
Proposal to Improve Visualizations in NetworkX

by Ben Edwards

Ben Edwards

April 3, 2011

1 Synopsis

NetworkX is a powerful tool for the analysis of complex networks; however,

while its library of algorithms is very expansive, NetworkX has limited visu-

alization capacities. Currently the main avenue for visualization is the mat-

plotlib library, but several features (such as correctly drawn arrows, easily

achieved variable node shape, and interactive node positioning) are missing.

Additionally, many of the more striking results require a good working knowl-

edge of many of matplotlib's features. This project seeks to not only improve

the matplotlib drawing interface, but to refactor the code in such a way that

new drawing interfaces could be easily added NetworkX. Because a number

of open source projects exist for visualizing and manipulating graphs and

data (Gephi, cytoscape, mayavi), this project would seek to create a stan-

dard way for NetworkX to communicate with outside visualization methods,

rather than reinvent an already robust code base.

2 Project Details

2.1 Current Drawing Interface

Currently NetworkX, does not support a standard way for graphs to be vi-

sualized using disparate drawing interfaces. Each of the currently supported

drawing interfaces (dot, graphviz, and matplotlib) are implemented uniquely

(though similarly), with di�erent arguments for various drawing functions.

While the dot format does not actually render graphs, rather it just cre-

ates a dot �le, PyGraphViz and matplotlib can be used to render graphs.

Unfortunately the view_pygraphviz function and draw_networkx function,

take di�erent parameters, and generally produce di�erent results. Moreover,

1

neither of these methods allow for a simple method to have a rendered graph

change along with topological graph changes.

2.2 Visualization Engines

A portion of this project would be to rectify this through the creation of

several classes and small (but completely backwards compatible) changes to

the base NetworkX graph class. First it would require the construction of

a VisualizationEngine class. This would be a wrapper class, built for the

purpose of providing a standard interface for users wishing to display their

graphs.

This class could be created to monitor the desired appearance of the

graph to be visualized, parsing user input, and allowing the user to set a

number of node attributes, including, but not limited to

Nodes Edges Labels (Nodes and Edges

Position Color Font

Color Stipple (Style) Size

Size Thickness Color

Shape Arrows Alignment

Border Arrow Style Position

Border Color

Border Size

Each of the above would have a number of options for the user, includ-

ing sensible defaults. For instance color might be passed as either numeric

values, strings (hexadecimal or html colors), iterative of length 3 or 4 (RGB

or RGBA values), or functions which return one of these types, or lists or

dictionaries of the above types to map onto a node. The visualization engine

class could then parse the input into a standard format, for example a dic-

tionary of RGBA tuples keyed by node might be sensible. The engine would

simply then pass each parsed value onto the appropriate speci�c visualization

engine.

Speci�c visualization engines could then be written for speci�c backends,

and easily incorporated into current code. Only the addition of the engine

�le(s) and a small change to the initialization of the VisualizationEngine

class would be needed.

Some example code of how the engine might work. It supposes a speci�c

visualization engine for matplotlib and mayavi exist.

class visualization_engine():

2

def __init__(engine_type,*engine_args,**engine_kw_args):

First determine what engine we are using

and set the relevant functions to those defined in

another file such as nx_pylab.

if engine_type == 'matplotlib':

from nx.engines import nx_pylab

self.engine = nx_pylab.start_engine(*engine_args,

**engine_kwargs)

...

elif engine_type == 'mayavi':

from nx.engines import nx_mayavi

self.engine ...

...

self.node_color = {}

self.node_size = {}

...

def parse_color(c):

if type(c) is str:

convert_to_tuple

elif:

...

...

def draw_node(n,...):

handles color parsing and sends data to the engine.

if n in not in node_color:

node_color[n] = parse_color(...)

...

engine.draw_node(n,node_color[n],...)

This generic class would be the interface used in most cases. No matter

the drawing method used, the interface to it through networkx would be the

same for the user. A user could then switch between matplotlib and mayavi

by simply changing the engine_type variable in their code. This would also

set up a standard template for new visualization engines to be written. Since

all arguments are pre-parsed into a sensible format, a developer would simply

have to write the appropriate functions for the particular engine platform.

3

2.3 Graph Interconnection

Graphs could then be initiated with an engine in mind, so subsequent mod-

i�cations to the graph are immediately seen in the visualization.

G = nx.Graph(vis_engine='matplotlib') #Create Graph and start matplotlib engine

G.add_node(0) #Create node and draw in matplotlib engine

Alternatively, independent engines could be started, and graphs sent to

them for visualization, with multiple graphs potentially being plotted using

the same engine.

mpl_engine = nx.start_visualization_engine('matplotlib') #Start the Engine

mpl_engine.draw(G1) # Draw the graph G1 once

mpl_engine.draw_and_monitor(G2) #Draw the Graph G2 and any subsequent changes

G3=nx.Graph(vis_engine=mpl_engine) #Draw all changes to G3 on the mpl_engine

This would be especially useful in interpreter settings, and when testing

out new graph creation models.

Internally, small changes to the NetworkX Graph class would be made.

The class would have a new member which would be a visualization_engine.

Calls which alter the state of the graph would then include a check the

visualization engine, for instance:

def add_node(self, n, attr_dict=None, **attr):

...

self.node[n].update(attr_dict) #Current end of add_node function

if not self.visualization_engine is None:

self.visualization_engine.draw_node(G)

2.4 A matplotlib Engine

In this framework a matplotlib engine would be created. While the current

drawing methods seem to work adequately several features need to be added

or improved include: appropriately drawn arrows, variable node size, edge

labels, and interactive node positions.

2.4.1 Arrows

Currently, arrows are drawn as a slightly thicker portion of line at the end

of a directed edge. Early attempts to alter the function included a tracking

of nodes objects and their boundaries and the calculation of clipping paths,

4

resulting in aesthetically pleasing arrows, but a much longer execution time.

A precomputed determination of edge endpoints (based on node positions)

would likely speed up this computation.

2.4.2 Variable Node Shape

NetworkX currently uses matplotlib's scatter function to draw nodes on

screen. This allows only nodes of uniform shape to be drawn on the screen,

and if multiple shapes are needed, repeated calls to draw_nodes, must be

made. By having the matplotlib engine maintain nodes as patch objects

their individual shape could be easily controlled

2.4.3 Edge labels

Edge labels, while included as an option in the draw documentation are

currently not drawn rendered. This would simply require a determining

appropriate positioning of edge labels, and including the code to render them.

2.4.4 Interactive Node Positions

Many visualization tools allow the user to select nodes and reposition them

on the screen, or view any attributes that might be associated with a given

node or edge. This project would investigate what would be required to

implement a feature that would capture user input and act appropriately.

While this is certainly a useful feature, it may be unrealistic to implement in

the matplotlib library, due to computational time constraints. However in

the current framework, changes to the matpotlib visualization engine would

be all that is required.

2.5 Mentors

Here is a list of potential mentors and their GSoC mentor IDs:

� Aric Hagberg(ahagberg)

� Loïc Séguin-charbonneau (loicseguin)

� Dan Schult(dschult)

� Chris Ellison (hei7boht)

5

3 Bene�ts for NetworkX

NetworkX's intuitive API and large library of algorithms have made it very

popular for investigation of complex networks. However, where it excels

in graph analysis, it has fallen behind excellent visualization projects. By

integrating with these other projects, and providing an easy interface to

other visualization engines, NetworkX would be the easy choice for anyone

doing research into complex networks.

4 Success Criteria

1. Creation of the classes described above, and modi�cation to the current

NetworkX classes.

2. Clear and concise documentation of all functions and changes.

3. The creation of other visualization engines for NetworkX

4. The eventual removal of old drawing functions from the NetworkX

codebase.

5 Project Timeline

Pre-Coding Solicit advice from NetworkX mailing list and mentor about

what drawing options should be available and sensible defaults, as well

as any interface ideas

Week 1-2 Build VisualizationEngine class, and make modi�cations to

NetworkX base classes to make use of visualization engine.

Week 3-4 Port current matplotlib drawing code into matplotlib visualiza-

tion engine class.

Week 5-8 Improve matplotlib visualization engine so arrows are drawn ap-

propriately, variable node shapes are possible, and edge labels are

drawn. Solicit advice from the matplotlib mailing list about speed

and drawing improvements.

Week 8-11 Testing, bug-�xes and documentation of the matplotlib visual-

ization engine. Change current matplotlib drawing functions to their

visualization engine equivalents. Investigate adding interactivity to the

class.

6

Week 11-12 If time allows begin on other interfaces for visualization en-

gine. This might include creating a PyGraphViz engine or exploring

new engines such as mayavi, cytoscape, or gehpi.

6 Biography

6.1 Personal History

I received by bachelor's degree in Mathematics and Computer Engineering in

2006 from the South Dakota School of Mines and Technology. I am currently

seeking a PhD in Computer Science from the University of New Mexico

under Stephanie Forrest. My current research focuses on evaluating Internet

growth using agent based models. I am also interested in the structure of

social networks and how demographic processes create small world social

networks, as well as graph models embedded in metric spaces.

6.2 Python

I use Python extensively in my research, as it allows for quick manipulation

and analysis of data in a variety of formats. I have produced a number of use-

ful libraries available called python_lib to provide additional functionality

to matplotlib, parallel computation, and statistical computing. I have also

collected several functions written by others (some of which I have modi�ed)

that have proven to be very useful.

6.3 NetworkX

I have used Python and NetworkX extensively in my research. I became in-

volved in the NetworkX project in the Summer of 2010, and in the past year

have made several contributions which are in the current codebase: Tick-

ets #356, #323, #357, #375, and #388. I also have contributed code in

several pending tickets and discussions (Tickets #378, #359, #345, #390,

#387, #371, #396, #533, #360, #395, and #355). In particular I worked

on Ticket #423 which attempts to address some of the problems with mat-

plotlib drawing. Additionally, a mailing list discussion attempts to provide

an openGL drawing method to NetworkX. This makes me very familiar with

the codebase, and able to quickly develop new functionality for NetworkX.

7

http://cs.unm.edu/~bedwards/python_lib.html
https://networkx.lanl.gov/trac/ticket/423
http://groups.google.com/group/networkx-discuss/browse_thread/thread/ea7e9cb804cf6335

6.4 Contact

Ben Edwards bedwards <at> cs <dot> unm <dot> edu Farris Engineering

Center 355d University of New Mexico Albuquerque, NM 87131

8

	Synopsis
	Project Details
	Current Drawing Interface
	Visualization Engines
	Graph Interconnection
	A matplotlib Engine
	Arrows
	Variable Node Shape
	Edge labels
	Interactive Node Positions

	Mentors

	Benefits for NetworkX
	Success Criteria
	Project Timeline
	Biography
	Personal History
	Python
	NetworkX
	Contact

