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Abstract— Control of nonlinear systems is challenging in real-
time. Decision making, performed many times per second, muis
ensure system safety. Designing input to perform a task ofte
involves solving a nonlinear system of differential equatns,
which is a computationally intensive, if not intractable, problem.
This article proposes sampling-based task learning for camol-
affine nonlinear systems through the combined learning of bih
state and action-value functions in a model-free approximge
value iteration setting with continuous inputs. A quadratic
negative definite state-value function implies the existere of
a unique maximum of the action-value function at any state. =
This allows the replacement of the standard greedy policy 1
with a computationally efficient policy approximation that \ﬁ
guarantees progression to a goal state without knowledge of
the system dynamics. The policy approximation isconsistent,
i.e., it does not depend on the action samples used to calctdat.  Fig. 1. Evaluated tasks, (a) swing-free cargo delivery d)déndezvous.
This method is appropriate for mechanical systems with high
dimensional input spaces and unknown dynamics performing
constraint-balancing tasks. We verify it both in simulation and o ) )
experimentally for a UAV carrying a suspended load, and in Control of multi-dimensional nonlinear systems, such as

simulation, for the rendezvous of heterogeneous robots. robots and autonomous vehicles must perform decision mak-
Keywords:Reinforcement learning, policy approximation,ing many times per second, and must ensure system safety.
approximate value iteration, fitted value iteration, contius  Yet, designing input to perform a task typically requires
action spaces, control-affine nonlinear systems system dynamics knowledge. Classical optimal control ap-
proaches, use combination of open-loop and closed loop
controllers to generate and track trajectories [1]. Anothe
Humans increasingly rely on robots to perform tasksiechnique, first linearizes the system and then applies LQR
A particular class of tasks that interests us aomstraint- methods locally [2]. All classical methods for solving non-
balancing tasks These tasks have one goal state and opinear control problems require knowledge of the system
posing constraining preferences on the system. Balanci@gnamics [2]. On the other hand, we present a solution
the speed and the quality of the task are often seen &san optimal nonlinear control problem when the system
two opposing preferential constraints. For example, tmeti  dynamics is unknown.
sensitive aerial cargo delivery task must deliver suspgnde Reinforcement learning (RL) solves control of unknown
load to origin as soon as possible with minimal load dispr intractable dynamics by learning from experience and
placement along the trajectory (Figure 1a). The rendezvogpservations. The outcome of the RL is a control policy. Typ-
task (Figure 1b) requires cargo-bearing UAV and a groungaly the RL learns the value (cost) function and derives a
robot to meet without a predetermined meeting point. Igreedy control policy with respect to the value. In contiusio
these tasks the robot must manipulate and interact with i§aces, the value function is approximated [3]. When astion
environment, while completing the task in timely mannergre continuous, the greedy policy must be approximated as

This article considers robots as mechanical systems Wille||. The downside of RL is that its sampling nature renders

exact dynamics, we are interested in producing motions thatWe rely on RL, to learn control policy foconstraint-
perform a givenconstraint balancing task !
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(a) Cargo delivery (b) Rendezvous

I. INTRODUCTION
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functional space [3]. Here, we select the basis functions &xist for neural network-based approximate value iteratio
both fit the task and define value function as a Lyapunogynamic programming for linear [17] and control-affine
candidate function. systems [18], both with known dynamics. Here, we are
We extend FVI, a discrete action RL algorithm, to continconcerned with approximate value iteration methods in the
uous action space to develgpntinuous action fitted value reinforcement learning setting - without knowing the syste
iteration (CAFVI). The novelty is a joint work with two dynamics.
value functions, state-value and action-value, to leae th In continuous action RL, the decision making step, which
control. CAFVI learns, globally to the state space, stateselects an input through a policy, becomes a multivariate
value function, which is negative of the Lyapunov. On theptimization. The optimization poses a challenge in the RL
other hand, in the estimation step, it learns an actionevalisetting because the objective function is not known. Robots
function locally around a state to estimate its maximummeed to perform input selection many times per second. 50-
This maximum is found using the newly developed policied00 Hz is not unusual [19]. The decision-making challenges
that divide-and-conquer the problem by finding the optimabrought action selection in continuous spaces to the fonefr
inputs on each axis separately and then combine thewf. current RL research with the main idea that the gradient
Not only are the policies computationally efficient, scglin descent methods find maximums for known, convex value
linearly with the input's dimensionality, but they producefunctions [20] and in actor-critic RL [21]. Our method is
consistentear-optimal input; their outcome does not dependritic-only and because the system dynamics is unknown,
on the input samples used for calculation. Although probthe value-function gradient is unavailable [21]. Thus, we
lem decomposition via individual dimensions is a commoumlevelop a gradient-free method that divides-and-conquers
technique for dimensionality reduction [6], this articleosvs  the problem by finding the optimal input in each direction,
that single-component policies lead to a stable systeraroff and then combines them. Other gradient-free approaches
three examples of such policies to turn the equilibrium intsuch as Gibbs sampling [22], Monte Carlo methods [23],
an asymptotically stable point, and characterizes systeraad sample-averages [24] have been tried. Online optimisti
for which the technique is applicable. The reinforcemergampling planners have been researched [25], [26], [27],
learning agent is evaluated on a quadrotor with suspendf&B]. Specifically, hierarchical optimistic optimization ap-
load and a heterogeneous robot rendezvous task. plied to treegHOOT) [27], uses hierarchical discretization to
From the practical perspective, the article gives methodwogressively narrow the search on the most promising areas
to implement an FVI with linear map approximation for aof the input space, thus ensuring arbitrary small error. Our
constraint-balancing task, on control-affine systems [ithw methods find a near-optimal action through sample-based
unknown dynamics and in presence of a bounded drift. Theg#erpolation of the objective function and find the maximum
tasks require the system to reach a goal state, while minimiin the closed-form on each axis independently.
ing opposing constraints along the trajectory. The metlsod i Discrete actions FVI has solved the minimal residual
fast and easy to implement, rendering an inexpensive tool tscillations task for a quadrotor with a suspended load and
attempt before more heavy-handed approaches are attempteas developed the stability conditions with a discreteoacti
Markov Decision Process (MDP) [29]. Empirical validation
o ) ] ) in [29] shows that the conditions hold. This article charac-
~ Efficient, near-optimal nonlinear system control is aRgrizes basis vector forms for control-affine systems, @sfin
important topic of research both in feedback controls angqymissible policies resulting in an asymptotically stable
reinforcement learning. With known system dynamics, [819quilibrium, and analytically shows the system stabilltie
develops adaptive pon'_trol for interconnegted systems.rWh%mpirica| comparison with [29] in Section IV-B shows that
the system dynamics is not known, optimal [9], [10], [11]it s both faster and performs the task with higher precision
and near-optimal [12], [13], [14] control for interconnedt Thjs is hecause the decision making quality presented bere i
nonlinear systems are developed for learning the stateevalyqt |imited to the finite action space and is independentef th
function using neural networks. This article addresses thgjilapble samples. We also show wider applicability of the
same problem, we use linearly parametrized state-value fungethods developed here by applying them to a multi-agent
tions with Iinear. regression rather tha_n neural_ networks fGendezvous task. Our work currently under submission [30],
parameter learning. Generalized Hamiltalacobi-Bellman  extends [29] to environments with static obstacles specifi-
(HJB) equation for control-affine systems can be approxsally for aerial cargo delivery applications, and is comeer

mately solved with iterative least-squares [15]. Our méthoyith generating trajectories in discrete action spacesglo
also learns the value function, which corresponds to thgnematic paths.

generalized HJB equation solution, through iterative mini

mization of the least squares error. However, we learn from lll. METHODS

samples and linear regression rather than neural networksThis section consists of four parts. First, Section IlI-A
For linear unknown systems [16] gives an optimal contraspecifies the problem formulation for a task on a control-
using approximate dynamic programming, while we conaffine system suitable for approximate value iteration with
sider nonlinear control-affine systems. Convergence grodinear basis vectors. Based on the task, the system and

II. RELATED WORK



the constraints, we develop basis functions and write stat&ction-value function, is the sum of the reward obtained
value function in Lyapunov quadratic function form. Secondupon performing actioru from a statex and the value of
Section 111-B develops sample-efficient policies that tdke the state that follows. Both value functions give an estamat
system to the goal and can be used for both planning amd a value. Astate-value functionV, is a measure of state’s
learning. Third, Section IlI-C places the policies into FVlvalue, while anaction-value function@, assigns a value to
setting to present a learning algorithm for the goal-ogdnt a transition from a given state using an input. Note, that RL
tasks. Together they give practical implementation toolkterature works with either atate-rewardp, or a related
for solving constraint-balancing tasks through reinfoneat state-action rewardvhere the reward is a function of both
learning on control-affine systems with unknown dynamicghe state and the action. We do not consider a cost of action
We discuss these tools in Section IlI-D. itself, thus thestate-action rewards simply the reward of
the state that the agent transitions upon applying aciiam

i . . ) ) the stater. Therefore, the relation between theand @ is
Consider a discrete time, control-affine system with no

disturbancesD : X x U — X, Q(z,u) =V oD(xz,u). (4)

A. Problem formulation

D: xpy1 = f(ze) + g(ze)u. (1)  Both value functions devise a greedy poliby: X — U, at
where states are;, € X C R, input is defined on a closed Statéx, as the input that transitions the system to the highest
interval around originu, € U C R%, d, < d,, 0 € i/, Valued reachable state.

andg : X — R% x R%, g(x)" = [g1(x1) ... ga, (x)] hQ(z) = argmax Q(, u) (5)
is regular forxz; € X \ {0}, nonlinear, and Lipschitz uel

continuous. Driftf : X %_Rdx’ is nonlinear, and L'p_SCh'tZ' A greedy policy uses the learned value function to produce
Assume that the sy.ste.m IS Controll_able [2]. We are Intedestecrajectories. We learn state-value functidn, because its
n autonomougly f'_”d'“g control mpuuk.that takes the approximation can be constructed to define a Lyapunov
system to its originin a tlmeTIy—mannerwhne red:cqnggu candidate function, and in tandem with the right policy ihca
along the trajectory, wherd™ = [as, ..., aq,] € R% xR, 1015 aq5ess system stability. For discrete actions MDP& (5
dg < dm IS n0n5|gular. L .. abrute force search over the available samples. When action
A discrete time, determ|n|st|c first-order Markov demsmn,sptleCe is continuous, (5) becomes an optimization problem
process (MDP) with continuous state and action spaces, over unknown functiorD. We consider analytical properties
M: (X,U,D,p) (2) of Q(zx,u) for a fixed stater and knownV, but having only

defines the problem: X — R is the observed state reward knowledge of the structure of the transition functibn The

and the system dynamid3 is given in (1). We assume that key |n§|ght we epr0|_t Is that existence of a maximum of
. . the action-value functiod)(x, u), as a function of inpui,
we have access to its generative model or samples, but th o
) . epends only on the learned parametrization of the state-
we do not knowD. In the remainder of the article, when

the time stepk is not important, it is dropped from the statevaIue fungtlonV. . . . N
. . . Approximate value iteration algorithms with linear map
notation without the loss of generality.

A solon t MDP s an opimal poicy” X - . SPPIOXTlos ectre basis vecore, Gfen (e ste con
that maximizes discounted cumulative state reward. Thug, ’ q

the objective function to maximizetate-valuecost function Fi(z) = |laTz|?, i=1,..,d,. (6)
VX oR,is . o
> so that state-value function approximatidf,is a Lyapunov
V(z)= 27 Pk () candidate function. Consequently, is,
k=0

where p;. is immediate reward observed at time stép J

starting at stater, and0 < + < 1 a discount constant. RN N T 7

RL solves MDP without analytical knowledge of the system Viz) = ; biFi(@) = (Az) O(Az) =z Az (7)
dynamicsD, and reward,p. Instead, it interacts with the . ) )

system and iteratively constructs the value function. ysinfor a diagonal matrix® = diag(6:,0s,...,04,), and a

the Bellman equation [31], the state value functiorzan be Symmetric matrixA. Let us assume thaA has full rank.
recursively represented as Approximate value iteration learns the parametrizaté®n

using a linear regression. Ldif = —A. Note, that if
V(x) :p(m)+7m3XV(D(m’“))' © is negative definite A is as well, whileT" is positive
The state value function is an immediate state reward pl§€finite, and vice versa. Let also assume that when 0

discounted value of the state the system transitions fatigw the system drift is bounded witke with respect toI'-

greedy policy. Thection-state functio) : X x U — R is, Nnorm, f(z)"T'f(x) < a’Tz. This characterizes system
drift, conductive to the task. We empirically demonstrase i

Q@ u) = p(x')+y H}?XV(D(wI’ '), anda’ = D(x,u).  gyfficiency in the robotic systems we consider.



TABLE |
SUMMARY OF KEY SYMBOLS AND NOTATION.

Symbol

Description

M: (XvUvap)

V:X =R, V(z)=xTAz
Q: XxU—=R

Ax

A=AT®A

r=-A
AQ(z,a)
€n
uelU
u€eR
Uun € R
un € R
Un = Une;
[
() _
Qm,n(u) - Q(va + ue’n)

MDP

State-value function
Action-value function
Constraints to minimize

Combination of task constraints and

value function parametrization
Task-learning matrix

Policy A@ in statex

n axis unit vector

Input vector

Univariate input variable

Set of vectors in direction oh!" axis
Estimate in direction of the" axis

Estimate over firsku axes

Estimate of@’s maximum with a policy

Univariate function in the direction
of axis e, passing through poinp

Fig. 2. Example of two dimensional input and a quadratic @dluinction.

u* is the optimal inputu is the one selected.

To summarize the system assumptions used in the remajinp (2) with state-value functio” (7)

der of the article:

needs to be increasing in time. That only holds true when
the policy approximation makes an improvement, i.e., the
policy needs to transition the system to a state of a higher
value (V' (z,,+1) > V(z,)). To ensure the temporal increase
of V, the idea is to formulate conditions on the system
dynamics and value functioW, for which @, considered as
a function only of the input, is concave and has a maximum.
In this work, we limit the conditions to a quadratic forgh
When we establish maximum’s existence, we approximate
it by finding a maximum on the axes and combining them
together. Figure 2 illustrates this idea. To reduce the dime
sionality of the optimization problem, we propose a divide
and conquer approach. Instead of solving one multivariate
optimization, we solvel, univariate optimizations on the
axes to find a highest valued point on each axis, The
composition of the axes’ action selections is the selection
vectoru = [u; .. ug,]”. This section develops the policy
approximation following these steps:
1) show that@ is a quadratic form and has a maximum
(Proposition 111.1)
2) define admissible policies that ensure the equilibrium’s
asymptotic stability (Theorem 111.2), and
3) find a sampling-based method for calculating con-
sistent, admissible policies i¥(d,) time with no
knowledge of the dynamics (Theorem 111.4).
Since the greedy policy (5) depends on action-valye
Proposition I11.1 gives the connection between value fiomct
(7) and corresponding action-value function

Proposition Ill.1. Action-value functionQ(z,u) (4), of
is a quadratic
function of inputu for all statesz € X. When® is negative

1) The system is controllable and the equilibrium isjefinite, the action-value functiof is concave and has a
reachable. In particular, we use,

3,1 < <d,, such thatf(x)T'g;(x) # 0,

and thatg(x) is regular outside of the origin,

g(x)"Tg(z) > 0, z € X \ {0}

2) Input is defined on a closed interval around origin,
(10)

0cU

3) The drift is bounded,
f(@)'Tf(x) <2'Tx, whenT >0

Table | presents a summary of the key symbols.

B. Policy approximation

This section looks into an efficient and a consistent polic
approximation for (5) that leads the system (1) to a goa

(8)

)

(11)

maximum.

Proof. EvaluatingQ(zx, ) for an arbitrary statec, we get
Q(iL‘, u) = V(D(:I},’LL)) = V(f(ilt) + g(m)u), from (1)

= (f(z) + g(x)u))"A(f(z) + g(z)u)

Thus, @ is a quadratic function of action at any stater.
To show that) has a maximum, we inspe€l’s Hessian,

°Q(z,u) *Q(z.u)

8u18u1 Bulaudu T
HQ(x,u) = =2g(x)" Ag(x).

9’Q(z,u) ?Q(z.u)

auduaul audu Budu

The Hessian is negative definite becayg$e) is regular for
all statesz and ® < 0, which means that\ < 0 as well.
herefore, the function is concave, with a maximum. O

state in the origin. Here, we learn the action-value fumctio The state-value parametrizati@ is fixed for the entire

Q@ on the axes, and assume a known estimate of the stagtate space. Thus, Proposition Ill.1 guarantees that when
value function approximatiof’. For the policy to lead the the parametrizatio® is negative definite, the action-value
system to the origin from an arbitrary state, the origin mudtnction Q has a single maximum. Next, we show that the

be asymptotically stable. Negative of the state-valuetionc

right policy can ensure the progression to the goal, but we

V' can be a Lyapunov function, and the value function first define the acceptable policies.



Definition Policy approximationi = ﬁQ(m) is admissible  u;; available to calculate it. This is direct consequence of
if it transitions the system to a state with a higher valuenvhequadratic function being uniquely determined with arlsitra
one exists, i.e., when the following holds fpolicy’s gain three points. It means that a policy based on (12) produces

at stater, AQ(x,4) = Q(x,4) — V(x): the same result regardless of the input samples used, which i
1) AQ(z, @) >0, for x € X \ {0}, and important in practice where samples are often hard to obtain
2) AQ(x,4) =0, forx =0. Lemma Il.3 shows single component policy character-

ksucs including that a single-component policy is stable
on an interval around zero. Later, we integrate the single-
component policies together into admissible policies.

Theorem I11.2 shows that an admissible policy is sufficien
for the system to reach the goal.

Theorem 1I1.2. Let & = h%(x) be an admissible policy _ . . o
approximation. Whem. < 0, and the drift is bounded with Lemma Il.3. A single input policy approximatior12),
(11), the systenfl) with value function(7) progresses to an for an input component, 1 < ¢ < d, has the following

asymptotically stable equilibrium under poliéy?. characteristics:
Proof. Consider W(z) = —V(z) = z'Tz. W is a 1) There is an input around zero that does not de-
Lyapunov candidate function becauBe> 0. crease system'’s state value upon transition, Heg, €

To show the asymptotic stability, & needs to be mono- [uf, ui] such thatQ(m’?z (u) > Q(zx, p).

tonically decreasing in timéV(z,4+1) < W(xz,) with 2) Q(O)(uz) V(z) >0, whenz # 0
equallty holding only when the system is in the equilibrium,  3) Q(O ie;) —V(0) =0
x, = 0. Directly from the definition of the admissible

policy, for the statex,, # 0, W(zpt1) — W(zn) = The proof for Lemma I11.3 is in Appendix I.

—Q(xn, h9(xn)) + V(xn) = V(zn) — Q(@n, @) < 0 We give three consistent and admissible policies as exam-
Whenz, =0, = x,4+1 = f(0) = 0, because of (11) ples. First, the Manhattan policy finds a point that maximize
= W(zpt1)=0. O  @’s restriction on the first axis, then iteratively finds maxi-

mums in the direction parallel to the subsequent axes, ERssi
Theorem II1.2 gives the problem formulation conditions
through points that maximize the previous axis. The second
for the system to transition to the goal state. Now, we
- - s ' olicy approximation, convex sum, is a convex combination
move to finding sample-based admissible policies by findin . . : :
f the maximums found independently on each axis. Unlike

maximums of¢) in the direction parallel to an axis and the Manhattan policy that works serially, the convex sum
passing through a point. Becau§ehas quadratic form, its . 1 policy : . i ;
policy parallelizes well. Third, axial sum is the maximum

restriction to a line is a quadratic function of one variable . L
. . . - of the convex sum policy approximation and nonconvex
We use Lagrange interpolation to find the coefficients)of . S . A .
xial combinations. This policy is also parallelizable.l Al

on a line, and find the maximum in the closed form. We firs - . . ; .
. . ; o e three policies scale linearly with the dimensions of theuinp
introduce the notation faR’s restriction in an axial direction, .

O(d,). Next, we show that they are admissible.

and its samples along the direction.
Definition Axial restriction of  passing through poinp, ~ Theorem lll.4. The system(2) with value function(7),

is a univariate functiomﬁ)(”? (u) = Q(z, p + ue;). bound(?d drift(11), and a negative definit®, starting at
an arbitrary statex € X, and on a setU (10), progresses
If g = [QF (ui) QF(uia) QF 5(uiz)]”, are three to an equilibrium in the origin under any of the following

samples onEc’?f(u) obtained at pointgu;; u;e w;3], then policies:

Q(x,p + ue;), is maximized at 1) Manhattan policy:

t1; = min(max(u*;, ul),u?), where (12)
0 = QiT ([ufy u123 uz ] — [u123 u$ UZZQ])T i1 = argmax Q;O,)l(u)
! QQ;TF (i wis ua] —[us uwa wi))” uf Suul,

on the intervalul < u < w¥. Equation (12) comes directly he ). (ir_1)
from Lagrange interpolation of a univariate second order ) U T BTEmax Q™ (u), n€[2,.,du],
polynomial to find the coefficients of the quadratic function T
and then equating the derivative to zero to find its maximum. Up—1 = Z Uie;.
In the stochastic case, instead of Lagrange interpolation, =t (13)
linear regression yields the coefficients. 2) Convex sum:

A motivation for this approach is that finding maximum in
a single direction is computationally efficient and coresist du
A single-component policy is calculated in constant tinre. | - Z Aie; argmax Q ( ), Z =1
addition, the input selection on an axis calculated with) (12 he ’ ul <u<ui, im1 '
is consistenti.e. it does not depend on the sample points - (14)



3) Axial sum: minimizes the least squares error for the new state-value
function estimates);_. The process repeats until eith@r
h& hQ(x)) > h& b e
c(x), Qz,hg(z)) > Qz, hy(x)) converges, or a maximum number of iterations is reached.

he: 4=
h&(x), otherwise : : — :
(15) Algorithm 1 Continuous Action Fitted Value Iteration (CAFVI)

where Input: X, U, discount factory

d. Input: basis function vecto#F

Q(p) — , (0) Output: 6
i (@) ; ci irggiii Q. (1) 1: 6y, 0, « zero vector
2.1+ 1

The prolof for-the Theo_rem .4 is in Appgndlx 1. . 3: while (I < maz_iterations) and||; — 6,1 > ¢ do
A consideration in reinforcement learning, applied 0, fori.—1 . n. do

robotics and other physical systems, is balancing exploita5: sample stater; and observe its rewarg
tion and exportation [32]. Exploitation ensures the safety . o 1o @ 1 d.i — 1.9.3' {obtai
of the s icv i o 6 {z,, uij, ;i = L.,dy,5 = 1,2 } {obtain

ystem, when the policy is sufficiently good and system dynamics samples
yields no learning. Exploration forces the agent to perform_. for all i, 7. qi; « 7 F(x!) {estimate action-value
suboptimal steps, and the most often usegteedy policy functior71} 1 ! ij
performs a random action with probability Although the 4 « calculated with (12)
random action can lead to knowledge discovery and policy9: obtain {z., a.a| , 1.}

59 Wy Mls

improvement, it also poses a risk to the system. The policies,. 0T Fla! :
. . . : : = state-value function new
presented here fit well in online RL paradigm, because they v, = pi, + 6] F(z},) {

. . . estimat
allow safe exploration. Given that they are not optimalythe end for ¢
produce new knowledge, but because of their admissibilit s  argming ™ (v, — 0T F(x1,))?
and consistency, their input of choice is safe to the physica_)[3 ltll 1 SMitlle 21, =111 ks

system. For systems with independent inputs, axial sur&: end while

policy is optimal (see Appendix IlI). 15: returné,

C. Continuous action fitted value iteration (CAFVI)

We introduced an admissible, consistent, and efficient The novelties of the Algorithm 1 are continuous input
decision making method for learning action-value functiospaces, and the joint work with both state and action-value
Q locally, at fixed statez, and fixed learning iteration (when functions (Lines 6 - 8), while FVI works with discrete, finite
© is fixed) without knowing the system dynamics. Now, thénput sets and with one of the two functions [3], but not both.
decision making policies are integrated into a FVI frameAlthough the outcome of the action-value function learning
work [5], [3] to produce a reinforcement learning agent fofLine 8) is independent of the input samples, the stateevalu
continuous state and action MDPs tailored for control-affinfunction learning (Line 12) depends on the state-samples
nonlinear systems. The algorithm learns the parametaizat collected in Line 5, just like discrete action FVI [5].
®, and works much like approximate value iteration [5] to i )
learn state-value function approximatiéh but the action D- Discussion
selection uses sampling-based policy approximation on theConsidering aconstraint-balancing taskwe proposed
action-value functior®). Algorithm 1 shows an outline of the quadratic feature vectors, and determined sufficient condi
proposedcontinuous action fitted value iteratipfCAFVI.  tions for which admissible policies presented in Sectidn Il
It first initializes @ with a zero vector. Then, it iteratively B transition the system to the goal state obeying the task
estimates) function values and uses them to make a newequirements. Finally, we presented a learning algoritan t
estimate off. First, we randomly select a state; and learns the parametrization. There are several points #ed n
observe its reward. Line 6 collects the samples. It unifgrmito be discussed, convergence of the CAFVI algorithm, usage
samples the state space for . Because we need three dateof the quadratic basis functions, and determination of the
points for Lagrangian interpolation of a quadratic funatio conditions from Section IlI-A.
three input samples per input dimensions are selected. WeFull conditions under which FVI with discrete actions
also obtain, either through a simulator or an observatiorpnverges is still an active research topic [3]. It is knohatt
the resulting stater;; whenw,; is applied toz, . Line 7 it converges when the system dynamics is a contraction [3].
estimates the action-value function locally, ter, andw;; A detailed analysis of the error bounds for FVI algorithms
using the curren®; value. Next, the recommended actionwith finite [33] and continuous [24] actions, finds that the
is calculated;zi. Looking up the available samples or usingFVI error bounds scale with the difference between the basis
a simulator, the system makes the transition fremusing functional space and the inherent dynamics of the MDP.
action@. The algorithm makes a new estimate 16{x;_). The system’s dynamics and reward functions determine
After ng states are processed, Line 12 finds n@wthat the MDP’s dynamics. We choose quadratic basis functions,



because of the nature of the problem we need to solve anAd
for stability. But, basis functions must fit reasonably well .. s
into the true objective function (3) determined by the syste ' ‘ o
dynamics and the reward, otherwise CAFVI diverges. ' e

The goal of this article is to present an efficient toolset for - e
solving constraint-balancing tasks on a control-affindesys - e
with unknown dynamics. Using quadratic basis functions,
Algorithm 1 learns the parametrizatié@n Successful learning
that converges to @ with all negative components, produces
a controller based on Section IlI-B policies that is safedor
physical system and completes the task.

In Section IlI-A, we introduced sufficient conditions for
successful learning. The conditions are sufficient but ect n
essary, so the learning could succeed under laxer conglition
Done in simulation prior to a physical system control, the
learning can be applied when we are uncertain if the systen
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satisfies the criterion. When the learning fails to succées,
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controller is not viable. Thus, a viable controller is pbési (c) Axial Sum (d) Convex Sum

under laxer conditions verifiable through learning. so thé&ig. 3. Eccentricity of the quadratic functions (a) related to pypli
toolset can be safely and easily attempted first, before m prox(;mano_n ga|? rﬁno (b-d) as a function of quadratieffoient
computationally intensive methods are applied. It can be al ) and rotation of the semi-axes.

used to quickly develop an initial value function, to be retin TABLE Il

later with another method. SUMMARY OF POLICY APPROXIMATION PERFORMANCE

MINIMUM AND MAXIMUM OF THE VALUE GAIN (AQ) AND THE

IV. REsSULTS DISTANCE FROM THE OPTIMAL INPUT(Aw).

This section evaluates the proposed methodology. We first

verify the policy approximations’ quality and computatin mgtnhhoeﬂtan i ﬁc% ma&%% mm(fo% maxfé‘z
efficiency on a known function in Section IV-A, and then Axial Sum 3.40 163.76 0.00 4.37

we showcase the method’s learning capabilities in two case _Convex Sum 3.40 103.42 0.10 4.37
studies: a quadrotor with suspended payload (Section |V-B)

and a multi-agent rendezvous task (Section IV-C). To further evaluate the policies’ quality we measure the

In all evaluations, the Convex Sum was calculated usingain ratio between the policy’s gain and maximum gain on
equal convex coefficients; = d;;!. Discrete and HOOT [27] the action-value functiom(* is optimal input):
policies are used for comparison. The discrete policy uses heQ
an equidistant grid with 13 values per dimension. HOOT gne (@) = Q@ h=(x)) Q(m’o),
uses three hierarchical levels, each covering one tentheof t Qx,u*) — Q(x,0)

input size per dimension and maintaining the same numbgion-admissible policies have negative or zero gain ratio fo
of inputs at each level. All computation was performed usingome states, while the gain ratio for admissible policies is
Matlab on a single core Intel Core i7 system with 8GB oktrictly positive. The gain ratio of one signifies that pglie?
RAM, running the Linux operating system. is optimal, while a gain ratio of zero means that the selected
input transitions the system to an equivalent state from
the value function perspective. The elliptic parabolgids’
In Section I11-B we proposed three policy approximationg)(z, [u1us]?) = au? + bujug + cul + duy + eug + f,
and showed their admissibility. To empirically verify theisoclines are ellipses, and the approximation error depend
findings, we examine their behavior on known quadratithe rotational angle of the ellipse’s axes, and its ecaapri
functions of two variables, elliptical paraboloids with aThus, a policy’s quality is assessed as a function of these tw
maximum. Table Il depicts maximum and minimum valueparameters: the rotational angleand range of the parameter
for AQ(z, h?(x)) as Q ranges over the class of concavec, while parameters, d, e, and f are fixed. Parametér is
elliptical paraboloids. Since thAQ is always positive for calculated such that = (a — ¢)tan2«. The eccentricity
all three policies, the empirical results confirm our finding is depicted in Figure 3a, with zero eccentricity representi
from Proposition I11.4 that the policies are admissible. We circle, and an eccentricity of one representing the @lips
also see frommin Au that in some cases Manhattan andlegenerating into a parabola. The white areas in the heat
Axial Sum make optimal choices, which is expected as welmaps are areas where the function is either a hyperbolic
The maximum distance from the optimal input colurdxw{) paraboloid or a plane, rather than an elliptic paraboloid an
shows that the distance from the optimal input is boundechas no maximum. Figure 3 displays the heat maps of the

A. Policy approximation evaluation



10? ‘ ‘ ‘ mass of the UAVp = [z y 2]7, its linear velocitie = [1 3

iyl 333‘?6 . 2T, the angular positiom = [1» ¢]7" of the suspended load
Manhattan e in the polar coordinates originating at the quadrotor'steen

10° | Axial Sum P - of mass, with the zenith belonging to the axis perpendicular
—#= Convex Sum 7 - to Earth, and its angular velocities= [¢) ¢|”. The actuator

t(s)

is the acceleration on the quadrotor’s bodys= [u, u, u,]T.

For the system’s generative model, we use a simplified model
of the quadrotor-load model described in [29], which sassfi
the form (1).

At?
Input dimensionality, d v =g+ Atu; p=po+ Atvg + —u
u 2

. , N o , e . AL
Fig. 4. Policy approximation computational time per input dimen-r) = 7jo + At#j; 1 = 1o + Atrjo + ——1j, where
sionality. Comparison of discrete, HOOT, Manhattan, Ax&aim, ) ) 2 ]
and Convex Sum policies. Theaxis is logarithmic. .. | sinfysingg —cos¢y L™t cosBysin ¢

" |—cosfycos g 0 L~ cos ¢ sin 6y

gain ratios for the Manhattan (Figure 3b), Axial Sum (Figure (16)

3c), and Convex Sum (Figure 3d) policies. All policies haverhe system (16) satisfies the form (1). The reward function

strictly positive gain ratio, which gives additional empal  hengizes the distance from the goal state, the load displac

evidence to support the finding in Proposition Il1.4. Manhatment’ and the negative z coordinate. Lastly, the agent is

tan and Axial Sum perform similarly, with the best results fo ,a\varded when it reaches equilibrium.

near-circular paraboloids, and degrading as the ecce#gtric The value function is approximated as a linear com-

increases. In contrast, the Convex Sum policy performs besation of quadratic forms of state subspadé&r) =

for highly elongate.d elliptical parabol_oids. N 07 « F(z) F(z) = [|p|*> [lv|? |nl*> |I9]2* where
Lastly,_vye consider the computatl_onal_ eff|C|ency_ of thgy R?, satisfies the form (7), and because the learning

three policies, and compare the running time of a single dgroduces with all negative components, all conditions for

cision making with discrete and HOOT [27] policies. Figuretheorem 111.2 are satisfied including the drift (11).
4 depicts the computational time for each of the policies

as a function of the input dimensionality. Both discrete

(u—g’)

and HOOT policies’ computational time grows exponentially 500 : : : ‘
with the dimensionality, while the three policies that are ool - ©- Hoor® Pt
based on the axial maximums: Manhattan, Axial Sum, and asan T

— 300 || =HB— Convex Sum Piie

Convex Sum are linear in the input dimensionality, although
Manhattan is slightly slower.

B. Cargo delivery task

This section applies the proposed methods to the aeria
cargo delivery task [29]. This task is defined for a UAV
carrying a suspended load, and seeks acceleration on the
UAV’s body, that transports the joint UAV-load system to
a goal state with minimal residual oscillations. We show  ~*°
that the system and its MDP satisfy conditions for Theorem
[11.2, and will assess the methods through examining the
learning quality, the resulting trajectory charactecistiand
implementation on the physical system. We compare it to the

Episode
(a) Time to learn

Accumulated reward

10 s == Discrete
discrete AVI [29] and HOOT [27], and show that methods ~ ~*° i’ TS Hoet
presented here solve the task with more precision. o 55 20 =00 o5 =00

To apply the motion planner to the cargo delivery task ~ Fpisode -
for a holonomic UAV carrying a suspended load, we use the (b) Learning curve (logarithmic)
following definition of the swing-free trajectory. Fig. 5. Learning results for Manhattan, and Axial Sum, antv@s Sum,

compared to discrete greedy, and HOQOT policies averaged I®@ trials.
Definition A trajectory of durationt, is said to be with Learning curves for Manhattan and Axial Sum are similar ton@s Sum
minimal residual oscillationsf for a given constant > 0 and are omitted from (b) for better visibilty.
there is a time) < ¢; < ty, such that for alk > ¢, the load

displacement is bounded with(p(#) < ). The time-to-learn is presented in Figure 5a. The axial

maximum policies perform an order of magnitude faster than
The MDP state space is the position of the center of ththe discrete and HOOT policies. To assess learning with



TABLE IV

Algorithm 1 using Manhattan, Axial Sum, and Convex Sum
SUMMARY OF EXPERIMENTAL TRAJECTORY CHARACTERISTICS

policies, we compare to learning using the greedy discrete
policy and HOOT. Figure 5b shows the learning curve,
over number of iterations. After 300 iterations all polgie

MAXIMUM SWING AND ENERGY NEEDED TO PRODUCE LOAD
OSCILLATIONS. BEST RESULTS ARE HIGHLIGHTED

converge to a stable value. All converge to the same value, Method maz || n || (°) | Energy (J)
but discrete learning that converges to a lower value. Discrete 15.21 0.0070
HoOT 15.61 0.0087

i ; ; i ati Manhattan 15.95 0.0105
Finally, inspection of the learned parametrization vestor Aocial Sum 1220 0.0080

confirms that all the components are negative, meeting all Convex Sum 12.36 0.0031
needed criteria for Theorem IIl.2. This means that the
equilibrium is asymptotically stable, for admissible pads,
and we can generate trajectories of an arbitrary length.

C. Rendezvous task

. . . . Therendezvous cargo delivery task is a multi-agent variant
Next, we plan trajectories using the learned parametrizas

. he 100 trials for the th d polici the time-sensitive cargo delivery task. It requires an
tions over the trials or the three propose _PoliCIER) py carrying a suspended load to rendezvous in swing-free
and compare them to the discrete and HOOT policies.

. dell task let <0.010 shion with a ground-bound robot to hand over the cargo.
considera cargo defiverytask comple e whex < DM, 1he cargo might be a patient airlifted to a hospital and then
[lv]| < 0.025 m/s, ||n|| < 1°, and 9| < 5°/s. This is a

. . ) . taken by a moving ground robot for delivery to an operating
;tncte_r t(_armlnal set than the ong previously usgd in 28 T room for surgery. The rendezvous location and time are not
Input I'm'ts. are-3 < u; < 3, fori€1,2,3. T_he d|§crete e_md nown a priori, and the two heterogeneous agents must plan
HOOT poI!C|es use the same setup described in Section Igjintly to coordinate their speeds and positions. The two
The pla_nnlng oceurs at 5.0|_.|Z' we compare the pe_rfor_man &bots have no knowledge of the dynamics and each others’
and trajectory characteristics of trajectories origmati8 . qaints, The task requires minimization of the distanc

meters from the goal state. Table IIl presents results of tn)eetween the load’s and the ground robots location, the

comparison. Manhattan, Axial Sum, and HOOT produce Vei¥bad swing minimization, and minimization for the agents’

similar trgjecto_ries, Wh”.e Convex Sum g_enerates Slightl\//elocities, while completing the task as fast as possible.
longer trajectories, but with the best load displacementch The quadrotor with the suspended load is modeled as in

acteristics. This is because the _Convex sum .take.s a dltfere\é'ec:tion IV-B, while a rigid body constrained to two DOF in
approach and selects smaller inputs, resulting in smoother

trajectories. The Convex Sum method plans the 9 secor?oplane models_the ground-.based robot. Tt’wejomt_state space
i’ a 16-dimensional vector: the quadrotor’s 10-dimendiona

trajectory in 0.14s, over 5 times faster than the discret . \ o
. ) : state space (Section IV-B), and the ground robot’s position
planning, and over 3 times faster than HOOT. Finally%30 . . . . X .
: . ; velocity space. The input is 5-dimensional acceleraticthéo
of the discrete trajectories are never able to complete the ) )
adrotor’s and ground robot’s center of masses. The ground

task. This is because the terminal set is too small for tha. ) . C X
. o : . C robot’s maximum acceleration is lower than quadrotor’s.
discretization. In other words, the discretized policy @ n

admissible. Examining the simulated trajectories in Fégur Applying Algorithm 1 with Convex Sum policy, the sys-

6 reveals that Convex Sum indeed selects a smaller inpltﬁ,m learns the state-value function parametrizarthat

resulting in a smoother trajectory (Figure 6a) and less gWiHS negative definite. Fllgure 8 s_hows both r_obots. after two
(Figure 6b). HOOT, Manhattan, and Axial Sum, produc econds. The comparison of simulated trajectories created

virtually identical trajectories, while the discrete &eajory \l/:v_|th theg Cé:onvex SSum z;l_n(; HO%T520I|C|es ollst d?plfted tht
has considerable jerk, absent from the other trajectories. \gure 9. Lonvex sum Tinds an ©.>4-second trajectory tha
solves the task in 0.12 seconds. HOOT policy fails to find a

Lastly, we experimentally compare the learned policiesuitable trajectory before reaching the maximum trajgctor
The experiments were performed on AscTec Hummingduration, destabilizes the system, and terminates afteA20
bird quadrocopters, carrying a 62-centimeter suspendst loseconds. The discrete policy yields similar results as HOOT
weighing 45 grams. The quadrotor and load position wer€his is because the input needed to solve the task is smaller
tracked via a Vicon motion capture system at 100 Hzthan the HOOT's setup, and the system begins to oscillate.
Experimentally, HOOT and Axial Sum resulted in similarThe rendezvous point produced with Convex Sum policy is
trajectories, while Manhattan’s trajectory exhibited thest between the robots’ initial positions, closer to the slower
deviation from the planned trajectory (Figure 7). The Converobot, as expected (Figure 9a). The quadrotor’s load swing
Sum trajectory is the smoothest. Table IV quantifies thes minimal (Figure 9b). The absolute accumulated reward
maximum load swing and the power required to produceollected while performing the task is smooth and steadily
the load’s motion from the experimental data. Convex Summaking progress, while the accumulated reward along HOOT
policy generates experimental trajectories with the beedl | trajectory remains significantly lower (Figure 9¢). Enéds
swing performance, and with load motion that requires closadeo submission contains an animation of the simulation.
to three times less energy to generate. The enclosed vid€be rendezvous simulation shows that the proposed methods
submission contains videos of the experiments. are able to solve tasks that previous methods are unable to



TABLE Il
SUMMARY OF TRAJECTORY CHARACTERISTICS OVERLOOTRIALS. MEANS (1) AND STANDARD DEVIATIONS (o) OF TIME TO REACH THE GOAL, FINAL

DISTANCE TO GOAL, FINAL SWING, MAXIMUM SWING , AND TIME TO COMPUTE THE TRAJECTORYBEST RESULTS ARE HIGHLIGHTED

Method Percent t (s) || p] (cm) 7] ©) max || n | (°) | Comp. time (s)
completed o o w o o o m o o o
Discrete 70.00 10.81 3.12| 0.98 0.33| 0.16 0.14]| 11.96 1.63| 0.81 0.23
HOOT 100.00 8.49 1.33| 0.83 0.27| 0.18 0.20| 12.93 1.49| 0.48 0.07
Manhattan 100.00 866 168| 0.89 0.19| 0.15 0.16| 12.24 1.58| 0.24 0.05
Axial Sum 100.00 855 1.56| 0.85 0.22| 0.20 0.18| 12.61 1.55| 0.17 0.03
Convex Sum| 100.00 961 162| 0.97 0.07| 003 0.06| 9.52 1.29| 0.14 0.02
0 o
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(a) Quadrotor trajectory (b) Load trajectory

Fig. 6. Comparison of simulated cargo delivery trajectigesated with Convex Sum versus trajectories created stitede greedy and HOOT policies.
(Trajectories for Manhattan and Axial Sum are similar to @nSum and are omitted for better visibility.)

6 (deg)

(a) Quadrotor trajectory (b) Load trajectory

Fig. 7. Comparison of experimental cargo delivery taslketigjries created with Convex Sum versus trajectories enteaith discrete greedy and HOOT
policies. (Trajectories for Manhattan and Axial Sum areilsinto Convex Sum and are omitted for better visibility.)

because the convex policy is admissible. which we found through interpolation between observed
samples. These policies are admissible, consistent, and ef
ficient. Lastly, we showed that a quadratic, negative definit
Control of high-dimensional systems with continuous acState-value function, in conjunction with admissible pils,

tions is a rapidly developing topic of research. In this papeare sufficient conditions for the system to progress to the
we proposed a method for learning control of nonlinea@oal while minimizing given constraints.

motion systems through combined learning of state-value The verification on known functions confirmed the poli-
and action-value functions. Negative definite quadratitest cies’ admissibility. A quadrotor carrying a suspended load
value functions imply quadratic, concave action-valuecfun assessed the method’s applicability to a physical systein an
tions. That allowed us to approximate policy as a combia practical problem, and provided a comparison to two other
nation of its action-value function maximums on the axesnethods demonstrating higher precision of the proposed

V. CONCLUSIONS
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PROOF FORLEMMA II1.3
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Proof. First, to show thaBug € [u!, u?] such that)\?) (u) >

I o R sl t(s)
Q(:B,]()p)), we picku = 0, and directly from the definition, we (©) Accumulated reward
getQ, ;(0) = Q(z, p). As a consequence

o
a

10 15

Fig. 9. Comparison of simulated rendezvous task trajextocreated with

Convex Sum to trajectories created with discrete greedyHD@T policies.

Qgcpz (0) < Qgcpg () (17)  Green solid - Convex Sum ground; Purple solid - Convex Suriala@reen
’ ’ dashed - HOOT ground; Purple dashed - HOOT aerial.

Second, to show thad")(a,) — V(z) > 0,

APPENDIX I
QW) (w;) > QP)(0), from (17) PROOF FORTHEOREMIII.4
= f(x)"Af(x) > xAx, due to (11)
=V(x)

Proof. In all three cases, it is sufficient to show that the
policy approximations are admissible.

Third, we showQ(0, @i;e;) — V(0) = 0. Since, the origin is quhattap p_oIicy:To show that the _poIicy.approximation
equilibrium, the dynamics i®(0, i;e;) = 0. Let us evaluate (13) is admissible, forr # 0 we use induction by:, 1 <
the dynamics afi;e;, whenz = 0, n < d,, with induction hypothesis,

D(O, ’&1‘6,’) = f(O) + g(O)ﬁiei
= f(0), because of (9) .
= 0, because of (11) AQ(z,tn) > 0, Wheredi, = Y iie;, and

=1 (18)
AQ(x,Un) =0

Thus, Q(0, @e;) — V(0) = 0. [ F(x)TAgi(x) =0,Vi <n, f(x)"Af(x) = 2" Ax



First note that at iteratiott < n < d,,

D(x,tip—1 +ueyn) = f(x) + g(x) (n—1 + uey)
= f(@) + 9(®)Un—1 + g(®)uen = fn(x) + gn(z)u

and

Q(iL‘, un) = (fn(w) + gn(m)u)TA(fn(m) + gn(w)u)
= gn(®)T Agn(x)u® + 2fn ()" Agn(x)u
+ fn(m)TAfn(w)
= pnt” + quU+ Tn, PG Tn € R. (19)
BecauseA < 0, Q(=x,u,) iS @ quadratic function of one
variable with a maximum in
* _ _gn(m)TAfn(m)
" gn(x)T Agn(x)
Applying the induction fom = 1, and using Lemma 111.3,
AQ(z, 1) = Q(z, ter) — V(x)
> Q(z,0) — V(z) = f(2)"Af(z) —z" Az
>0, when f(z)TAf(x) > 2" Ax. (21)
Given that, 41 # 0 & AQ(x,4,) > AQ(x,0), and

assumingf(z)"Af(xz) = =’ Az, we evaluatei; = 0.
From (20),

_gi(x)"Af(z)
g1(x)"Ags(z)
So, the induction hypothesis (18) far= 1 holds. Assuming
that (18) holds forl,..,n — 1, and using Lemma III.3,
AQ(x,Up) = Q(x, Upn—1 + linen) — V(x)
> Q(EL‘, '&'n—l + O) - V(w)
= AQ(x,Gyp—1) from ind. hyp. (18)
> 0. when f(z)TAf(x) > 27 Ax.
Similarly, assumingf (z)” A f(x) = =7 A=z,
AQ(z,tp) =0<
0 = _gn(m)TAfn(:c)
" gn(x)T Agn(z)

U

(20)

=0 gi(2) Af(x) =0 (22)

Uy =

=0, andAQ(x, tp—1) =0

Since AQ(x,typ—1) = 0 & 4,1 = 0, means that
fn(@) = f(x) + g(®)in—1 = f(z),
AQ(x, tiy) = 0 &
gn(®)TAf(x) =0, andAQ(x, ttp_1) =0 &
gi(x)TAf(x) =0, for1 <i<n
For n = d,, the policy gain
AQ(z,@a,) =0 < f(x)"Af(z) = 2" Az,
and g;()TAf(x) = 0, for1 < i < d,. But, that is

contradiction with the controllability assumption (8),uth
AQ(x,0gq,) > 0, whenx # 0.

When = 0, we get directly from Lemma I3,
AQ(0,uq,) = 0. This completes the proof that Manhattan
policy (13) is admissible, and therefore the equilibrium is
asymptotically stable.

Convex sunfl14). Following the same reasoning as for the
first step of the Manhattan policy (21) and (22), we get that
forall 1 <n <d,,

AQ(x,unen) > 0, whered,e,, = argmax Q(mozl(u)

up <u<ul
and the equality holds only when

AQ(z, tpe,) =0 <

(@) Aga(@) = 0, f(@)"Af(@) = Az OO

To simplify the notation, let);, = AQ(z, tye,), andQy =
0. Without loss of generality, assume that

QO S Ql S S Qduv n = 15"'adu-

The equality only holds when (23) holds for all=1, ..., d,,
which is contradiction with the (8). Thus, there must be
at least onel < ny < d,, such thatQ,,-1 < @.,, and
consequently) < Qq, -

Lastly, we need to show that the combined inpit
calculated with (14) is admissible, i.eAQ(z,w) > 0. It
suffices to show that is inside the ellipsoid

Qo = {u|Q(z,u) > Qo}.
Similarly, @1, ..., Qq, define a set of concentric ellipsoids
Qi = (ulQ@,u) > Qi}, i=1,....d..
Since,
Qo2 Q12...2Qq,, andVi,u; € Q; = 1i; € Q.

Because ellipsoid), is convex, the convex combination of
points inside it (14), belongs to it as well. Since, at least o
ellipsoid must be a true subset €, which completes the
asymptotic stability proof.

Axial sum policy approximatiorfl5): is admissible be-
cause (14) is admissible. Formally,

AQ(z, hi(w)) > AQ(z, hZ(x)) > 0.

APPENDIXIII
OPTIMALITY CONDITIONS

Proposition Ill.1. When g(x) is an independent input
matrix, A = I, and state-value function parameterization
O is negative definite, then Axial Sum poli@p) is optimal
with respect to the state-value functi¢n).

Proof. The optimal inputu* is a solution to

=0
Bui ’



and is a solution to
(1]

(2]
(3]

dQY) (u)

du =0

at statex with respect to the state-value function (7). To
show that the Axial Sum policy is optimaly* = @, it is 4]
enough to show that

(5]

0Q(x,u;)  dQY)(u)
ou; B du

(6]
(7]
(8]

This is the case whe@ has the form of

dz
Q(mau) = Z(pw1u$ + Qo Wi + rwi)a
i=1

for somep.,, ¢.., 7, € R that depend on the current state (o]

x. In the Proposition Ill.1 we showed that

10
Q. u) = (f(x) + g(z)w) " O(f () + g(z)u) 1ol
dy dy, 2
= 0| > gi(@)u; + filw) [11]
i=1 j=1
Since there is a single nonzero elemgnin row ¢ of matrix [12]
gy
de [13]
Qa,u) = (0:(g, (@)uy, + f5, ()
i=1 [14]
ds
=) (097 (x)u}, + 20if;, (2) g5, (@)uj, + f7 (2)) (15
i=1
After rearranging,
[16]
dm
Q(ma ’LL) = Z(pw1u$ + @z, ui + rwi)' 7]
i=1
O
(18]
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