
Continuous Action Reinforcement Learning for Control-Affi ne Systems
with Unknown Dynamics

Aleksandra Faust1,∗, Peter Ruymgaart1, Molly Salman2, Rafael Fierro3 and Lydia Tapia1

Abstract— Control of nonlinear systems is challenging in real-
time. Decision making, performed many times per second, must
ensure system safety. Designing input to perform a task often
involves solving a nonlinear system of differential equations,
which is a computationally intensive, if not intractable, problem.
This article proposes sampling-based task learning for control-
affine nonlinear systems through the combined learning of both
state and action-value functions in a model-free approximate
value iteration setting with continuous inputs. A quadratic
negative definite state-value function implies the existence of
a unique maximum of the action-value function at any state.
This allows the replacement of the standard greedy policy
with a computationally efficient policy approximation that
guarantees progression to a goal state without knowledge of
the system dynamics. The policy approximation isconsistent,
i.e., it does not depend on the action samples used to calculate it.
This method is appropriate for mechanical systems with high-
dimensional input spaces and unknown dynamics performing
constraint-balancing tasks. We verify it both in simulation and
experimentally for a UAV carrying a suspended load, and in
simulation, for the rendezvous of heterogeneous robots.

Keywords:Reinforcement learning, policy approximation,
approximate value iteration, fitted value iteration, continuous
action spaces, control-affine nonlinear systems

I. I NTRODUCTION

Humans increasingly rely on robots to perform tasks.
A particular class of tasks that interests us areconstraint-
balancing tasks. These tasks have one goal state and op-
posing constraining preferences on the system. Balancing
the speed and the quality of the task are often seen as
two opposing preferential constraints. For example, the time-
sensitive aerial cargo delivery task must deliver suspended
load to origin as soon as possible with minimal load dis-
placement along the trajectory (Figure 1a). The rendezvous
task (Figure 1b) requires cargo-bearing UAV and a ground
robot to meet without a predetermined meeting point. In
these tasks the robot must manipulate and interact with its
environment, while completing the task in timely manner.
This article considers robots as mechanical systems with
nonlinear control-affine dynamics. Without knowing their
exact dynamics, we are interested in producing motions that
perform a givenconstraint balancing task.

1Dept. of Computer Science, University of New Mexico, Albuquerque,
NM 87131,{afaust, apr1248, tapia}@cs.unm.edu

2Computer Science Dept., Austin College, Sherman, TX 75090,
msalman10@austincollege.edu

3Dept. of Electrical and Computer Engineering, University of New
Mexico, Albuquerque, NM, 87131-0001,rfierro@ece.unm.edu

∗ Corresponding author

(a) Cargo delivery (b) Rendezvous

Fig. 1. Evaluated tasks, (a) swing-free cargo delivery and (b) rendezvous.

Control of multi-dimensional nonlinear systems, such as
robots and autonomous vehicles must perform decision mak-
ing many times per second, and must ensure system safety.
Yet, designing input to perform a task typically requires
system dynamics knowledge. Classical optimal control ap-
proaches, use combination of open-loop and closed loop
controllers to generate and track trajectories [1]. Another
technique, first linearizes the system and then applies LQR
methods locally [2]. All classical methods for solving non-
linear control problems require knowledge of the system
dynamics [2]. On the other hand, we present a solution
to an optimal nonlinear control problem when the system
dynamics is unknown.

Reinforcement learning (RL) solves control of unknown
or intractable dynamics by learning from experience and
observations. The outcome of the RL is a control policy. Typ-
ically the RL learns the value (cost) function and derives a
greedy control policy with respect to the value. In continuous
spaces, the value function is approximated [3]. When actions
are continuous, the greedy policy must be approximated as
well. The downside of RL is that its sampling nature renders
stability and convergence proofs challenging [3].

We rely on RL, to learn control policy forconstraint-
balacing taskswithout knowing the robot’s dynamic. Given
the continuous state space,fitted value iteration(FVI) ap-
proximates a value function with a linear map of basis
functions [4]. FVI learns the linear map parametrization iter-
atively in an expectation-maximization manner [3], [5]. The
basis function selection is challenging because the learning
convergence is sensitive to the selection of the approximation



functional space [3]. Here, we select the basis functions to
both fit the task and define value function as a Lyapunov
candidate function.

We extend FVI, a discrete action RL algorithm, to contin-
uous action space to developcontinuous action fitted value
iteration (CAFVI). The novelty is a joint work with two
value functions, state-value and action-value, to learn the
control. CAFVI learns, globally to the state space, state-
value function, which is negative of the Lyapunov. On the
other hand, in the estimation step, it learns an action-value
function locally around a state to estimate its maximum.
This maximum is found using the newly developed policies
that divide-and-conquer the problem by finding the optimal
inputs on each axis separately and then combine them.
Not only are the policies computationally efficient, scaling
linearly with the input’s dimensionality, but they produce
consistentnear-optimal input; their outcome does not depend
on the input samples used for calculation. Although prob-
lem decomposition via individual dimensions is a common
technique for dimensionality reduction [6], this article shows
that single-component policies lead to a stable system, offers
three examples of such policies to turn the equilibrium into
an asymptotically stable point, and characterizes systems
for which the technique is applicable. The reinforcement
learning agent is evaluated on a quadrotor with suspended
load and a heterogeneous robot rendezvous task.

From the practical perspective, the article gives methods
to implement an FVI with linear map approximation for a
constraint-balancing task, on control-affine systems [7] with
unknown dynamics and in presence of a bounded drift. These
tasks require the system to reach a goal state, while minimiz-
ing opposing constraints along the trajectory. The method is
fast and easy to implement, rendering an inexpensive tool to
attempt before more heavy-handed approaches are attempted.

II. RELATED WORK

Efficient, near-optimal nonlinear system control is an
important topic of research both in feedback controls and
reinforcement learning. With known system dynamics, [8]
develops adaptive control for interconnected systems. When
the system dynamics is not known, optimal [9], [10], [11]
and near-optimal [12], [13], [14] control for interconnected
nonlinear systems are developed for learning the state-value
function using neural networks. This article addresses the
same problem, we use linearly parametrized state-value func-
tions with linear regression rather than neural networks for
parameter learning. Generalized Hamilton−Jacobi−Bellman
(HJB) equation for control-affine systems can be approxi-
mately solved with iterative least-squares [15]. Our method
also learns the value function, which corresponds to the
generalized HJB equation solution, through iterative mini-
mization of the least squares error. However, we learn from
samples and linear regression rather than neural networks.
For linear unknown systems [16] gives an optimal control
using approximate dynamic programming, while we con-
sider nonlinear control-affine systems. Convergence proofs

exist for neural network-based approximate value iteration
dynamic programming for linear [17] and control-affine
systems [18], both with known dynamics. Here, we are
concerned with approximate value iteration methods in the
reinforcement learning setting - without knowing the system
dynamics.

In continuous action RL, the decision making step, which
selects an input through a policy, becomes a multivariate
optimization. The optimization poses a challenge in the RL
setting because the objective function is not known. Robots
need to perform input selection many times per second. 50-
100 Hz is not unusual [19]. The decision-making challenges
brought action selection in continuous spaces to the forefront
of current RL research with the main idea that the gradient
descent methods find maximums for known, convex value
functions [20] and in actor-critic RL [21]. Our method is
critic-only and because the system dynamics is unknown,
the value-function gradient is unavailable [21]. Thus, we
develop a gradient-free method that divides-and-conquers
the problem by finding the optimal input in each direction,
and then combines them. Other gradient-free approaches
such as Gibbs sampling [22], Monte Carlo methods [23],
and sample-averages [24] have been tried. Online optimistic
sampling planners have been researched [25], [26], [27],
[28]. Specifically, hierarchical optimistic optimization ap-
plied to trees(HOOT) [27], uses hierarchical discretization to
progressively narrow the search on the most promising areas
of the input space, thus ensuring arbitrary small error. Our
methods find a near-optimal action through sample-based
interpolation of the objective function and find the maximum
in the closed-form on each axis independently.

Discrete actions FVI has solved the minimal residual
oscillations task for a quadrotor with a suspended load and
has developed the stability conditions with a discrete action
Markov Decision Process (MDP) [29]. Empirical validation
in [29] shows that the conditions hold. This article charac-
terizes basis vector forms for control-affine systems, defines
admissible policies resulting in an asymptotically stable
equilibrium, and analytically shows the system stability.The
empirical comparison with [29] in Section IV-B shows that
it is both faster and performs the task with higher precision.
This is because the decision making quality presented here is
not limited to the finite action space and is independent of the
available samples. We also show wider applicability of the
methods developed here by applying them to a multi-agent
rendezvous task. Our work currently under submission [30],
extends [29] to environments with static obstacles specifi-
cally for aerial cargo delivery applications, and is concerned
with generating trajectories in discrete action spaces along
kinematic paths.

III. M ETHODS

This section consists of four parts. First, Section III-A
specifies the problem formulation for a task on a control-
affine system suitable for approximate value iteration with
linear basis vectors. Based on the task, the system and



the constraints, we develop basis functions and write state-
value function in Lyapunov quadratic function form. Second,
Section III-B develops sample-efficient policies that takethe
system to the goal and can be used for both planning and
learning. Third, Section III-C places the policies into FVI
setting to present a learning algorithm for the goal-oriented
tasks. Together they give practical implementation tools
for solving constraint-balancing tasks through reinforcement
learning on control-affine systems with unknown dynamics.
We discuss these tools in Section III-D.

A. Problem formulation

Consider a discrete time, control-affine system with no
disturbances,D : X × U → X ,

D : xk+1 = f(xk) + g(xk)uk. (1)

where states arexk ∈ X ⊆ R
dx , input is defined on a closed

interval around origin,uk ∈ U ⊆ R
du , du ≤ dx, 0 ∈ U ,

and g : X → R
dx × R

du , g(xk)
T = [g1(xk) ... gdu

(xk)]
is regular for xk ∈ X \ {0}, nonlinear, and Lipschitz
continuous. Driftf : X → R

dx , is nonlinear, and Lipschitz.
Assume that the system is controllable [2]. We are interested
in autonomously finding control inputuk that takes the
system to its origin in a timely-manner while reducing‖Ax‖
along the trajectory, whereAT = [a1, ...,adg

] ∈ R
dg ×R

dx ,
dg ≤ dx is nonsigular.

A discrete time, deterministic first-order Markov decision
process (MDP) with continuous state and action spaces,

M : (X,U,D, ρ) (2)

defines the problem.ρ : X → R is the observed state reward,
and the system dynamicsD is given in (1). We assume that
we have access to its generative model or samples, but that
we do not knowD. In the remainder of the article, when
the time stepk is not important, it is dropped from the state
notation without the loss of generality.

A solution to MDP is an optimal policyh∗ : X → U ,
that maximizes discounted cumulative state reward. Thus,
the objective function to maximize,state-valuecost function
V : X → R, is

V (x) =

∞
∑

k=0

γkρk, (3)

where ρk is immediate reward observed at time stepk
starting at statex, and 0 ≤ γ < 1 a discount constant.
RL solves MDP without analytical knowledge of the system
dynamicsD, and reward,ρ. Instead, it interacts with the
system and iteratively constructs the value function. Using
the Bellman equation [31], the state value functionV can be
recursively represented as

V (x) = ρ(x) + γmax
u

V (D(x,u)).

The state value function is an immediate state reward plus
discounted value of the state the system transitions following
greedy policy. Theaction-state functionQ : X ×U → R is,

Q(x,u) = ρ(x′)+γmax
u′

V (D(x′,u′)), andx′ = D(x,u).

Action-value function,Q, is the sum of the reward obtained
upon performing actionu from a statex and the value of
the state that follows. Both value functions give an estimate
of a value. Astate-value function, V , is a measure of state’s
value, while anaction-value function, Q, assigns a value to
a transition from a given state using an input. Note, that RL
literature works with either astate-rewardρ, or a related
state-action rewardwhere the reward is a function of both
the state and the action. We do not consider a cost of action
itself, thus thestate-action rewardis simply the reward of
the state that the agent transitions upon applying actionu in
the statex. Therefore, the relation between theV andQ is

Q(x,u) = V ◦D(x,u). (4)

Both value functions devise a greedy policyh : X → U , at
statex, as the input that transitions the system to the highest
valued reachable state.

hQ(x) = argmax
u∈U

Q(x,u) (5)

A greedy policy uses the learned value function to produce
trajectories. We learn state-value function,V , because its
approximation can be constructed to define a Lyapunov
candidate function, and in tandem with the right policy it can
help assess system stability. For discrete actions MDPs, (5) is
a brute force search over the available samples. When action
space is continuous, (5) becomes an optimization problem
over unknown functionD. We consider analytical properties
of Q(x,u) for a fixed statex and knownV , but having only
knowledge of the structure of the transition functionD. The
key insight we exploit is that existence of a maximum of
the action-value functionQ(x,u), as a function of inputu,
depends only on the learned parametrization of the state-
value functionV .

Approximate value iteration algorithms with linear map
approximators require basis vectors. Given the state con-
straint minimization, we choose quadratic basis functions

Fi(x) = ‖a
T
i x‖

2, i = 1, ..., dg. (6)

so that state-value function approximation,V , is a Lyapunov
candidate function. Consequently,V is,

V (x) =

dg
∑

i=1

θiFi(x) = (Ax)TΘ(Ax) = xT
Λx (7)

for a diagonal matrixΘ = diag(θ1, θ2, ..., θdg
), and a

symmetric matrixΛ. Let us assume thatΛ has full rank.
Approximate value iteration learns the parametrizationΘ

using a linear regression. LetΓ = −Λ. Note, that if
Θ is negative definite,Λ is as well, whileΓ is positive
definite, and vice versa. Let also assume that whenΓ > 0
the system drift is bounded withx with respect toΓ-
norm, f(x)TΓf(x) ≤ xT

Γx. This characterizes system
drift, conductive to the task. We empirically demonstrate its
sufficiency in the robotic systems we consider.



TABLE I

SUMMARY OF KEY SYMBOLS AND NOTATION .

Symbol Description
M : (X,U,D, ρ) MDP
V : X → R, V (x) = xT

Λx State-value function
Q : X × U → R Action-value function
Ax Constraints to minimize
Λ = ATΘA Combination of task constraints and

value function parametrization
Γ = −Λ Task-learning matrix
∆Q(x, û) Policy ĥQ in statex
en nth axis unit vector
u ∈ U Input vector
u ∈ R Univariate input variable
un ∈ R Set of vectors in direction ofnth axis
ûn ∈ R Estimate in direction of thenth axis
ûn =

∑n
i=1 ûnei Estimate over firstn axes

û Estimate ofQ’s maximum with a policy

Q
(p)
x,n(u) = Q(x,p+ uen) Univariate function in the direction

of axis en, passing through pointp

Fig. 2. Example of two dimensional input and a quadratic value function.
u∗ is the optimal input,u is the one selected.

To summarize the system assumptions used in the remain-
der of the article:

1) The system is controllable and the equilibrium is
reachable. In particular, we use,

∃i, 1 ≤ i ≤ du, such thatf(x)Γgi(x) 6= 0, (8)

and thatg(x) is regular outside of the origin,

g(x)TΓg(x) > 0, x ∈ X \ {0} (9)

2) Input is defined on a closed interval around origin,

0 ∈ U (10)

3) The drift is bounded,

f(x)TΓf(x) ≤ xT
Γx, whenΓ > 0 (11)

Table I presents a summary of the key symbols.

B. Policy approximation

This section looks into an efficient and a consistent policy
approximation for (5) that leads the system (1) to a goal
state in the origin. Here, we learn the action-value function
Q on the axes, and assume a known estimate of the state-
value function approximationV . For the policy to lead the
system to the origin from an arbitrary state, the origin must
be asymptotically stable. Negative of the state-value function
V can be a Lyapunov function, and the value functionV

needs to be increasing in time. That only holds true when
the policy approximation makes an improvement, i.e., the
policy needs to transition the system to a state of a higher
value (V (xn+1) > V (xn)). To ensure the temporal increase
of V , the idea is to formulate conditions on the system
dynamics and value functionV , for whichQ, considered as
a function only of the input, is concave and has a maximum.
In this work, we limit the conditions to a quadratic formQ.
When we establish maximum’s existence, we approximate
it by finding a maximum on the axes and combining them
together. Figure 2 illustrates this idea. To reduce the dimen-
sionality of the optimization problem, we propose a divide
and conquer approach. Instead of solving one multivariate
optimization, we solvedu univariate optimizations on the
axes to find a highest valued point on each axis,ui. The
composition of the axes’ action selections is the selection
vectoru = [u1 .. udu

]T . This section develops the policy
approximation following these steps:

1) show thatQ is a quadratic form and has a maximum
(Proposition III.1)

2) define admissible policies that ensure the equilibrium’s
asymptotic stability (Theorem III.2), and

3) find a sampling-based method for calculating con-
sistent, admissible policies inO(du) time with no
knowledge of the dynamics (Theorem III.4).

Since the greedy policy (5) depends on action-valueQ,
Proposition III.1 gives the connection between value function
(7) and corresponding action-value functionQ.

Proposition III.1. Action-value functionQ(x,u) (4), of
MDP (2) with state-value functionV (7), is a quadratic
function of inputu for all statesx ∈ X . WhenΘ is negative
definite, the action-value functionQ is concave and has a
maximum.

Proof. EvaluatingQ(x,u) for an arbitrary statex, we get

Q(x,u) = V (D(x,u)) = V (f(x) + g(x)u), from (1)

= (f(x) + g(x)u))TΛ(f(x) + g(x)u)

Thus,Q is a quadratic function of actionu at any statex.
To show thatQ has a maximum, we inspectQ’s Hessian,

HQ(x,u) =







∂2Q(x,u)
∂u1∂u1

... ∂2Q(x,u)
∂u1∂udu

...
∂2Q(x,u)
∂udu∂u1

... ∂2Q(x,u)
∂udu∂udu






= 2g(x)TΛg(x).

The Hessian is negative definite becauseg(x) is regular for
all statesx andΘ < 0, which means thatΛ < 0 as well.
Therefore, the function is concave, with a maximum.

The state-value parametrizationΘ is fixed for the entire
state space. Thus, Proposition III.1 guarantees that when
the parametrizationΘ is negative definite, the action-value
functionQ has a single maximum. Next, we show that the
right policy can ensure the progression to the goal, but we
first define the acceptable policies.



Definition Policy approximation̂u = ĥQ(x) is admissible,
if it transitions the system to a state with a higher value when
one exists, i.e., when the following holds forpolicy’s gain
at statex, ∆Q(x, û) = Q(x, û)− V (x):

1) ∆Q(x, û) > 0, for x ∈ X \ {0}, and
2) ∆Q(x, û) = 0, for x = 0.

Theorem III.2 shows that an admissible policy is sufficient
for the system to reach the goal.

Theorem III.2. Let û = ĥQ(x) be an admissible policy
approximation. WhenΛ < 0, and the drift is bounded with
(11), the system(1) with value function(7) progresses to an
asymptotically stable equilibrium under policŷhQ.

Proof. ConsiderW (x) = −V (x) = xT
Γx. W is a

Lyapunov candidate function becauseΓ > 0.
To show the asymptotic stability, aW needs to be mono-

tonically decreasing in timeW (xn+1) ≤ W (xn) with
equality holding only when the system is in the equilibrium,
xn = 0. Directly from the definition of the admissible
policy, for the statexn 6= 0, W (xn+1) − W (xn) =
−Q(xn, ĥ

Q(xn)) + V (xn) = V (xn) − Q(xn, û) < 0
Whenxn = 0, =⇒ xn+1 = f(0) = 0, because of (11)
=⇒ W (xn+1) = 0.

Theorem III.2 gives the problem formulation conditions
for the system to transition to the goal state. Now, we
move to finding sample-based admissible policies by finding
maximums ofQ in the direction parallel to an axis and
passing through a point. BecauseQ has quadratic form, its
restriction to a line is a quadratic function of one variable.
We use Lagrange interpolation to find the coefficients ofQ
on a line, and find the maximum in the closed form. We first
introduce the notation forQ’s restriction in an axial direction,
and its samples along the direction.

Definition Axial restriction of Q passing through pointp,
is a univariate functionQ(p)

x,i(u) = Q(x,p+ uei).

If qi = [Qp
x,1(ui1) Qp

x,2(ui2) Qp
x,3(ui3)]

T , are three

samples ofQ(p)
x,i(u) obtained at points[ui1 ui2 ui3], then

Q(x,p+ uei), is maximized at

ûi = min(max(û∗i, u
l
i), u

u
i ), where (12)

û∗i =
qT
i · ([u

2
i2 u2i3 u2i1]− [u2i3 u2i1 u2i2])

T

2qT
i · ([ui2 ui3 ui1]− [ui3 ui1 ui2])T

,

on the interval,uli ≤ u ≤ uui . Equation (12) comes directly
from Lagrange interpolation of a univariate second order
polynomial to find the coefficients of the quadratic function,
and then equating the derivative to zero to find its maximum.
In the stochastic case, instead of Lagrange interpolation,
linear regression yields the coefficients.

A motivation for this approach is that finding maximum in
a single direction is computationally efficient and consistent.
A single-component policy is calculated in constant time. In
addition, the input selection on an axis calculated with (12)
is consistent, i.e. it does not depend on the sample points

uij available to calculate it. This is direct consequence of
quadratic function being uniquely determined with arbitrary
three points. It means that a policy based on (12) produces
the same result regardless of the input samples used, which is
important in practice where samples are often hard to obtain.

Lemma III.3 shows single component policy character-
istics including that a single-component policy is stable
on an interval around zero. Later, we integrate the single-
component policies together into admissible policies.

Lemma III.3. A single input policy approximation(12),
for an input component,i, 1 ≤ i ≤ du has the following
characteristics:

1) There is an input around zero that does not de-
crease system’s state value upon transition, i.e.,∃u0 ∈

[uil, u
i
u] such thatQ(p)

x,i(u) ≥ Q(x,p).

2) Q(0)
x,i(ûi)− V (x) ≥ 0, whenx 6= 0

3) Q(0, ûiei)− V (0) = 0

The proof for Lemma III.3 is in Appendix I.

We give three consistent and admissible policies as exam-
ples. First, the Manhattan policy finds a point that maximizes
Q’s restriction on the first axis, then iteratively finds maxi-
mums in the direction parallel to the subsequent axes, passing
through points that maximize the previous axis. The second
policy approximation, convex sum, is a convex combination
of the maximums found independently on each axis. Unlike
the Manhattan policy that works serially, the convex sum
policy parallelizes well. Third, axial sum is the maximum
of the convex sum policy approximation and nonconvex
axial combinations. This policy is also parallelizable. All
three policies scale linearly with the dimensions of the input
O(du). Next, we show that they are admissible.

Theorem III.4. The system(2) with value function(7),
bounded drift(11), and a negative definiteΘ, starting at
an arbitrary statex ∈ X , and on a setU (10), progresses
to an equilibrium in the origin under any of the following
policies:

1) Manhattan policy:

hQ
m :



































û1 = argmax
u1

l
≤u≤u1

u

Q
(0)
x,1(u)

ûn = argmax
un
l
≤u≤un

u

Q
(û

n−1)
x,n (u), n ∈ [2, .., du],

ûn−1 =
n−1
∑

i=1

ûiei.

(13)
2) Convex sum:

hQ
c : û =

du
∑

i=1

λiei argmax
ui
l
≤u≤ui

u

Q
(0)
x,i(u),

du
∑

i=1

λi = 1

(14)



3) Axial sum:

hQ
s : û =







hQ
c (x), Q(x,hQ

c (x)) ≥ Q(x,hQ
n(x))

hQ
n(x), otherwise

(15)
where

hQ
n(x) =

du
∑

i=1

ei argmax
ui
l
≤u≤ui

u

Q
(0)
x,i(u)

The proof for the Theorem III.4 is in Appendix II.
A consideration in reinforcement learning, applied to

robotics and other physical systems, is balancing exploita-
tion and exportation [32]. Exploitation ensures the safety
of the system, when the policy is sufficiently good and
yields no learning. Exploration forces the agent to perform
suboptimal steps, and the most often usedǫ-greedy policy
performs a random action with probabilityǫ. Although the
random action can lead to knowledge discovery and policy
improvement, it also poses a risk to the system. The policies
presented here fit well in online RL paradigm, because they
allow safe exploration. Given that they are not optimal, they
produce new knowledge, but because of their admissibility
and consistency, their input of choice is safe to the physical
system. For systems with independent inputs, axial sum
policy is optimal (see Appendix III).

C. Continuous action fitted value iteration (CAFVI)

We introduced an admissible, consistent, and efficient
decision making method for learning action-value function
Q locally, at fixed statex, and fixed learning iteration (when
Θ is fixed) without knowing the system dynamics. Now, the
decision making policies are integrated into a FVI frame-
work [5], [3] to produce a reinforcement learning agent for
continuous state and action MDPs tailored for control-affine
nonlinear systems. The algorithm learns the parameterization
Θ, and works much like approximate value iteration [5] to
learn state-value function approximationθ, but the action
selection uses sampling-based policy approximation on the
action-value functionQ. Algorithm 1 shows an outline of the
proposedcontinuous action fitted value iteration, CAFVI.
It first initializes θ with a zero vector. Then, it iteratively
estimatesQ function values and uses them to make a new
estimate ofθ. First, we randomly select a statexs and
observe its reward. Line 6 collects the samples. It uniformly
samples the state space forxls . Because we need three data
points for Lagrangian interpolation of a quadratic function,
three input samples per input dimensions are selected. We
also obtain, either through a simulator or an observation,
the resulting statex′

ij when uij is applied toxls . Line 7
estimates the action-value function locally, forxls anduij

using the currentθl value. Next, the recommended action
is calculated,̂u. Looking up the available samples or using
a simulator, the system makes the transition fromxls using
action û. The algorithm makes a new estimate ofV (xls).
After ns states are processed, Line 12 finds newθ that

minimizes the least squares error for the new state-value
function estimatesvls . The process repeats until eitherθ
converges, or a maximum number of iterations is reached.

Algorithm 1 Continuous Action Fitted Value Iteration (CAFVI)

Input: X,U , discount factorγ
Input: basis function vectorF
Output: θ

1: θ0, θ1 ← zero vector
2: l ← 1
3: while (l ≤ max iterations) and‖θl − θl−1‖ ≥ ǫ do
4: for ls = 1, .., ns do
5: sample statexls and observe its rewardρls
6: {xls ,uij,x

′
ij |i = 1, .., du, j = 1, 2, 3} {obtain

system dynamics samples}
7: for all i, j, qij ← θT

l F (x′
ij) {estimate action-value

function}
8: û ← calculated with (12)
9: obtain{xls , û,x

′
ls
, ρls}

10: vls = ρls + γθT
l F (x′

ls) {state-value function new
estimate}

11: end for
12: θl+1 ← argminθ

∑ns

ls=1(vls − θTF (xls))
2

13: l ← l + 1
14: end while
15: returnθl

The novelties of the Algorithm 1 are continuous input
spaces, and the joint work with both state and action-value
functions (Lines 6 - 8), while FVI works with discrete, finite
input sets and with one of the two functions [3], but not both.
Although the outcome of the action-value function learning
(Line 8) is independent of the input samples, the state-value
function learning (Line 12) depends on the state-samples
collected in Line 5, just like discrete action FVI [5].

D. Discussion

Considering aconstraint-balancing task, we proposed
quadratic feature vectors, and determined sufficient condi-
tions for which admissible policies presented in Section III-
B transition the system to the goal state obeying the task
requirements. Finally, we presented a learning algorithm that
learns the parametrization. There are several points that need
to be discussed, convergence of the CAFVI algorithm, usage
of the quadratic basis functions, and determination of the
conditions from Section III-A.

Full conditions under which FVI with discrete actions
converges is still an active research topic [3]. It is known that
it converges when the system dynamics is a contraction [3].
A detailed analysis of the error bounds for FVI algorithms
with finite [33] and continuous [24] actions, finds that the
FVI error bounds scale with the difference between the basis
functional space and the inherent dynamics of the MDP.
The system’s dynamics and reward functions determine
the MDP’s dynamics. We choose quadratic basis functions,



because of the nature of the problem we need to solve and
for stability. But, basis functions must fit reasonably well
into the true objective function (3) determined by the system
dynamics and the reward, otherwise CAFVI diverges.

The goal of this article is to present an efficient toolset for
solving constraint-balancing tasks on a control-affine system
with unknown dynamics. Using quadratic basis functions,
Algorithm 1 learns the parametrizationθ. Successful learning
that converges to aθ with all negative components, produces
a controller based on Section III-B policies that is safe fora
physical system and completes the task.

In Section III-A, we introduced sufficient conditions for
successful learning. The conditions are sufficient but not nec-
essary, so the learning could succeed under laxer conditions.
Done in simulation prior to a physical system control, the
learning can be applied when we are uncertain if the system
satisfies the criterion. When the learning fails to succeed,the
controller is not viable. Thus, a viable controller is possible
under laxer conditions verifiable through learning. so the
toolset can be safely and easily attempted first, before more
computationally intensive methods are applied. It can be also
used to quickly develop an initial value function, to be refined
later with another method.

IV. RESULTS

This section evaluates the proposed methodology. We first
verify the policy approximations’ quality and computational
efficiency on a known function in Section IV-A, and then
we showcase the method’s learning capabilities in two case
studies: a quadrotor with suspended payload (Section IV-B),
and a multi-agent rendezvous task (Section IV-C).

In all evaluations, the Convex Sum was calculated using
equal convex coefficientsλi = d−1

u . Discrete and HOOT [27]
policies are used for comparison. The discrete policy uses
an equidistant grid with 13 values per dimension. HOOT
uses three hierarchical levels, each covering one tenth of the
input size per dimension and maintaining the same number
of inputs at each level. All computation was performed using
Matlab on a single core Intel Core i7 system with 8GB of
RAM, running the Linux operating system.

A. Policy approximation evaluation

In Section III-B we proposed three policy approximations
and showed their admissibility. To empirically verify the
findings, we examine their behavior on known quadratic
functions of two variables, elliptical paraboloids with a
maximum. Table II depicts maximum and minimum values
for ∆Q(x,hQ(x)) asQ ranges over the class of concave
elliptical paraboloids. Since the∆Q is always positive for
all three policies, the empirical results confirm our findings
from Proposition III.4 that the policies are admissible. We
also see frommin∆u that in some cases Manhattan and
Axial Sum make optimal choices, which is expected as well.
The maximum distance from the optimal input column (∆u)
shows that the distance from the optimal input is bounded.

(a) Eccentricity (b) Manhattan

(c) Axial Sum (d) Convex Sum

Fig. 3. Eccentricity of the quadratic functions (a) related to policy
approximation gain ratio (b-d) as a function of quadratic coefficient
(C) and rotation of the semi-axes.

TABLE II

SUMMARY OF POLICY APPROXIMATION PERFORMANCE.
M INIMUM AND MAXIMUM OF THE VALUE GAIN (∆Q) AND THE

DISTANCE FROM THE OPTIMAL INPUT(∆u).

Method min∆Q max∆Q min∆u max∆u

Manhattan 5.00 168.74 0.00 4.32
Axial Sum 3.40 163.76 0.00 4.37
Convex Sum 3.40 103.42 0.10 4.37

To further evaluate the policies’ quality we measure the
gain ratio between the policy’s gain and maximum gain on
the action-value function (u∗ is optimal input):

ghQ(x) =
Q(x,hQ(x))−Q(x,0)

Q(x,u∗)−Q(x,0)
.

Non-admissible policies have negative or zero gain ratio for
some states, while the gain ratio for admissible policies is
strictly positive. The gain ratio of one signifies that policy hQ

is optimal, while a gain ratio of zero means that the selected
input transitions the system to an equivalent state from
the value function perspective. The elliptic paraboloids’,
Q(x, [u1u2]

T ) = au21 + bu1u2 + cu22 + du1 + eu2 + f ,
isoclines are ellipses, and the approximation error depends on
the rotational angle of the ellipse’s axes, and its eccentricity.
Thus, a policy’s quality is assessed as a function of these two
parameters: the rotational angleα and range of the parameter
c, while parametersa, d, e, andf are fixed. Parameterb is
calculated such thatb = (a − c) tan 2α. The eccentricity
is depicted in Figure 3a, with zero eccentricity representing
a circle, and an eccentricity of one representing the ellipse
degenerating into a parabola. The white areas in the heat
maps are areas where the function is either a hyperbolic
paraboloid or a plane, rather than an elliptic paraboloid and
has no maximum. Figure 3 displays the heat maps of the



1 2 3 4 5 6
10

−4

10
−2

10
0

10
2

t (
s)

Input dimensionality, d
u

 

 
Discrete
HOOT
Manhattan
Axial Sum
Convex Sum

Fig. 4. Policy approximation computational time per input dimen-
sionality. Comparison of discrete, HOOT, Manhattan, AxialSum,
and Convex Sum policies. They-axis is logarithmic.

gain ratios for the Manhattan (Figure 3b), Axial Sum (Figure
3c), and Convex Sum (Figure 3d) policies. All policies have
strictly positive gain ratio, which gives additional empirical
evidence to support the finding in Proposition III.4. Manhat-
tan and Axial Sum perform similarly, with the best results for
near-circular paraboloids, and degrading as the eccentricity
increases. In contrast, the Convex Sum policy performs best
for highly elongated elliptical paraboloids.

Lastly, we consider the computational efficiency of the
three policies, and compare the running time of a single de-
cision making with discrete and HOOT [27] policies. Figure
4 depicts the computational time for each of the policies
as a function of the input dimensionality. Both discrete
and HOOT policies’ computational time grows exponentially
with the dimensionality, while the three policies that are
based on the axial maximums: Manhattan, Axial Sum, and
Convex Sum are linear in the input dimensionality, although
Manhattan is slightly slower.

B. Cargo delivery task

This section applies the proposed methods to the aerial
cargo delivery task [29]. This task is defined for a UAV
carrying a suspended load, and seeks acceleration on the
UAV’s body, that transports the joint UAV-load system to
a goal state with minimal residual oscillations. We show
that the system and its MDP satisfy conditions for Theorem
III.2, and will assess the methods through examining the
learning quality, the resulting trajectory characteristics, and
implementation on the physical system. We compare it to the
discrete AVI [29] and HOOT [27], and show that methods
presented here solve the task with more precision.

To apply the motion planner to the cargo delivery task
for a holonomic UAV carrying a suspended load, we use the
following definition of the swing-free trajectory.

Definition A trajectory of durationt0 is said to be with
minimal residual oscillationsif for a given constantǫ > 0
there is a time0 ≤ t1 ≤ t0, such that for allt ≥ t1, the load
displacement is bounded withǫ (ρ(t) < ǫ).

The MDP state space is the position of the center of the

mass of the UAVp = [x y z]T , its linear velocitiesv = [ẋ ẏ
ż]T , the angular positionη = [ψ φ]T of the suspended load
in the polar coordinates originating at the quadrotor’s center
of mass, with the zenith belonging to the axis perpendicular
to Earth, and its angular velocitieṡη = [ψ̇ φ̇]T . The actuator
is the acceleration on the quadrotor’s body,u = [ux uy uz]

T .
For the system’s generative model, we use a simplified model
of the quadrotor-load model described in [29], which satisfies
the form (1).

v = v0 +△tu; p = p0 +△tv0 +
△t2

2
u

η̇ = η̇0 +△tη̈; η = η0 +△tη̇0 +
△t2

2
η̈, where

η̈ =

[

sin θ0 sinφ0 − cosφ0 L−1 cos θ0 sinφ0
− cos θ0 cosφ0 0 L−1 cosφ0 sin θ0

]

(u − g′)

(16)

The system (16) satisfies the form (1). The reward function
penalizes the distance from the goal state, the load displace-
ment, and the negative z coordinate. Lastly, the agent is
rewarded when it reaches equilibrium.

The value function is approximated as a linear com-
bination of quadratic forms of state subspacesV (x) =
θT ∗ F (x) F (x) = [‖p‖2 ‖v‖2 ‖η‖2 ‖η̇‖2]T where
θ ∈ R

4, satisfies the form (7), and because the learning
producesθ with all negative components, all conditions for
Theorem III.2 are satisfied including the drift (11).

0 100 200 300 400 500
0

100

200

300

400

500

Episode

Ti
m

e 
(s

)

 

 
Discrete
HOOT
Manhattan
Axial Sum
Convex Sum

(a) Time to learn

0 100 200 300 400 500

−10
10

−10
8

−10
6

Episode

Ac
cu

m
ula

te
d 

re
wa

rd

 

 

Discrete
Hoot
Convex Sum

(b) Learning curve (logarithmic)

Fig. 5. Learning results for Manhattan, and Axial Sum, and Convex Sum,
compared to discrete greedy, and HOOT policies averaged over 100 trials.
Learning curves for Manhattan and Axial Sum are similar to Convex Sum
and are omitted from (b) for better visibility.

The time-to-learn is presented in Figure 5a. The axial
maximum policies perform an order of magnitude faster than
the discrete and HOOT policies. To assess learning with



Algorithm 1 using Manhattan, Axial Sum, and Convex Sum
policies, we compare to learning using the greedy discrete
policy and HOOT. Figure 5b shows the learning curve,
over number of iterations. After 300 iterations all policies
converge to a stable value. All converge to the same value,
but discrete learning that converges to a lower value.

Finally, inspection of the learned parametrization vectors
confirms that all the components are negative, meeting all
needed criteria for Theorem III.2. This means that the
equilibrium is asymptotically stable, for admissible policies,
and we can generate trajectories of an arbitrary length.

Next, we plan trajectories using the learned parametriza-
tions over the 100 trials for the three proposed policies
and compare them to the discrete and HOOT policies. We
consider a cargo delivery task complete when‖p‖ ≤ 0.010m,
‖v‖ ≤ 0.025 m/s, ‖η‖ ≤ 1◦, and ‖η̇‖ ≤ 5◦/s. This is a
stricter terminal set than the one previously used in [29]. The
input limits are−3 ≤ ui ≤ 3, for i ∈ 1, 2, 3. The discrete and
HOOT policies use the same setup described in Section IV.
The planning occurs at 50Hz. We compare the performance
and trajectory characteristics of trajectories originating 3
meters from the goal state. Table III presents results of the
comparison. Manhattan, Axial Sum, and HOOT produce very
similar trajectories, while Convex Sum generates slightly
longer trajectories, but with the best load displacement char-
acteristics. This is because the Convex Sum takes a different
approach and selects smaller inputs, resulting in smoother
trajectories. The Convex Sum method plans the 9 second
trajectory in 0.14s, over 5 times faster than the discrete
planning, and over 3 times faster than HOOT. Finally, 30%
of the discrete trajectories are never able to complete the
task. This is because the terminal set is too small for the
discretization. In other words, the discretized policy is not
admissible. Examining the simulated trajectories in Figure
6 reveals that Convex Sum indeed selects a smaller input,
resulting in a smoother trajectory (Figure 6a) and less swing
(Figure 6b). HOOT, Manhattan, and Axial Sum, produce
virtually identical trajectories, while the discrete trajectory
has considerable jerk, absent from the other trajectories.

Lastly, we experimentally compare the learned policies.
The experiments were performed on AscTec Humming-
bird quadrocopters, carrying a 62-centimeter suspended load
weighing 45 grams. The quadrotor and load position were
tracked via a Vicon motion capture system at 100 Hz.
Experimentally, HOOT and Axial Sum resulted in similar
trajectories, while Manhattan’s trajectory exhibited themost
deviation from the planned trajectory (Figure 7). The Convex
Sum trajectory is the smoothest. Table IV quantifies the
maximum load swing and the power required to produce
the load’s motion from the experimental data. Convex Sum
policy generates experimental trajectories with the best load
swing performance, and with load motion that requires close
to three times less energy to generate. The enclosed video
submission contains videos of the experiments.

TABLE IV

SUMMARY OF EXPERIMENTAL TRAJECTORY CHARACTERISTICS.

MAXIMUM SWING AND ENERGY NEEDED TO PRODUCE LOAD

OSCILLATIONS. BEST RESULTS ARE HIGHLIGHTED.

Method max ‖ η ‖ (◦) Energy (J)
Discrete 15.21 0.0070
HOOT 15.61 0.0087
Manhattan 15.95 0.0105
Axial Sum 14.20 0.0086
Convex Sum 12.36 0.0031

C. Rendezvous task

The rendezvous cargo delivery task is a multi-agent variant
of the time-sensitive cargo delivery task. It requires an
UAV carrying a suspended load to rendezvous in swing-free
fashion with a ground-bound robot to hand over the cargo.
The cargo might be a patient airlifted to a hospital and then
taken by a moving ground robot for delivery to an operating
room for surgery. The rendezvous location and time are not
known a priori, and the two heterogeneous agents must plan
jointly to coordinate their speeds and positions. The two
robots have no knowledge of the dynamics and each others’
constraints. The task requires minimization of the distance
between the load’s and the ground robot’s location, the
load swing minimization, and minimization for the agents’
velocities, while completing the task as fast as possible.

The quadrotor with the suspended load is modeled as in
Section IV-B, while a rigid body constrained to two DOF in
a plane models the ground-based robot. The joint state space
is a 16-dimensional vector: the quadrotor’s 10-dimensional
state space (Section IV-B), and the ground robot’s position-
velocity space. The input is 5-dimensional acceleration tothe
quadrotor’s and ground robot’s center of masses. The ground
robot’s maximum acceleration is lower than quadrotor’s.

Applying Algorithm 1 with Convex Sum policy, the sys-
tem learns the state-value function parametrizationΘ that
is negative definite. Figure 8 shows both robots after two
seconds. The comparison of simulated trajectories created
with the Convex Sum and HOOT policies is depicted in
Figure 9. Convex Sum finds an 8.54-second trajectory that
solves the task in 0.12 seconds. HOOT policy fails to find a
suitable trajectory before reaching the maximum trajectory
duration, destabilizes the system, and terminates after 101.44
seconds. The discrete policy yields similar results as HOOT.
This is because the input needed to solve the task is smaller
than the HOOT’s setup, and the system begins to oscillate.
The rendezvous point produced with Convex Sum policy is
between the robots’ initial positions, closer to the slower
robot, as expected (Figure 9a). The quadrotor’s load swing
is minimal (Figure 9b). The absolute accumulated reward
collected while performing the task is smooth and steadily
making progress, while the accumulated reward along HOOT
trajectory remains significantly lower (Figure 9c). Enclosed
video submission contains an animation of the simulation.
The rendezvous simulation shows that the proposed methods
are able to solve tasks that previous methods are unable to



TABLE III

SUMMARY OF TRAJECTORY CHARACTERISTICS OVER100TRIALS. MEANS (µ) AND STANDARD DEVIATIONS (σ) OF TIME TO REACH THE GOAL, FINAL

DISTANCE TO GOAL, FINAL SWING, MAXIMUM SWING , AND TIME TO COMPUTE THE TRAJECTORY. BEST RESULTS ARE HIGHLIGHTED.

Method Percent t (s) ‖ p ‖ (cm) ‖ η ‖ (◦) max ‖ η ‖ (◦) Comp. time (s)
completed µ σ µ σ µ σ µ σ µ σ

Discrete 70.00 10.81 3.12 0.98 0.33 0.16 0.14 11.96 1.63 0.81 0.23
HOOT 100.00 8.49 1.33 0.83 0.27 0.18 0.20 12.93 1.49 0.48 0.07
Manhattan 100.00 8.66 1.68 0.89 0.19 0.15 0.16 12.24 1.58 0.24 0.05
Axial Sum 100.00 8.55 1.56 0.85 0.22 0.20 0.18 12.61 1.55 0.17 0.03
Convex Sum 100.00 9.61 1.62 0.97 0.07 0.03 0.06 9.52 1.29 0.14 0.02

0 1 2 3 4
−2

−1

0

x 
(m

)

0 1 2 3 4
−2

−1

0

1

y 
(m

)

0 1 2 3 4
0

0.5

1

t (s)

z 
(m

)

 

 

0 1 2 3 4

0

0.5

1

v x (
m

/s
)

0 1 2 3 4

0

0.5

1

v y (
m

/s
)

0 1 2 3 4
−1

−0.5

0

t (s)

v z (
m

/s
)

0 1 2 3 4

−1
0
1
2
3

u x (
m

/s
2 )

0 1 2 3 4

−1

0

1

2

3

u y (
m

/s
)

0 1 2 3 4
−3
−2
−1

0
1

t (s)

u z (
m

/s
)

Discrete HOOT Convex Sum

(a) Quadrotor trajectory

0 1 2 3 4
−10

−5

0

5

φ
 (

d
e

g
)

0 1 2 3 4
−10

−5

0

5

t (s)

θ
 (

d
e

g
)

0 1 2 3 4

−30

−20

−10

0

10

20

v
φ
 (

d
e

g
/s

)

0 1 2 3 4

−30

−20

−10

0

10

20

t (s)

v
θ
 (

d
e

g
/s

)

 

 Discrete HOOT Convex sum

(b) Load trajectory

Fig. 6. Comparison of simulated cargo delivery trajectories created with Convex Sum versus trajectories created with discrete greedy and HOOT policies.
(Trajectories for Manhattan and Axial Sum are similar to Convex Sum and are omitted for better visibility.)

0 1 2 3 4 5 6 7 8
−1

0

1

x
 (

m
)

0 1 2 3 4 5 6 7 8
−1

0

1

y
 (

m
)

0 1 2 3 4 5 6 7 8
1.1

1.2

1.3

t (s)

z
 (

m
)

 

 
Discrete HOOT Convex Sum

(a) Quadrotor trajectory

0 1 2 3 4 5 6 7 8

−10

−5

0

5

10

φ
 (

d
e

g
)

0 1 2 3 4 5 6 7 8

−10

−5

0

5

10

t (s)

θ
 (

d
e

g
)

 

 
Discrete HOOT Convex Sum

(b) Load trajectory

Fig. 7. Comparison of experimental cargo delivery task trajectories created with Convex Sum versus trajectories created with discrete greedy and HOOT
policies. (Trajectories for Manhattan and Axial Sum are similar to Convex Sum and are omitted for better visibility.)

because the convex policy is admissible.

V. CONCLUSIONS

Control of high-dimensional systems with continuous ac-
tions is a rapidly developing topic of research. In this paper
we proposed a method for learning control of nonlinear
motion systems through combined learning of state-value
and action-value functions. Negative definite quadratic state-
value functions imply quadratic, concave action-value func-
tions. That allowed us to approximate policy as a combi-
nation of its action-value function maximums on the axes,

which we found through interpolation between observed
samples. These policies are admissible, consistent, and ef-
ficient. Lastly, we showed that a quadratic, negative definite
state-value function, in conjunction with admissible policies,
are sufficient conditions for the system to progress to the
goal while minimizing given constraints.

The verification on known functions confirmed the poli-
cies’ admissibility. A quadrotor carrying a suspended load
assessed the method’s applicability to a physical system and
a practical problem, and provided a comparison to two other
methods demonstrating higher precision of the proposed



−4
−3.5

−3
−2.5

−2
−1.5

−1
−0.5

0 −4
−3.5

−3
−2.5

−2
−1.5

−1
−0.5

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

y (m)
x (m)

 

z 
(m

)

UAV
Ground

Start

Start

Fig. 8. Cargo-bearing UAV and a ground-based robot rendezvous after 2
seconds.

method as well. The rendezvous task tested the method in
higher dimensional input spaces for a multi-agent system,
and showed that it finds a solution where other two methods
do not. The results confirm that the proposed method outruns
current state-of-the-art by an order of magnitude, while
the experimental data revealed that the proposed method
produces trajectories with better characteristics.

In all, we presented a solid first step for an optimal
control framework for unknown control-affine systems for
constraint-balancing tasks. Despite the applied method’sre-
strictive condition, the results demonstrated high accuracy
and fast learning times on the practical applications. In future
work, the methodology can be extended to stochastic MDPs.

APPENDIX I
PROOF FORLEMMA III.3

Proof. First, to show that∃u0 ∈ [uil, u
i
u] such thatQ(p)

x,i(u) ≥
Q(x,p), we picku = 0, and directly from the definition, we
getQ(p)

x,i(0) = Q(x,p). As a consequence

Q
(p)
x,i(0) ≤ Q

(p)
x,i(ûi) (17)

Second, to show thatQ(0)
x,i(ûi)− V (x) ≥ 0,

Q
(0)
x,i(ûi) ≥ Q

(0)
x,i(0), from (17)

= f(x)TΛf(x) ≥ xΛx, due to (11)

= V (x)

Third, we showQ(0, ûiei)− V (0) = 0. Since, the origin is
equilibrium, the dynamics isD(0, ûiei) = 0. Let us evaluate
the dynamics at̂uiei, whenx = 0,

D(0, ûiei) = f(0) + g(0)ûiei

= f(0), because of (9)

= 0, because of (11)

Thus,Q(0, ûiei)− V (0) = 0.

0 5 10 15
−4

−2

0

x 
(m

)

 

 

0 5 10 15
−4

−2

0

y 
(m

)

0 5 10 15

0

0.5

1

t (s)

z 
(m

)

0 5 10 15
−2

−1

0

1

v x (m
/s

)

0 5 10 15
−2

−1

0

1

v y (m
/s

)

0 5 10 15
−1

0

1

t (s)

v z (m
/s

)

 

 

Completed

(a) Robot trajectories

0 5 10 15

−50

0

50

φ 
(d

eg
)

 

 

0 5 10 15

−50

0

50

t (s)

θ 
(d

eg
)

0 5 10 15
−200

−100

0

100

200

v φ (d
eg

/s
)

 

 

0 5 10 15
−200

−100

0

100

200

t (s)

v θ (d
eg

/s
)

(b) Load trajectory

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

7

t (s)

Ac
cu

mu
lat

ed
 re

wa
rd

 

 
HOOT
Convex Sum

(c) Accumulated reward

Fig. 9. Comparison of simulated rendezvous task trajectories created with
Convex Sum to trajectories created with discrete greedy andHOOT policies.
Green solid - Convex Sum ground; Purple solid - Convex Sum aerial; Green
dashed - HOOT ground; Purple dashed - HOOT aerial.

APPENDIX II
PROOF FORTHEOREM III.4

Proof. In all three cases, it is sufficient to show that the
policy approximations are admissible.

Manhattan policy:To show that the policy approximation
(13) is admissible, forx 6= 0 we use induction byn, 1 ≤
n ≤ du, with induction hypothesis,

∆Q(x, ûn) ≥ 0, whereûn =

n
∑

i=1

ûiei, and

∆Q(x, ûn) = 0⇔

f(x)TΛgi(x) = 0, ∀i ≤ n,f(x)TΛf(x) = xT
Λx

(18)



First note that at iteration1 < n ≤ du,

D(x, ûn−1 + uen) = f(x) + g(x) (ûn−1 + uen)

= f(x) + g(x)ûn−1 + g(x)uen = fn(x) + gn(x)u

and

Q(x,un) = (fn(x) + gn(x)u)
T
Λ(fn(x) + gn(x)u)

= gn(x)
T
Λgn(x)u

2 + 2fn(x)
T
Λgn(x)u

+ fn(x)
T
Λfn(x)

= pnu
2 + qnu+ rn, pn, qn, rn ∈ R. (19)

BecauseΛ < 0, Q(x,un) is a quadratic function of one
variable with a maximum in

û∗n = −
gn(x)

T
Λfn(x)

gn(x)TΛgn(x)
(20)

Applying the induction forn = 1, and using Lemma III.3,

∆Q(x, û1) = Q(x, û1e1)− V (x)

≥ Q(x,0)− V (x) = f(x)TΛf(x)− xT
Λx

> 0, whenf(x)TΛf(x) > xT
Λx. (21)

Given that, û1 6= 0 ⇔ ∆Q(x, ûn) > ∆Q(x, 0), and
assumingf(x)TΛf(x) = xT

Λx, we evaluateû1 = 0.
From (20),

û1 = −
g1(x)

T
Λf(x)

g1(x)TΛg1(x)
= 0⇔ g1(x)

T
Λf(x) = 0 (22)

So, the induction hypothesis (18) forn = 1 holds. Assuming
that (18) holds for1, .., n− 1, and using Lemma III.3,

∆Q(x, ûn) = Q(x, ûn−1 + ûnen)− V (x)

≥ Q(x, ûn−1 + 0)− V (x)

= ∆Q(x, ûn−1) from ind. hyp. (18)

> 0. whenf(x)TΛf(x) > xT
Λx.

Similarly, assumingf(x)TΛf(x) = xT
Λx,

∆Q(x, ûn) = 0⇔

ûn = −
gn(x)

T
Λfn(x)

gn(x)TΛgn(x)
= 0, and∆Q(x, ûn−1) = 0

Since ∆Q(x, ûn−1) = 0 ⇔ ûn−1 = 0, means that
fn(x) = f(x) + g(x)ûn−1 = f(x),

∆Q(x, ûn) = 0⇔

gn(x)
T
Λf(x) = 0, and∆Q(x, ûn−1) = 0⇔

gi(x)
T
Λf(x) = 0, for 1 ≤ i ≤ n

For n = du, the policy gain

∆Q(x, ûdu
) = 0⇔ f(x)TΛf(x) = xT

Λx,

and gi(x)
T
Λf(x) = 0, for 1 ≤ i ≤ du. But, that is

contradiction with the controllability assumption (8), thus
∆Q(x, ûdu

) > 0, whenx 6= 0.

When x = 0, we get directly from Lemma III.3,
∆Q(0, ûdu

) = 0. This completes the proof that Manhattan
policy (13) is admissible, and therefore the equilibrium is
asymptotically stable.

Convex sum(14): Following the same reasoning as for the
first step of the Manhattan policy (21) and (22), we get that
for all 1 ≤ n ≤ du,

∆Q(x, ûnen) ≥ 0, whereûnen = argmax
un
l
≤u≤un

u

Q(0)
x,n(u)

and the equality holds only when

∆Q(x, ûnen) = 0⇔

f(x)TΛgn(x) = 0,f(x)TΛf(x) = xT
Λx

(23)

To simplify the notation, letQi = ∆Q(x, ûnen), andQ0 =
0. Without loss of generality, assume that

Q0 ≤ Q1 ≤ ... ≤ Qdu
, n = 1, ..., du.

The equality only holds when (23) holds for alln = 1, ..., du
which is contradiction with the (8). Thus, there must be
at least one1 ≤ n0 ≤ du, such thatQn0−1 < Qn0

, and
consequently0 < Qdu

.
Lastly, we need to show that the combined inputû

calculated with (14) is admissible, i.e.,∆Q(x, û) > 0. It
suffices to show that̂u is inside the ellipsoid

Q̌0 = {u|Q(x,u) ≥ Q0}.

Similarly, Q1, ..., Qdu
define a set of concentric ellipsoids

Q̌i = {u|Q(x,u) ≥ Qi}, i = 1, ..., du.

Since,

Q̌0 ⊇ Q̌1 ⊇ ... ⊇ Q̌du
, and∀i, ûi ∈ Q̌i =⇒ ûi ∈ Q̌0.

Because ellipsoiďQ0 is convex, the convex combination of
points inside it (14), belongs to it as well. Since, at least one
ellipsoid must be a true subset of̌Q0, which completes the
asymptotic stability proof.

Axial sum policy approximation(15): is admissible be-
cause (14) is admissible. Formally,

∆Q(x,hQ
s (x)) ≥ ∆Q(x,hQ

c (x)) ≥ 0.

APPENDIX III
OPTIMALITY CONDITIONS

Proposition III.1. When g(x) is an independent input
matrix, A = I, and state-value function parameterization
Θ is negative definite, then Axial Sum policy(15) is optimal
with respect to the state-value function(7).

Proof. The optimal inputu∗ is a solution to

∂Q(x, ui)

∂ui
= 0,



and û is a solution to

dQ(0)
x,i(u)

du
= 0

at statex with respect to the state-value function (7). To
show that the Axial Sum policy is optimal,u∗ = û, it is
enough to show that

∂Q(x, ui)

∂ui
=

dQ(0)
x,i(u)

du
.

This is the case whenQ has the form of

Q(x,u) =

dx
∑

i=1

(pxi
u2i + qxi

ui + rxi
),

for somepxi
, qxi

, rxi
∈ R that depend on the current state

x. In the Proposition III.1 we showed that

Q(x,u) = (f(x) + g(x)u))TΘ(f(x) + g(x)u)

=

dx
∑

i=1

θi





du
∑

j=1

gij(x)uj + fi(x)





2

.

Since there is a single nonzero elementji in row i of matrix
g,

Q(x,u) =

dx
∑

i=1

(θi(gji(x)uji + fji(x))
2

=

dx
∑

i=1

(θig
2
ji
(x)u2ji + 2θifji(x)gji(x)uji + f2

ji
(x))

After rearranging,

Q(x,u) =

dx
∑

i=1

(pxi
u2i + qxi

ui + rxi
).

ACKNOWLEDGMENTS

The authors would like to thank Ivana Palunko for ani-
mation software, and Patricio Cruz for assisting with exper-
iments. A. Faust is supported in part by New Mexico Space
Grant. M. Salman is supported by the Computing Research
Association CRA-W Distributed Research Experience for
Undergraduates. R. Fierro is supported in part by NSF grant
ECCS #1027775, and by the Army Research Laboratory
grant #W911NF-08-2-0004. P. Ruymgaart and L. Tapia are
supported in part by the National Institutes of Health (NIH)
Grant P20GM110907 to the Center for Evolutionary and
Theoretical Immunology.

REFERENCES

[1] J. Levine, Analysis and Control of Nonlinear Systems: A Flatness-
based Approach. Mathematical Engineering, Springer, 2010.

[2] H. Khalil, Nonlinear Systems. Prentice Hall, 1996.
[3] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst,Reinforcement

Learning and Dynamic Programming Using Function Approximators.
Boca Raton, Florida: CRC Press, 2010.

[4] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Athena Scientific, 1st ed., 1996.

[5] D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel, “Approximate value
iteration in the reinforcement learning context. application to electrical
power system control,”International Journal of Emerging Electric
Power Systems, vol. 3, no. 1, pp. 1066.1–1066.37, 2005.

[6] C. Taylor and A. Cowley, “Parsing indoor scenes using rgb-d imagery,”
in Proc. Robotics: Sci. Sys. (RSS), (Sydney, Australia), July 2012.

[7] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[8] T. Yucelen, B.-J. Yang, and A. J. Calise, “Derivative-free decentralized
adaptive control of large-scale interconnected uncertainsystems,” in
IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), pp. 1104–1109, 2011.

[9] S. Mehraeen and S. Jagannathan, “Decentralized optimalcontrol of a
class of interconnected nonlinear discrete-time systems by using online
Hamilton-Jacobi-Bellman formulation,”IEEE Transactions on Neural
Networks, vol. 22, no. 11, pp. 1757–1769, 2011.

[10] T. Dierks and S. Jagannathan, “Online optimal control of affine non-
linear discrete-time systems with unknown internal dynamics by using
time-based policy update,”IEEE Transactions on Neural Networks and
Learning Systems, vol. 23, no. 7, pp. 1118–1129, 2012.

[11] K. G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online adaptive
algorithm for optimal control with integral reinforcementlearning,”
International Journal of Robust and Nonlinear Control, 2013.

[12] S. Mehraeen and S. Jagannathan, “Decentralized nearlyoptimal con-
trol of a class of interconnected nonlinear discrete-time systems by
using online Hamilton-Bellman-Jacobi formulation,” inInternational
Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2010.

[13] S. Bhasin, N. Sharma, P. Patre, and W. Dixon, “Asymptotic tracking by
a reinforcement learning-based adaptive critic controller,” J of Control
Theory and Appl, vol. 9, no. 3, pp. 400–409, 2011.

[14] H. Modares, M.-B. N. Sistani, and F. L. Lewis, “A policy iteration
approach to online optimal control of continuous-time constrained-
input systems,”ISA Transactions, vol. 52, no. 5, pp. 611–621, 2013.

[15] Z. Chen and S. Jagannathan, “Generalized hamilton–jacobi–bellman
formulation-based neural network control of affine nonlinear discrete-
time systems,”Neural Networks, IEEE Transactions on, vol. 19, no. 1,
pp. 90–106, 2008.

[16] Y. Jiang and Z.-P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, pp. 2699–2704, Oct. 2012.

[17] A. Al-Tamimi, F. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear
HJB solution using approximate dynamic programming: Convergence
proof,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 38, no. 4, pp. 943–949, 2008.

[18] T. Cheng, F. L. Lewis, and M. Abu-Khalaf, “A neural network solution
for fixed-final time optimal control of nonlinear systems,”Automatica,
vol. 43, no. 3, pp. 482–490, 2007.

[19] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotics Research,
vol. 32, no. 11, pp. 1236–1272, 2013.

[20] H. Hasselt, “Reinforcement learning in continuous state and action
spaces,” inReinforcement Learning(M. Wiering and M. Otterlo, eds.),
vol. 12 of Adaptation, Learning, and Optimization, pp. 207–251,
Springer Berlin Heidelberg, 2012.

[21] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,”Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 42, pp. 1291–1307, Nov 2012.

[22] H. Kimura, “Reinforcement learning in multi-dimensional state-action
space using random rectangular coarse coding and gibbs sampling,”
in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), pp. 88–95, 2007.

[23] A. Lazaric, M. Restelli, and A. Bonarini, “Reinforcement learning in
continuous action spaces through sequential monte carlo methods,”



Advances in neural information processing systems, vol. 20, pp. 833–
840, 2008.

[24] A. Antos, C. Szepesvari, and R. Munos, “Fitted Q-iteration in
continuous action-space MDPs,” inAdvances in Neural Information
Processing Systems 20(J. Platt, D. Koller, Y. Singer, and S. Roweis,
eds.), (Cambridge, MA), pp. 9–16, MIT Press, 2007.

[25] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “X-armed bandits,”
J. Mach. Learn. Res., vol. 12, pp. 1655–1695, July 2011.

[26] L. Busoniu, A. Daniels, R. Munos, and R. Babuska, “Optimistic plan-
ning for continuous-action deterministic systems,” in2013 Symposium
on Adaptive Dynamic Programming and Reinforcement Learning, in
press 2013.

[27] C. Mansley, A. Weinstein, and M. Littman, “Sample-based planning
for continuous action markov decision processes,” inProc. of Int.
Conference on Automated Planning and Scheduling, 2011.

[28] T. J. Walsh, S. Goschin, and M. L. Littman, “Integratingsample-based
planning and model-based reinforcement learning,” inProceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010(M. Fox and D. Poole,
eds.), pp. 612–617, AAAI Press, 2010.

[29] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learning swing-
free trajectories for uavs with a suspended load,” inIEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
pp. 4887–4894, May 2013.

[30] Confidential, “Automated aerial suspended cargo delivery through
reinforcement learning,”Artificial Intelligence Journal, p. under sub-
mission, 2013.

[31] R. E. Bellman,Dynamic Programming. Dover Publications, Incorpo-
rated, 1957.

[32] R. Sutton and A. Barto,A Reinforcement Learning: an Introduction.
MIT: MIT Press, 1998.

[33] R. Munos and C. Szepesvári, “Finite time bounds for sampling based
fitted value iteration,”Journal of Machine Learning Research, vol. 9,
pp. 815–857, 2008.

Aleksandra Faust is a Ph.D. Candidate in
Computer Science at the University of New Mex-
ico, a R&D Engineer at Sandia National Labs,
and a recipient of NM Space Grant fellowship.
She earned a Masters of Computer Science from
University of Illinois at Urbana-Champaign, and
a Bachelors in Mathematics from University of
Belgrade, Serbia. Her research interests include
reinforcement learning, transfer of learning, adap-

tive motion planning, and decision making for dynamical systems.
Peter Ruymgaart is a postdoctoral researcher

in the department of Computer Science at UNM
Albuquerque working with the Adaptive Motion
Planning research group. His research interests
lie in physics modeling of complex motion-based
problems including molecular motions and aerial
robotics. In 2013, he received a PhD in Biochem-
istry from the University of Texas at Austin for
his work on GPGPU parallelization of Molecular
Dynamics simulations with Professor Ron Elber.
Previously, he had received a MS in Biochemistry

from Texas State University. Prior to graduate school, he worked
as an airline Pilot, First Officer and Flight Engineer and in industry
as a Project Engineer.

Molly Salman is currently studying
Mathematics and Computer Science at Austin
College and is expected to graduate with a
BS in 2014. During the summer 2013, she
worked at the Adaptive Motion Planning
Research Group as a nationally selected
Computing Research Association Distributed
Research Experiences for Undergraduates
Program.

Rafael Fierro is a Professor of the Department
of Electrical & Computer Engineering, University
of New Mexico where he has been since 2007.
He received a Ph.D. degree in Electrical Engi-
neering from the University of Texas-Arlington.
Prior to joining UNM, he held a postdoctoral
appointment with the GRASP Lab at the Uni-
versity of Pennsylvania and a faculty position
with the Department of Electrical and Computer
Engineering at Oklahoma State University. His

research interests include cooperative control, robotic networks,
hybrid systems, autonomous vehicles, and multi-agent systems. He
directs the Multi-Agent, Robotics, Hybrid and Embedded Systems
(MARHES) Laboratory. Rafael Fierro was the recipient of a Ful-
bright Scholarship, a 2004 National Science Foundation CAREER
Award, and the 2008 International Society of Automation (ISA)
Transactions Best Paper Award.

Lydia Tapia is an Assistant Professor
in Computer Science at the University of
New Mexico and is Director of the Adaptive
Motion Planning Research Group that develops
methodologies for the simulation and analysis
of motions. Previously, Lydia was a Computing
Innovation Postdoctoral Fellow at the University
of Texas at Austin. She received a Ph.D.
from Texas A&M University and a B.S. in

Computer Science from Tulane University. At A&M Tapia
was a fellow of the Molecular Biophysics Training Program,
GAANN, and Graduate Teaching Academy programs and a
Sloan Scholarship recipient. Prior to graduate school, shewas a
member of technical research staff at Sandia National Laboratories.


