Static Heap Analysis for Automatic Parallelization

Mark Marron, Deepak Kapur, Darko Stefanovic, and Manuehitaregildo

University of New Mexico
Albuquerque, NM 87131, USA,
{marron, kapur, darko, herme}@s.unm edu

Abstract. Modeling the evolution of the state of program memory dupnggram execution is critical

to many parallelization technigues. Current memory aigliechniques either provide very accurate
information but run prohibitively slowly or produce veryregervative results. An approach based on
abstract interpretation is presented for analyzing prograt compile time, which can accurately de-
termine many important program properties such as aliaiigical data structures and shape. These
properties are known to be critical for transforming a sintfireaded program into a version that can
be run on multiple execution units in parallel. The analysishown to be of polynomial complexity in
the size of the memory heap. Experimental results for beacksrin the Jolden suite are given. These
results show that in practice the analysis method is effi@ed is capable of accurately determining
shape information in programs that create and manipulatgiEx data structures.

1 Introduction

Research on automatic thread level parallelization teghes makes extensive use of #iepd4, 16] of data
structures in memory. As an example, in [6] Ghiya used a naifshape to enable the extractiorfafeach
thread-level parallelism from common heap-based datatsires. The notion of shape and sharing can also
be used to enable the parallelization of recursive algmstfiL5, 8]. In many programs the availability of ac-
curate shape information and the application of these tamsforms enables the extraction of a substantial
portion of the available parallelism. Unfortunately, th@phcability of these parallelization techniques has
been limited by the difficulty of performing shape analysitwvthe required level of accuracy. The advent of
commonly available multi-processor systems, the slowfrimmprovements in single threaded processor per-
formance and the increasing use of object oriented langu@gdch make extensive use of heap allocated
memory and rich pointer structures) have renewed intemestiape driven parallelization techniques.

This paper uses an abstract interpretation framework fidopaing static analysis of programs and in-
troduces a graph based abstract heap model that can repadighe information on aliasing, shape and
logical data structures [10] that are required to perforredl level parallelization transformations. Along
with accurately representing the required information bape, aliasing and logically related regions, the
framework enables accurate simulation of the evolutiohe$é properties through many important program
idioms, e.g. sorting, copying, destructive reversal, dechent insertion/deletion. A theoretical analysis of
the runtime and our experience running the method on theddidnchmarks indicates that the technique is
accurate, efficient and scalable.

A key factor in achieving these results is the use of a now#iriigjue for undoing theummarizatiorof
information (the analysis must use a bounded representatisummarize unbounded recursive structures).
For efficiency, it is important to make the summary repres@omts as compact as possible. However, this
summarization may lead to the loss information which is eedd accurately simulate the effect of program
statements on the heap model. Seminal work on heap anal@isfroduced the notion of refinement but
the proposed technique results in an exponential runtime {(d the desire to model the program with

maximal precision). This paper presents a technique fongafent that sacrifices some accuracy in less
common cases to ensure that the worst case exponentiastameitded and that the method is fast in practice.

1.1 Related Work

There are two research activities closely related to th&kywogsented in this paper. One is the research on
shape analysis by Ghiya [4] and the second is the TVLA (3aluogic Analysis) framework introduced
by Reps, Sagiv and Wilhelm [16].

Ghiya’s method is efficient and is able to model simple strtet in programs that do not use destructive
updates. In this work shapes are defined on the entire paftitire heap that is reachable from a variable.
This implies that any extraneous sharing of the heap (dusetaise of theingletondesign pattern or shar-
ing of data that is unrelated to the computation that is beagllelized) will result is very conservative
results. Further, the analysis is unable to strongly upletg based storage. Thus, the analysis is unable to
accurately handle situations where a section of the heegugh destructive updates, temporarily takes on
a more general shape and then returns to the original shapd(ee— DAG — Tree).

The TVLA framework is very powerful and highly expressivélie sense that it can be used to represent
the shape and aliasing properties needed for extractirgdhievel parallelism. In addition to being expres-
sive enough to model the relevant program properties, tHeAlf'vamework is able to model the evolution of
these properties through destructive updates [17, 12]saablé to model shape on a more localized basis. In
the TVLA framework destructive updates are handled by aligithe summary representations of recursive
data structures to be refined into a number of distinct obj@bich can be strongly updated. Since there may
be ambiguity about how to refine the summarization TVLA entates all the possibilities. This results in a
potentially exponential runtime and in practice leads tgdaanalysis times. There has been work on reduc-
ing the cost of running TVLA or restricted variations of thetmod [20, 7] but they do not eliminate the ex-
ponential worst case time and have had mixed results in iegltite execution time on various benchmarks.

To compare the proposed method with existing shape anadaisiques we look at some simple exam-
ples with lists and with benchmarks from the Jolden suite ligt benchmarks demonstrate that the proposed
method handles simple heap based structures accuratetliatrid practice it is over an order of magnitude
faster than existing analysis techniques of similar pienisThe Jolden tests indicate that the proposed anal-
ysis method can determine the correct shape for the majufritgap based data structures even in programs
that build and manipulate relatively complex data struegwhile maintaining an acceptable analysis time.

2 Concrete Domain

Our analysis works on the strongly-statically typed, sqiglheritance, thread-free, exception-free, object-
oriented imperative core of languages like Java or C#. Uhiisgsimplified language enables us to focus on
the central issues of the analysis and allows the analysis txtended to a large class of source languages.

2.1 Concrete Language and Semantics

Our source language MIL (Mid-Level Intermediate Languagey structured intermediate representation.
The language has function and method invocations, a conditiconstructi(f ... el se if ... el se)
and a looping construct with break statements (.. whi | e andbr eak). The state modification opera-
tions and expressions (load, store and assign along witktémelard collection of logical, arithmetic and
comparison operators) are in a standard three-addresg§farm3].

MIL supports objects and arrays. We us¢o denote the set of all user-defined object types. Each bbjec
type,u € g, has a set of fieldB, associated with it. The set of all field offsets that are define program is
F =U{Fu|v € g}. MIL has the primitive typep = {i nt ,f | oat ,char ,bool }. Arrays can contain either
primitive typesp, or objectsg. The set of all legal array types for a progranojs= {u[] [v € pVU € T}.
The set of all types in the programis= p U o U oa. We assume that the types of all variables are explicitly
declared. Since this paper is focused on the operation odltkract heap model and the local data flow
analysis, we omit any description of how function and mettalts are handled.

2.2 Concrete Heap Definition

The concrete heap is modeled as a multi-graph with labelgdsedhere objects and arrays are the vertices
and the pointers are labeled directed edges in the graphsé/ha terntell to indicate either an object or
an array on the heap anffsetto indicate the field or array index that a pointer is stored atcell. Thus, the
set of edge labels (offsets) is= F UN. Edges are modeled as a relation on the cells and the labieén G

a set of cell<C and the set of labels the edge relatiofe C C x L x C. Variables are modeled as a partial
map from variable names to cells. Given a set of variablethe variable map is a functioky, : V — C.

The set of all concrete heaps (which we define as being thedreap plus the program variable map) is,
Hs = #Z(C) x Z(E) x {Vm} and the concrete domakh = 2 (Hg).

2.3 Heap Properties of Interest

Points-to and PathsGiven cellsa, b and offseto, (a,0) —, b denotes a pointgy that has the labed (is
stored at offseb) a and points td. We usea —, b to indicate thaf offseto s.t.(a,0) —p b. Two cells can
be connected by path . We use(a, 0) ~» b to indicate the sequence of pointéfs ... pn) s.t. p1 has the
labelo, starts at celh, p, points tob andVp;, pi.1 in the pathp; ends at the same cetl, thatp; 1 begins
at (30’ s.t. pi11 is stored at’ in ¢;). Definea ~- b to denote thaflo s.t. (a,0) ~»y b. We abuse the notation
@ C P to denote that all the pointers in the paitare contained in the set of pointd?s

Regions of the HeapA regionof memory[is a subset of the cells in memory, all the pointers that conne
these cells and all the cross region pointers that start@baéea cell in this region. Give@ C {c | cis a cell

in memory}, letP = {pointerp | 3a,b € C,a — b}. LetR. = {pointerp | Jac C,x ¢ C,a —p X® X —p a}
Then a region is the tupleC, P, P;).

Connectivity. Connectivity within a region describes how cells in the oegare connected. For a region
0 = (C,P,R;) and cellsa,b € C, cellsaandb are connected if they are in the same weakly-connected compo
nent of the grapkC, P); cellsaandb are disjoint if they are in different weakly-connected caments of the
graph(C,P). Figure 2 shows examples of connected and disjoint conhegtps. In Figure 2(a) the cetisd

are disjoint in the regiod, while in Figure 2(b) and Figure 2(c) the cetls] are connected in the regiah

Structure TraversalsAn important property for program transformations is thelat of data structures in
memory [4, 5]. The idea is to track the layout of the heap g3pears to a program traversing a data structure.
Ghiya considered the shape of the section of the heap thkt bewaccessed staring from each variable.
Our heap analysis identifies logically related sectiondeftteap (regions). To improve the accuracy of
the shape information we define data structure layouts aetlogically related regions instead of the entire
section of the heap reachable from a given variable. Givegian(= (C,P,R;), we can define several lay-
out predicates on the grag@, P) to indicate what kinds of traversal patterns a program cartasavigate

through the data structures in the region. A region admitaveetsal type if there is a subregion that satisfies
the corresponding layout predicate. Note that these tsalseare not mutually exclusive and tiagetraver-
sal= List traversal= Singletortraversal. In the following definitions, let b be cells andp, ¢ be paths.

— Cycle Traversal ifd graph(C',P'),C' CC,P"CPs.t3JacC,pC P sta~ga

— MultiPath Traversal iff3 graph(C’,P’),C’' CC,P C P st.dabeC o, CP st (a#b)A(p+#
Y) A (a~sgb)A(a~y b)A(C,P') does not admit a Cycle Layout.

— Tree Traversal iffl graph(C’,P’),C' CC,P’ CPs.t.(3acC’,ahas 2 or more successorsih A (C',P’)
does not admit a Cycle or Multipath Layout.

— List Traversal iff3 graph(C’,P"),C' CC,P’ C Ps.t.(Vae C’,ahas one or zero successor€in A(3b e
C’,b has one successor@) A (C',P") does not admit a Cycle or Multipath Layout.

— Singleton Traversal holds for all regions.

Figure 1 shows several concrete heaps; the cells are tHesclabeled with letters and the edges rep-
resent pointers. Since we are interested in the most gewayah program could traverse a region of the
concrete heap we must assume that a program variable cagildl itetraversal of the region at any of the
cells in the region. Thus, the figures omit the program véemb~igure 1(a) shows a concrete heap with
three cells(a,b,c). Since there are no edges connecting these cells the onhavgaggram can traverse
them is by individually referencing each cell. Figure 1(bdws a concrete heap that admitsist traversal
(bothb — a andc — a). It also admits &ingletontraversal since a program can always treat the cells as
if they were disconnected. Figure 1(c) shows a concrete tresmdmits alreetraversal(b,a,d) as well
aslList andSingletortraversals. Finally, Figure 1(d) adds an edge; b that changes the region to admit a
MultiPathtraversal(c,b,a).

e T oy, 0 i, o, i, o
% t § % el § % e T A . S {
{,9; ?E ’iB:,f R}E,j "‘?9:; R}E,j QE:}* 2‘9,}
. JM !j*‘!‘-/ JM Né/ "M/
{a) a 4 & 4y (a
(a) Singleton (b) List (c) Tree (d) MultiPath

Fig. 1. Concrete Heaps, Admissible Traversals and Layout TypethéoRegions

3 Abstract Domain

The abstract domain is based on an abstract heap graph n&dél, 9]. Each node represents a set of
concrete cells and each edge represents a set of pointersnddhel provides a natural framework for rep-
resenting connectivity, aliasing, and region identificatinformation. This section introduces a number of
instrumentation domains that when added to the nodes aresaédghe abstract heap graph allow aliasing
and connectivity to be tracked more accurately and enablentbdeling of shape.

Numeric Quantities.The only requirement we place on the numeric abstractionasit differentiates the
case where the value is exactly one and the case where theeisafuthe rangé0, «|. This gives the binary
domainl < # (unknown), wherdl represents the interval [1, 1] a#idepresents the interval [6)]. Given
this domainaLia’ = 1if a=a = 1 and# otherwise. In the later algorithms we also need an inteaticet,
T, for +. This is given byata = #.

Types. Each node represents a set of cells and each cell is eithdnjact ¢has typey € o) or an array

(u € gp). Since MIL has dynamic method invocation as well as typdingst is important to model the
types of cells that a given node might represent. The donw@imefpresenting the types of each node is
P (0 Uap). As usual the join operatian is U and the< relation isC.

Offsets.Each edge in the model represents a set of pointers and estérgas an offset (label) associated
with it. Since there are only a finite number of fields in a giyeagram the model can be completely sen-
sitive with respect to field offsets (by construction twomnters with different offsets are never represented
by the same edge). However, there may not be a bound on thefsazeys. So, we treat arrays as having
a single offset?, that contains a summary of all the elements that may be iartag. Thus, the offsets that
are used in the field sensitive parts of the analysis is thE sgt?}.

Abstract Layout.Each noden, in the graph represents a regi@hpn the heap. To track the traversals that
may be admissible in the regiahthatn represents we use a set of layout tyhagouts= {SingletonList,
Tree MultiPath, Cycle}.

if n has aSingleton_ayout, ther] only admitsSingletortraversals.

if nhas alList Layout, theri] only admitsSingletoror List traversals.

if nhas alreeLayout, then only admitsSingletonList or Treetraversals.

if nhas aMultiPath Layout, ther] only admitsSingleton List, Treeor MultiPath traversals.
if nhas arCycleLayout, then any traversal pattern may be admissiblé.in

This definition leads naturally to the ord&ingleton< List < Tree< MultiPath < Cycle Thenl Ul is
max(,!"). Examples are shown in Figure 1.

Connectivity. Given the concretization operatgrand two edgesg;, e that start or end at the noae the
predicates that define connectivity in the abstract domain a

— e1,& connected with respect toif: Ip; € y(e1) A3pz € y(e2) Ada,b e y(n) s.t.
(py1 starts or ends &) A (p2 starts or ends &f)A (a, b connected).

— e1,& disjoint with respect tm if: Vp; € y(e1) AVp2 € y(e2) AVa,b e y(n)
(py starts or ends &) A (p2 starts or ends &) = a,b are disjoint.

Edgese;, e areoutConnectedf: 3 ns.t. (1, e are out edges from) A (e, e are connected in).
Edgese;, e areinConnectedf: 3 ns.t. (1, e are in edges to) A (ej, & are connected in).

Figure 2 shows overlays of the abstract and concrete heapscdncrete cells and pointers are shown
as dotted circles and lines while the abstract nodes andseatgerepresented with solid boxes and lines.
EdgeE is an abstraction of pointgs, edgeF is an abstraction of pointer. NodeZ abstracts cells. d, e.
NodesX, Y abstract cellg, b respectively. In Figure 2(a) we can see that the targefs gf(cellsc, d) are
disjoint. By the definition of the connectivity abstractj@iges andF are also disjoint with respect &0
In Figure 2(b) there is an additional pointer which conneet$s d, c. This means that, d are connected
and in the abstractior;, F are connected with respect Zoand thuskE, F are alsonConnectedFinally,
Figure 2(c) shows the case where celld are connected indirectly (but according to the definiticeythre
still connected). Thug, F are alsdanConnected

{ay X Y {b) €} Y {b} {a} X Yy {b}

il - i el o

p. [E F| /q pi [E F| ‘q p. E F| /g

\ f v 7 ; : J

© ° @ ©~.2 @ © % @
e (&) &)

(a) Disjointin Z

(b) Connected in Z

(c) Connected inZ

Fig. 2. Concrete and Abstract Connectivity

Interference.Each graph edge represents a set of inter-region pointdran\bmbining nodes, it is impor-
tant to know if all the pointers that the edge representstpoio disjoint subregions or if there may exist
a cell that two or more pointers may be able to reach and theyanterfere An edgee represents interfer-
ing pointers if there exist pointers g € y(e) such that the cells that, g point to are connected. We use a
two-element latticenp < ip, npfor edges with all non-interfering pointers aipdfor edges with potentially
interfering pointers. This abstraction is a complemenh&donnectivity relation. The connectivity relation
tracks reachability information between the start or efid o pointers represented by different edges while
interference tracks reachability information betweenehd cells of pointers represented by the same edge.

In Figure 3, EdgéE is an abstraction of pointegsandq, nodeZ abstracts cells,d, e, andX abstracts
cellsaandb. In Figure 3(a) the targets @ q (cellsc, d) are disjoint. Thus, the pointers do not interfere and
the edgeE, that abstracts them should bp. In Figure 3(b) there is an additional pointer which coneect
cellsd, c. This means that andd are connected and edgeshould bep. In Figure 3(c) the cells,d are
connected indirectly. Thus, the edges againip.

@ x ® @ x @ @ x ®
ip E q p E g p [Ea
ol [ezo|[o e

(a) Non-interfering (b) Interfering (c) Interfering

Fig. 3. Concrete Connectivity and Abstract Interference

Nodes.The types of the concrete cells that a node represent aszlstoa set calletypes To track the total
number of cells that may be in the region represented by tide e use theizeproperty. The internal lay-
out of a node is represented by fagoutcomponent. Finally, we introduce a binary relatmmnRC E x E

to track the connectivity of the edges that are incident i tlode. If(e;, &) € connRthene;, e, are con-
nected with respect to this node otherwggee, are disjoint with respect to this node. The abstract domain

for the nodesN = Z(c U gp) x Layoutsx {1,#}, x Z(E x E) and each node in the graph is represented as
arecord of the fornfit ypes | ayout si ze] . For clarity we omit a representation of tbennRrelation,

as the inclusion of this information complicates the figuselsstantially. In the cases where the connectivity
relation is of interest we will mention it in the descriptiofithe figure.

Edges.As in the case of the nodes, we combine several componemnaetishs to create the edge abstrac-
tion. Theoffsetcomponent indicates the offsets (labels) of the pointeasdhe abstracted by the edge. The
number of pointers that this edge may represent is trackédtive maxCutproperty. Theinterfere prop-
erty tracks the possibility that the edge represents paritet interfere. The domain of the edgesiss
(FU{?}) x{1,#} x{npip}, and each edge is represented as a repoird set naxCut interfere}.

Graph. The domain for the abstract heap graphs is th&set? (N) x Z(E) x {Va} x {Me}. The function
Vh 1V — N is a partial map from variable names to nodes in the heap gvégibh represents the targets of
the variables. The functiode : E — N x N defines the structure of the graph by mapping edgeshe pair
of nodeg(ns, ne) such thakt begins ans and ends ate. We use the notatiole(e) = (*,n) or Mg(€) = (N, *)
in the case were we do not care about the identity of the stattthiode of the edge.
We restrict the abstract domain by defining a normal form gaghgraphs. This normal form simplifies
the structure of the abstract domain and it has several giepéhat improve the accuracy of the analysis.
First, we define what it means for two nodes to tadeursive(for this work we assume single level re-
cursion but the definitions can be generalized [3]). Thisnitidin is used to make the abstract heap domain
finite for a given program. If we limit the maximum size of theagh structure then, since the domains for
the nodes and the edges are finite, the number of graphs & fithits is done by forcing recursive structures
to have bounded representations. Define two nogi€s= N to berecursiveif:

— Jec€E s.t.Me(€) = (n,n).

— n.typesn’.types#£ 0.
— Avariablevs.t.Vh(v) =nVVa(v) =n'.

Another useful concept is that of ambiguous edges. We wdkedtd be able to assume that given an
offset and a node there is a unique outgoing edge that isanttd this node with that offset. Define a nade
as having an ambiguous offsetife, € € E s.t.e# € AMe(€) = (n,*) AMe(€') = (n, x) A e.offset= € .offset
A graphg = (N, E,Vh, Mg) is in normal form if:

It has no unreachable nodé&$ € N, 3 variablev s.t.Vq(v) = nV (Vh(v) = W Ad pathg s.t.n’ ~4 n).
It has no recursive nodegn;, ny € N s.t.ng, Ny are recursive.

— It has no ambiguous edge&n € N s.t.n has an ambiguous offset.

No refinement rules can be applied, See Section 5.

4 Example: Building A List

We use two examples to demonstrate our analysis, Figureetfifgh is a loop that constructs a linked list.
The second example copies a linked list (and is the subjeBeofion 7). We assume that the datatypes
Li st Node andDat aNode have been definedat aNode is a dummy type to represent whatever data is
of interest.Li st Node has anext field which points to the next node in the list andat a field which
points to aDat aNode.

Figure 5(a) shows the state of the abstract heap after &iligctheLi st Node (abbreviated-N). The
variableq points to a node of typkei st Node and since we just allocated the object that this node reptese

Build a List Copy a List (in reverse, for simplicity)

Li st Node p, q Li st Node g, x, t
p = null X =p
for(int i =0; i <M ++i) g = null
g = new Li st Node() while(x !'= null)
g. data = new Dat aNode t =4
g.next = p g = new Li st Node()
p =g g.next =t
g.data = x.data
X = X.next

Fig. 4. List Example Code

we know that the node represents exactly one cell and l&sgetonlayout (abbreviate®). Figure 5(b)
shows the state of the heap after allocating and assignanddta object, a cell of typBat aNode (DN).
The data node is also a node of size one wigirggletorlayout. The connecting edge is stored atdia¢ a
offset and since it was just created it must represent asimgihter and bap. Figure 5(c) shows the heap
at the end of the first loop iteratiop:points to the newly created list entry aqds nullified since it is dead.

Figure 5(d) shows the abstract heap at the end of the secopdtkration. New nodes represent the
Li st Node andDat aNode cells allocated in this iteration. The newly allocated é&stry has been put at
the head of the list and the old list (shown dotted) is linkedith an edge stored at tiext offset. If we
were to continue, the heap abstraction would grow in an untéed manner. To prevent this, we normalize
the abstract heap. This is described in detail in Sectiont@diuhis example the important point is that
we merge the twdi st Node nodes into a single summary node that represents the codiniftemation
from these two nodes and the edge between them. By lookingeaddge connecting the two nodes and
the internal layouts we can determine that the internaldagd the summary node isist (abbreviated.)
since we have tw&ingletornregions connected by an edge of size one. Since each regibsize one the
summary region must be of size larger than one, represegtééhbour abstract domain. Finally, we update
the internal connectivity information for the summary nolteparticular, the two edges aoeitConnected
The state of the heap after this merge is shown in Figure 5(e).

After combining the list nodes we have ambiguous targets @ut edges from the same node with the
same labeldat a) This ambiguity is removed by merging the potential targes a single summary node
and by combining the edges that refer to these targets intigglessummary edge. Merging these nodes is
similar to the merge of the list nodes except that the twormog edges ardisjoint After merging the nodes
we merge the two edges. Since the summary edge represensitwters itsmaxCutis #. To determine the
value of theinterfere property we check if either edgeiis or if the targets of the edges areConnected
Because the edges pointed to disjoint nodes they arm@onnectedand therefore cannatterfere Thus,
the interference property of the summary edgepsThe result is shown in Figure 5(f), which is also the
fixed point for the analysis of the loop.

5 Refinement

During the data flow analysis portions of the abstract heaptyare summarized into single nodes to im-
prove efficiency and to eliminate unbounded recursive datiatsires. This summarization can cause a sub-

® @ ® ﬁ) @
[LN, S, 1] [LN, S, 1] [N, S, 17
{data, 1, np} {data, 1, np}
DN, S, 1] DN, S, 1]

(a) Allocated list node

(b) Allocated data object

(c) End of first iteration

@ @ @
ext, t,opp i {next} {next}
[LN, S, 1]] , 1] | LN, L, #]
i {data, 1, np} {data, 1, np}
{data, 1, np} {data, 1, np} : {data, #, np}
[DN, S, 1] LoN. S, 1] | [DN, S, #]
(d) End of second iteration (e) First normalization step (f) Finished

Fig. 5. Building a linked list

stantial loss of accuracy if it is too aggressive. We defineethiod that (for the most common cases encoun-
tered) allows us to undo the summarization by transformisgramary node into a number of nodes (and
edges) so that relationships between variables and regidahe heap can be more accurately modeled.

There are three layout types that we refine. The first is a fuata¢presents several disjoint regions of
the concrete heap. In this case we expand each sub-regma Beparate node in the abstract graph. The
second is a list node with a single incoming edge. In this easmake explicit the unique memory location
that the variable must refer to in the list structure. Thectis a tree with a single incoming edge. This case
is analogous to the list so we do not discuss it separately.

Disjoint Region Separationlt is possible for a single summary node to represent seeatakly disjoint
regions. If this is the case then there is a partition of incgnedges (from variables or pointers) based on
theinConnectedelationship. Using this partition we transform the node ia number of new nodes, each
new node representing a single element from partition o€edg the original node. An important special
case is when a node hasSingleton layoutind there is a single incoming edgeméxCutl. If a node has
these properties we can safely assume that the node refgrasngle cell, which enables strong updates in
later analysis steps.

Consider the case in Figure 6(a) where the variaplasdq point to the same node, and assume that
the edges fronp andq are notinConnectedPartitioning results in Figure 6(b) where the summary node
has been partitioned based on th€onnectedelation from the variables. Since the edge that was split
contained all non-interfering pointers the two edges ianido the node representing tbataNodecells
cannot benConnectedThis now allows us to apply refinement again—the resultshogvn in Figure 6(c).

Refinement on ListRefinement on lists is more complex than refinement of disfeigions. Since disjoint
region refinement is applied before list or tree refinemenkm@v that all the incoming edges to the given
list node may be connected. Further, if there are multipterning edges we cannot determine an ordering
for them in the list, so we only consider lists with a singleaming edge with anaxCutof 1.

[ILN, S, 1] [ILN, S, 17] [[LN, S, 11] [ILN, S, 11]
{data, #, np}
{data, 1, np} {data, 1, np} {data, 1, np} {data, 1, np}
[DN, S, # [IDN, S, 1]] [DN, S, 17]

(a) Summarized Singleton (b) Partition variable edges (c) Partition pointer edges

Fig. 6. Refinement of a region with disjoint sub-regions

® ®
{next} {next, 1, np} {next}
LN, L, #] |> [ILN, S, 11 ~ILN, L, #]
{data, #, np} {data, 1, np} {data, #, np}
DN, S, #] [[DN, S, 1] [IDN, S, #]
(2) Summarized List (b) Refined List

Fig. 7. Refinement of a node with a list layout

Figure 7(a) shows a list with one incoming variable. Figufte) 8Bhows the most general way in which a
list can be referred to by a single program variable; theaesimgle cell that the variable points to and a sec-
tion of the list after this cell. We can safely ignore the gatbf the list before the cell that the variable refers
to since it is unreachable and therefore cannot affect tbhgrpm in any way. Since the data edge contains
all non-interfering pointers we apply the disjoint regi@paration rule to the data components of the list.

6 Dataflow Operators

This section describes the principal algorithms used inatheysis. We first address merging nodes and
edges. Then we define the normalization routines for nodégeaphs. Finally, we use these operations to
build the heap graph upper bound and comparison operabatailed descriptions of some algorithms and
proofs for the required safety properties are omitted; $8gfpr more details.

Edge Join (Algorithm 1)The edge join method is only well defined when two edges sténeasame offset

in the same node and end at the same node. The method cheeksitbennectivity information to deter-
mine how the component abstraction should be combinedeletlges arsmConnectedhen the pointers
that these edges represent may interfere and we set the syradge asp, otherwise we take the join of
the interferetypes of the edges. For the rest of the components that adetosepresent an edge, we can
simply combine them component-wise with respect to theipibigg that these edges originated in separate
graphs. Thatis, when we join two heap graphs that are fromraépflow paths in the program we know that
there can be no interaction between edges from differentalarontexts. The edge join algorithm uses the
functionupdatelnternalConninfoEdgeJdim, ne, €4, &) to update the internal connectivity info ig andne

to represent the fact thag now represents pointers frogg ande,.

Algorithm 1: Join Edgesl(e)
input : gthe heap graple,, &, edgesns, ne the nodese,, &, start and end at
if (€a, & from the same contexthen e;.maxCut— e;.maxCut}- e,.maxCut;
else e;.maxCut— ey.maxCutLl ,.maxCut;
if s, & are inConnectedhen ey.interfere— ip;
else e;.interfere« ey.interferelinterfere - iNterfere;
updatelnternalConninfoEdgeJam(ne, €, &);
deleteEdgey, &y);

Node Join and Combiné/Vhen summarizing two nodes, andny, there are three possibilities. The first is
neither node can reach the other. In this casgoivethem. If there are only edges in one direction between
nodes, fromm, to n, or n, to Ny, then wecombinethem. If there are edges from to ny and fromny, to N,
then we replace,, ny with a single node that is a safe approximation of, ny.

Figures 5(e) and 5(f) show that the node join is a purely campbtwise operation. The combine
operation on a pair of nodes that have a connecting edge is owmplicated, as it can be seen in Fig-
ures 5(d) and 5(e), where the two nodes with tpst Node are combined into a single summary node. In
particular we need to account for the fact that the edge(®ecting nodegs, andny, will affect the layout
and the internal connectivity in the new summary node.

Algorithm 2 : Combine Nodes¥no4d
input : graphg, na, Ny Nodesebt set of edges fromg to n,
Na.type < na.typeU ny.type;
Na.Size— na.sizeF ny.size;
na.layout«+ combineLayoutf,.layout, ny.layout,ebt);
Na.connR« combineConnR{;.connR,n,.connR ebt);
remap all edges incident tg to be incident tan,;
deleteNoded, ny);

The algorithmcombineLayouts, Iy, ebd, is based on a case analysis of the internal layout thattsesu
from the possible combinations of layouts fgy; n, along with the total number of pointers represented by
ebtand the potential that any pointers in the edges represegteltinterfere. We enumerate the possible
combinations of thebtedges and the layout types. Then for each case we use thetaenoéthe edge and
layout properties to determine the most general layout tiyaemay result from this particular case.

The combineConnRunction updates the internal connectivity informatiominto reflect that it now
represents the combined regions fgrand n,. This involves computing the binary connectivity relation
for all the edges that are incident to the new summary nodedbas the connectivity information in the
argument nodes,, Ny, and the edges that connect the argument nets,

Normalization/Join OperatorsTo normalize a node we check if there are two edges that gsttrisenode
and have the same offset. If they exist and they end at differedes, we merge the target nodes and then
join the edges. If they already end at the same node, we jinsttje edges.

To normalize a heap graph we normalize all the nodes, thely #pprefinement rules to all the nodes
that they can be applied to and finally we compress all thersa@inodes in the graph. This process is
repeated until the heap graph is no longer changing.

To compute the upper approximation for two heaps, we firstiadize both heaps and mark which
graph each edge and node belonged to originally. Then weviakables with the same name and union
their targets. Once this is done the resulting graph is nlizeth

Heap Graph EquivalenceDefining equivalence on the heap graphs is simple if we reghat they are in
normal form. This implies that each abstract storage looatias a unique edge and we can compare the
graphs for structural equality and equality of the data eribdes and edges.

7 Example: Copying a List

During the copy operation (Figure 4) there are severaloaitiels that we want to preserve: the source list
should be unaffected, the copy should be a list, and, if thiecgdist contained all independent data elements
so should the copy. For simplicity assume that we know thatsiburce list is already pointed to Ipy
Figure 8(a) shows the list at the start of the copy. Figurg 8llows the results at the end of the first loop
iteration. The head of the list has been copteds nullified andx has been indexed down the list. Note that
in indexing down the list we refined the list on thext edge so that the node thatefers to is made explicit
(the node is a singleton of size 1). We show the newly mateeidlliist and data node using dotted lines.

Figure 8(c) shows the heap during the second iteration oliothg after creating the new list node and
assigning it to point to the next data node in the sourceAisthe end of the loop 8(d) we have again in-
dexed the variabl&. We now have recursive nodes (for simplicity assume that mewkthat keeping, g
refined does not matter—if we keep them refined the resuleis#éime, it just takes an extra loop iteration
and results in a larger graph). Thus, we compress them dodrgalization. The resulting graph shown in
Figure 8(e). This is the fixed point of the loop and if we intefithe exit condition we see that the result of
the copy loop is the heap graph in Figure 8(f).

8 Performance

Theoretical Performanceln order to analyze a program, the model presented in thisrmesn plugged
into any dataflow analysis framework. The total cost of analy the program is affected by the cost of the
model operations and the runtime of the dataflow framewaakithchosen. In this paper we do not assume
a specific framework so our runtime analysis only looks atthet of the model operations.

We assume that the number of nodes in the abstract heap graplthiat each node has at mdst
edges and there atauser defined types. The most expensive part of running the mealel is the graph
normalization step, so we only present the analysis forahi the node combine operation, which is the
dominant cost of the normalization algorithm.

The execution of£ombine NodegAlgorithm 2), requires combining the type seBt), remapping the
incident edgesQ(k), callingcombineLayougwhich computes the shape of the combined node&) and
calling thecomputeConnkhethod (which computes the transitive closure of the twaneativity relations),
O(k%). Thus, The total time i©(t +k-+k-+k3). If we assume thatis a small constant, the time to normalize
anode iO(k3).

The graph normalization step requires:

Removing all the unreachable sections of the heap g@gik).

Normalizing each node, visit each edge of each node and fltgicombine edges)((nk)k?).
Refining all possible nodes, visit each node and potentiafipe it, O(nk).

Removing all recursive nodes, visit each node and poténtiambine two node((nk)k3).

®

{next, 1, np} {next}
[ILN, s, 1 ~ILN, L #

{data, 1, np} {data, #, np}

[[ON, S, #)

[N, S, 1]

(a) Start of the method

C? {Eim {next, 1, np} {next}

[N, s, 1 ~IN, s, 111 YN, L #

{data, 1, np} {data, 1, np} {data, #, np}
[IDN, S, 11] [IDN, S, 17] [IDN, S, #|
{data, 1, np} {data, 1, np}
[ILN, S, 1] ~_A{ILN, S, 11
{next, 1, np}

(c) Create copy node in the second iteration

{next} C? fim {next, 1, np} {nexty

LN, L# N, s, 111 LN, L #

{data, #, np} {data, 1, np} {data, #, np}
[IDN, S, #] [IDN, S, 1]] [IDN, S, #]
{data, #, np}
ﬂ ILN, L, #
{next}

(e) Normalization

C? (fim fnexs; 1, ik {next}

[N s, 11 ~/zn s 17 7 YN, L #

{data, 1, np} ! {data, 1, np} {data, #, np}
Y
[IDN, S, 11] {[DN, S, 1] | [IDN, S, #|
{data, 1, np}
[LN, S, 1]

O

(b) Firstloop iteration

C? {next, 1, np} {next, 1, np}

[N, s 1N, s, 111 NN S 1] |

{next, 1, np}

{data, 1, np} {data, 1, np} ! {data, 1, np}
[[DN, S 1] [IDN,S, 1] é’[D;V. 517]
{data, 1, np} {data, 1, np} {next}
([N, S, 11 ~__{ILN, 5, 11] @
{next, 1, np} {data, #, np}
@ [DN, S, #]

(d) End of second loop iteration
®
{next}

Sy

{data, #, np}

[[DN, S, 4

{data, #, np}

LN, L, #

{next}

®

(f) Finished

Fig. 8. Copying a linked list (in reverse order)

These operations need to be done until none can be appliext tBie refine operation can only be applied
to a node twice and the combine operation replaces two ngdesibgle node (which cannot be refined), the
algorithm cannot continue for more th@in) iterations. Thus the total time for the normalization roaetis
O(n) * O((nk)k®) = O(n’k*).

Benchmarksln this section we compare the runtime cost of our UMA (Un-edriviemory Analysis) with
TVLA (tvla-2-alpha) and a simple flow-sensitive equalitgded points-to method (which is not capable of
shape analysis but provides a performance baseline). Tieeexamine the accuracy and utility of the in-
formation that the UMA analysis method provides. All measnents were made on a Pentium M 1.5 GHz
laptop with 1 GB of RAM.

We use two sets of benchmarks. The first is a number of simgileninipulation methods that are use-
ful for validating that the information computed by this &s#s is accurate. These benchmarks include list
insertion, deletion, find and copy operations. The goal isrtsure that the listness and data independence
properties are preserved through all of these operatidms fifst entry in Figure 9 shows the runtime for
TVLA, the points-to and the UMA analysis. In all of the simpilet tests, our analysis is able to determine
that the result of each list operation is a region withltiet shape.

List Analysis Times Jolden Analysis Times and Shape Results

BenchmarkCopy Find|Insert{DeleteReverse Benchmarl bisorfem3d healtj ms{poweftreeadd tsp
TVLA NA[0.9131.523 8.003 3.01s Points-to || 2.10$1.4812.20$0.54s 0.423 0.1630.70g
Points-to |/0.0580.0330.045 0.065 0.03s UMA 12.30$6.90540.90s5.70s 4.203 1.8055.089
UMA 0.2530.1050.153 0.193 0.13s Accurate ||Partia|l YegPartial Ye§ Ye§ Yes Yes

Fig. 9. Benchmark Results

The second set of benchmarks is from the Jolden suite [1] &ve hot finished implementing the virtual
method dispatch analysis, so bh, perimeter and voronoimaitteal from the table). This set of benchmarks is
designed to test how well the analysis method scales tomdaltode sizes and as a first test for the ability
of the heap analysis method to provide useful shape infeoméir parallelization transforms. Current work
on interprocedural versions of TVLA indicate that even demrograms take upwards of 30s to analyze [14]
and no results for programs as complex as the Jolden suigedegn published so we omit the TVLA analy-
sis from the table. The second entry in Figure 9 shows thettimen the analysis on each of the benchmarks
and indicates if the analysis was able to correctly detegrttie shape information required to perform basic
thread leveforeachandrecursive treeparallelization. In the table we have two categories forabeuracy
of the shape analysi¥esis used when the shape analysis was able to provide the tehagoe information
for all of the relevant heap structures in the progrRartial indicates that the analysis was able to determine
the correct shape for some of the heap data structures tsime important properties were missed.

There were no cases where the analysis failed to produce -#rimi@h amount of useful information
on data structure shapes. In the cases where the UMA algoritlunable to provide completely accurate
information for parallelization the causes can be tracai bathe simple modeling of arrays (health) or the
crude technigue we are currently using for interprocedamalysis in recursive functions (bisort and health).

9 Conclusion and Future Work

This paper presented a graph-based heap model that candoeitlsa standard data flow framework to an-
alyze the evolution of the heap during program executioe. Miodel is shown to be capable of representing
heap properties (aliasing, shape and logical data stei@dentification) that are needed to extract thread
level parallelism from single threaded programs. The p#pam outlined the model operations required to
perform the program analysis. A key component of the opamativas the use of a refinement operator that
enables the accurate simulation of important program ojp@sa(copying, reversing, destructive updates,
etc.). Unlike Ghiya's work where extremely conservativp@ximations must be made in the presence of
destructive updates, the proposed model is able to retaingininformation to provide meaningful shape
information even when destructive updates are being paddr Theoretical analysis shows that all the pro-
gram operations on the model @¢k*) and the upper bound/equality operations@(e’k*) wheren is the
number of nodes in the heap graph &rislthe number of edges incident to a node. This polynomialmen

is due to our conservative refinement operator (which orfipes unambiguous cases) which is in contrast
to the TVLA refinement operator (which resolves ambiguityemyimerating all possible cases).

The method has been implemented and run on several benchritaek first set of benchmarks is de-
signed to test the ability of the analysis method to modetiimental list operations. The method analyzed
this set quickly while discovering all the relevant list pesties. Next, we analyzed several codes from the
Jolden benchmark suite. Analysis times on these benchrseaksd acceptably given that a simplistic and
fully context-sensitive interprocedural analysis methad used. The method correctly identified the shapes
(SingletonList, Tree MultiPath, Cycle for almost all of the data structures in the programs.

These results are a critical step toward the goal of transfay modern single threaded programs that
make extensive use of pointer rich, heap based structu@sinlti-threaded parallel programs. Our future
work is focused on improving the accuracy, performance ages of this analysis technique. We iden-
tified recursive procedures that rely on destructive updagea major issue in accurately modeling shape
and handling these cases is the next step in our researcm@thed is local in the sense that all abstract
program operations only refer to and modify small portiohshe heap, we plan to utilize this to enable
memoization and localization of procedure calls, both ofclvhare crucial to improving scalability. Since
modern programming languages make extensive use of bugtllaction libraries (hashtables, trees with
parent pointers, iterators, etc.) we are working on how tdehthese important data structures and generic
programming concepts.

References

1. B. Cahoon and K. S. McKinley. Data flow analysis for softevarefetching linked data structures in JavaPACT,
2001.

2. D.R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis ofteognand structures. IRLDI, 1990.

. A. Deutsch. Interprocedural may-alias analysis for fggg1 Beyonck-limiting. In PLDI, 1994.

R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclipty?ad shape analysis for heap-directed pointers in C.

In POPL, 1996.

R. Ghiya and L. J. Hendren. Putting pointer analysis tdwbr POPL, 1998.

R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelisr@ programs with recursive darta structures.Ci@,

1998.

. B. Hackett and R. Rugina. Region-based shape analydignaitked locations. IROPL, 2005.

L. J. Hendren and A. Nicolau. Parallelizing programs wtursive data structureEEEE TPDS 1(1), 1990.

. N.D.Jones and S. S. Muchnick. Flow analysis and optincizadf lisp-like structures. 1f?OPL, 1979.

» w

oo

© o~

10

11.

12.
13.

14.
15.
16.

17.
18.

19.
20.

. C. Lattner and V. Adve. Data Structure Analysis: An Effiti Context-Sensitive Heap Analysis. Tech. Report
UIUCDCS-R-2003-2340, Computer Science Dept., Univ. afdiis at Urbana-Champaign, Apr 2003.

C. Lattner and V. Adve. LLVM: A Compilation Framework fbifelong Program Analysis & Transformation. In
CGO, 2004.

T. Lev-Ami and S. Sagiv. TVLA: A system for implementinttic analyses. I$AS 2000.

M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildmified memory analysis. Tech. Rep. TR-CS-2006-06,
University of New Mexico, Apr. 2006. Available ahttp://www.cs.unm.edu/treport/tr/06-04/uma.pdt

N. Rinetzky, M. Sagiv, and E. Yahav. Interproceduralpghanalysis for cutpoint-free programs.SAS 2005.

R. Rugina and M. C. Rinard. Automatic parallelizationlvide and conquer algorithms. PPOPP, 1999.

S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-aiglyroblems in languages with destructive updating. In
POPL, 1996.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shaplysisaia 3-valued logic. IiPOPL, 1999.

R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, EnGagand P. Co. Soot - a Java optimization framework. In
CASCON1999.

R. P. Wilson and M. S. Lam. Efficient context-sensitivenfer analysis for C programs. PLDI, 1995.

E. Yahav and G. Ramalingam. Verifying safety propertissg separation and heterogeneous abstractions. In
PLDI, 2004.

A Additional Algorithms

Algorithm 3 : Heap Graph Upper Bound

input : graphda, g

output: None

Jan < hormalize(s);

set all nodes/edges @an as contexg;
Oon < hormalize@y);

set all nodes/edges @, as contexb;
Ores <— GanU Gpn;
normalizeGraphyes);

Algorithm 4 : Normalize Graph

input : graphg
output: None
Remove all unreachable nodes frgm
while g is changingdo
while 3 node n s.t. n can be normalizeld
normalize(, g);

while 3 node n s.t. n can be refineth
apply the applicable refinement rulerip

while 3 nodes nn' that are recursivelo
combineNodesf, n, n');

Algorithm 5: Normalize Node

input : noden, graphg, n€ g
output: None
while 3 offset o with more than 1 edg®
e1, e «— two edges with offseo;
n; < endpoint ofey;
n, «— endpoint ofey;
if np # np then
if 3 edges from pto np and rp to iy then
replacen;, np with the T from the lattice of nodes;
else if3 edges from nto np then
combineg, ny, ny);
else if3 edges from nto iy then
combineg, ny, ny);
else
join(g, ny, np);

Ue(elezg)v

Algorithm 6 : combineLayout

input : Il layout typesgbtset of edges from, to n,
output: the layout of the combined node
mayInterfere— \/{e € ebtle.interfere= ip};

totalCut«— y {e € ebt|emaxCut};

notSingletons— sz # SingletonA s, # Singleton;
isDAGgraph«— totalCut> 1 A notSingletons

Iy — laUjayoutlb;

case(maylnterferev isDAGgraph) return |y Ujayout MultiPath;
case(la = List) return IrUjayoutTree;

case(la = lp = Singleton) return |y Ujayoud-ist;
otherwise return |;;

