Scalable and Distributed Self-Healing Algorithms for Reconfigurable Networks

Amitabh Trehan Jared Saia

Department of Computer Science University of New Mexico

CS UNM Student Conference, 2007
Self-healing: A phrase applied to the process of recovery (generally from psychological disturbances, trauma, etc.), motivated by and directed by the patient, guided often only by instinct. [Wikipedia]

Our Goal?
Make this concept concrete.
Self-healing.

- *Self-healing:* A phrase applied to the process of recovery (generally from psychological disturbances, trauma, etc.), motivated by and directed by the patient, guided often only by instinct. [Wikipedia]
- Our Goal?
 Make this concept concrete.
Our Problem

- Given: a connected network.
- Goal: Keep the network connected and "small".
- Problem: An adversary deletes nodes in the network.
- Technique: Add edges.
1 Introduction
 - Self-healing in face of attacks
 - Previous Work

2 Our Work
 - Our Model
 - DaSH: Algorithm
 - Experiments
The network: a Graph G(V,E)
The attack: Deletion of nodes.
Self-healing goals:
- Maintain connectivity.
- Ensure degrees of all nodes stay small.
- The algorithm must be efficient.
Outline

1. Introduction
 - Self-healing in face of attacks
 - Previous Work

2. Our Work
 - Our Model
 - DaSH: Algorithm
 - Experiments
Reconfigurable Networks.

- Networks in which we can add new connections between nodes.
- Examples:
 - Peer-to-Peer (P2P) networks.
 - Cellular networks.
 - Ad-hoc networks.
 - Social Networks.
Reconfigurable Networks.

- Networks in which we can add new connections between nodes.
- Examples:
 - Peer-to-Peer (P2P) networks.
 - Cellular networks.
 - Ad-hoc networks.
 - Social Networks.
Applications

- **Sensor Networks**
 - Node: Sensor.
 - Edge: Communication link.

- **P2P Networks**
 - Node: Peer.
 - Edge: Communication link.

- **Social Networks**
 - Node: Person.
 - Edge: Social connection.
Applications

- **Sensor Networks**
 - Node: Sensor.
 - Edge: Communication link.

- **P2P Networks**
 - Node: Peer.
 - Edge: Communication link.

- **Social Networks**
 - Node: Person.
 - Edge: Social connection.
Applications

- **Sensor Networks**
 - Node: Sensor.
 - Edge: Communication link.

- **P2P Networks**
 - Node: Peer.
 - Edge: Communication link.

- **Social Networks**
 - Node: Person.
 - Edge: Social connection.
Applications

- **Sensor Networks**
 - Node: Sensor.
 - Edge: Communication link.

- **P2P Networks**
 - Node: Peer.
 - Edge: Communication link.

- **Social Networks**
 - Node: Person.
 - Edge: Social connection.
Outline

1. Introduction
 - Self-healing in face of attacks
 - Previous Work

2. Our Work
 - Our Model
 - DaSH: Algorithm
 - Experiments
Non-adaptable networks.

- Spare capacity and rerouting. [XM 1999]
- Redundant trees. [MFB 1999]
- Resilient Overlay networks. [ABKM ’01]
- Independent redundant network components. [GBI ’04]
Reconnecting neighbours of deleted nodes in a line. [BASS ’06].
Pluses

- Keeps degrees small.
- Ensures connectivity.
- Simple algorithm.
Problems

- Not scalable.
- Too many messages exchanged $O(n)$.
- Too slow $O(n)$.
- Diameter can increase.
Outline

1. Introduction
 - Self-healing in face of attacks
 - Previous Work

2. Our Work
 - Our Model
 - DaSH: Algorithm
 - Experiments
Our Model

- The Adversary:
 - Eats Nodes.
 - Omniscient: has knowledge of our network and algorithms.
 - Eats one node at a time.

- The Home team (Nodes):
 - Have a small time to recover after each attack.
 - Can set up new links (reconfigure).
 - Maintain Neighbour-of-Neighbour information.
Outline

1 Introduction
 - Self-healing in face of attacks
 - Previous Work

2 Our Work
 - Our Model
 - DaSH: Algorithm
 - Experiments
Some definitions

For a fixed time t:

- $G(V, E)$: The actual network.
- E': The edges added by algorithm. ($E' \subseteq E$).
- $G' = (V, E')$: G' will be a forest.
- $N(v, G')$: neighbors of v in G'.
- $UN(v, G)$ (Unique Neighbours): Set of neighbours of v in G such that no subtree in G' has more than one representative.
init: for given network $G(V, E)$, Initialise each vertex with a random number ID between $[0,1]$ selected uniformly at random.

while true do

if a vertex v is deleted, do

Nodes in $UN(v, G) \cup N(v, G')$ are reconnected into a complete binary tree. To connect the tree, go right to left, bottom up, mapping nodes to the complete binary tree in decreasing order of degree value.

Let $MINID$ be the minimum ID of any node in $UN(v, G) \cup N(v, G')$. Propagate $MINID$ to all the nodes in the tree of $UN(v, G) \cup N(v, G')$ in G'.

end while
Figure: Reconfiguration on deletion of node V.
DaSH Properties.

Theorem

DaSH has the following properties:

- The degree of any vertex is increased by at most $2\log n + 1$.
- The latency to do healing after a deletion is constant.
- The number of messages any node sends out and receives is $O(\log n)$ with high probability.
- The algorithm is completely distributed.
Outline

1. Introduction
 - Self-healing in face of attacks
 - Previous Work

2. Our Work
 - Our Model
 - DaSH: Algorithm
 - Experiments
Attack strategies:

- Max degree: Delete node of maximum degree.
- Max Degree Neighbour: Keep deleting neighbours of maximum degree node.

Healing strategies:

- Binary Graph: reconnect all neighbours; naive.
- Binary Tree: reconnect neighbours keeping G' as forest.
- Degree based Binary Tree (DaSH)
Figure: Self-healing demonstrated by DaSH and related Algorithms.
Concrete definition of self-healing: maintaining an invariant over multiple attacks.

Provably efficient algorithm for maintaining networks.
Additionally, keep Stretch\(^1\) of the network low.

\[^1\text{maximum } \frac{\delta'(u,v)}{\delta(u,v)}\text{ for all nodes } u, v, \text{ where } \delta' \text{ is distance in new graph, } \delta \text{ distance in original graph.}\]
Question Time