :
with a 62-centimeter suspended load weighing 45 grams. T ear|1 d'?turbafnfr? of up tc? ibést é)rical;se ;h::'hmaxupum
qguadrotor and load positions were captured with a motiofic“® etra lon o ? %ml{[?] :0 0 di { 5 ban € system
capture system at 100 Hz. Testbed’s internal tracking Syggnno compensate for the farger disturbance.

tem tracked the quadrotor position using LSAPA generated \(/jVeNli:AoPrrép?re Lhe_ pl)r%posedDL?APA o dat D'?‘S’ HSA%T’
trajectory as a reference. an or fenel Largo Delivery and fo fo a ’

HOQOT for the Rendezvous task. HOOT uses three-level

hierarchical search, with each level providing ten timesrfin

) ) ) ) discretization. NMPC tracks a trajectory generated assgmi
The Swing-free Aerial Cargo Delivery taskequires a g gisturbances. It is implemented using the MATLAB

quadrotor, carrying a load on a suspended rigid cable, {gytine provided in [13] with a 5 time-step long horizon, and

deliver the cargo to a given location with the minimal resid¢ gt functionJ (z, w) = E[||p’ — p.||2 +0.1- |p’ — p.]|?]),

ual load oscillations [10]. The task has applications inwdel wherep’ is position of the state that results when input

ery supply and aerial transportation in urban environmentg; gpplied toz. p,. is a position at the reference trajectory.

The task is easily described, yet, it is difficult for humanrhe expectation is calculated as an average of 100 samples.

demonstration as it requires a careful approach to avojdyipc uses the same disturbance-aware simulator used for

destabilizing the load. The state space is 10-dimensiongsapa DAS. and HOOT. The simulator calculates closed-

ini _ N 1T ’ .. . .
joint system,z = [py, n, pg,n]", of the quadrotor's and |50p optimization problem and simulates the plan.
the load’s position and velocity, whepe, = [z, y, 2|7 is

the quadrotor’s position, ang = [¢, ¢|T is the load’s dis- B. Suitability for online input selection

placement in polar coordinates. The input is a 3-dimensiona Fig. 3 summarizes the planning results. Results in Fig.
acceleration vector applied to the quadrotor’s center cfana 3a show that for both tasks the time needed to calculate
u = [#, 4, £]T with a maximum acceleration of 8:/s%. next input with LSAPA is an order of magnitude smaller
The features are squared distances of quadrotor positidhan the20ms time step (green line), allowing ample time
Fi(z) = |pyl|* load’s displacementFy(xz) = |n?||, to plan the trajectory in a real-time closed feedback loop.
quadrotor’s velocityFs(x) = ||p,||%, and the load’s angular DAS calculates the next input faster than LSAPA. This is
velocity, Fy(z) = ||9]|% expected because the deterministic policy uses 3 samples

A. Setup and Methodology
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(a) Planning time (b) Swing-free distance (c) Rendezvous
Fig. 3. Summary of planning results with LSAPA, DAS, HOOT, IR’ policies for Swing-free Delivery and Rendezvous tasksaged over 25 trials.
Time needed to select a single action (a), and distance fnengdal during the last 1 second of the flight for Swing-frediveey (b) and Rendezvous (c)

tasks. [n, m] signifies disturbance witkl (m, n2). Y-axes are logarithmic. Results below green line are slgitédr real-time application (a), and complete
the tasks (b) and (c).

per input dimension, while the stochastic policy in thisecasSwing-free task (Fig. 3b), but its performance degrades in
uses 300 samples. In contrast, although HOOT perforntise higher-dimensional Rendezvous (Fig. 3c). The quality
under20 ms for the Swing-free task, it scales exponentiallyof NMPC solution also degrades with the disturbance (Fig.
with the input. As a result, HOOT také®) ms to calculate 3b). It is more pronounced than with DAS, because NMPC
input for the Rendezvous task, twice the length of thenakes input selection based on solving a fixed horizon opti-
minimal time step required for real time planning. NMPCmization problem. The optimization problem accumulates th
is two orders of magnitude slower for the lower-dimensionagstimation error, thus invalidating the solution, and deral
Swing-free task, averaging abodd0 ms to select an input, horizon lengths are not sufficient to capture good tracking.
over ten times that the available window for the real-timé=or the larger standard deviation1/s?), both LSAPA and
control. NMPC for the Rendezvous task took 10 times longddOOT create trajectories that still perform the tasks. But f
than for the Swing-free task, requiring about 3 hours t&Rendezvous, LSAPA produces the comparable results in an
calculate a single 15-second trajectory. Thus, we decidedder of magnitude less time (Fig. 3a).
against running systematic NMPC tests with Rendezvous Figs. 4 and Fig. 5 show trajectories planned with LSAPA
task because of the impractically long computational time.and HOOT for Swing-free task under exertion of disturbance
Both LSAPA and DAS are computationally cheap, lin-with distribution\V/(2,0.5%) (Fig. 4c), and Rendezvous with
ear in the input dimensionality, while HOOT, and NMPCdisturbance with distribution\/(1,12). Although both the
scale exponentially. The timing results show that, assgmimuadrotor’s and the load’s speeds are noisy (Figs. 4a and
LSAPA provides good quality trajectories, LSAPA can betb), the position changes are smooth, and the quadrotor
a viable method for input selection in real-time on higharrives near the goal position where it remains. Similarly,
dimensional systems that require high-frequency control. in Rendezvous the two robots meet in 4 seconds, after the
] o ] ] initial failed coordinated slow down at 1 second. Note, that
C. Trajectory quality in presence of input disturbances  he targeted position for the quadrotor’s altitude is 0.Gere
Next, in Figs. 3b and 3c, we examine if the trajectoriesn order for the load to be positioned above the ground robot.
complete the task, reaching the goal regiorbofn. Due to  The results in Fig. 3 confirm that both methods produce
the constant presence of the disturbance, we consider the s@ry similar trajectories, but recall that HOOT does noteca
erage position of the quadrotor rather than simply expgctinwell for larger problems and did not produce Rendezvous
to reach the goal region. Note that the accumulated squartdjectories in real-time. In contrast, LSAPA producedhbot
error, typically used to measure quality of tracking method trajectories in real-time.
is not appropriate for LSAPA, HOOT, and DAS because ) o )
they generate trajectories on the fly and have no referenBe Trajectory feasibility for Physical System
trajectory. Thus, we measure if the system arrives and staysTo evaluate how feasible the LSAPA trajectory is on a
near the goal. As a control case, we first run simulationghysical system and to assess the simulation fidelity, we com
for repeatable disturbanca/(1,02) andA/(2,02)). LSAPA, pare experimentally LSAPA and DAS planned trajectories.
NMPC, and HOOT methods complete the task (Fig. 3b). We chose DAS for this experiment because it is the fastest
For a small standard deviation of 04 /s?> LSAPA input selection method, and it performed better than HOOT
performs similarly to HOOT on both tasks, producing train previous experiments [11].
jectories that complete the task, unlike DAS and NMPC. Fig. 6 shows the results of the experiment when a distur-
DAS is able to compensate for zero-mean noise for thieance with distributionV'(2,0.5%) is imposed on the system
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(Fig. 6¢). The quadrotor starts at coordinates (-1, -1, 1.2pr a goal's asymptotic stability, in order to be able prédic
and the goal is at (0.5, 0.5, 1.2) meters. We notice (Fighe likelihood of system completing the task.
6a) LSAPA experiences an overshoot of the goal after 2
seconds, but compensates and returns to the goal position. ACKNOWLEDGMENTS
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