
Static Heap Analysis for Automatic Parallelization

Mark Marron, Deepak Kapur, Darko Stefanovic, and Manuel Hermenegildo

University of New Mexico
Albuquerque, NM 87131, USA,

{marron, kapur, darko, herme}@cs.unm.edu

Abstract. Modeling the evolution of the state of program memory duringprogram execution is critical
to many parallelization techniques. Current memory analysis techniques either provide very accurate
information but run prohibitively slowly or produce very conservative results. An approach based on
abstract interpretation is presented for analyzing programs at compile time, which can accurately de-
termine many important program properties such as aliasing, logical data structures and shape. These
properties are known to be critical for transforming a single threaded program into a version that can
be run on multiple execution units in parallel. The analysisis shown to be of polynomial complexity in
the size of the memory heap. Experimental results for benchmarks in the Jolden suite are given. These
results show that in practice the analysis method is efficient and is capable of accurately determining
shape information in programs that create and manipulate complex data structures.

1 Introduction

Research on automatic thread level parallelization techniques makes extensive use of theshape[4, 16] of data
structures in memory. As an example, in [6] Ghiya used a notion of shape to enable the extraction offoreach
thread-level parallelism from common heap-based data structures. The notion of shape and sharing can also
be used to enable the parallelization of recursive algorithms [15, 8]. In many programs the availability of ac-
curate shape information and the application of these two transforms enables the extraction of a substantial
portion of the available parallelism. Unfortunately, the applicability of these parallelization techniques has
been limited by the difficulty of performing shape analysis with the required level of accuracy. The advent of
commonly available multi-processor systems, the slowing of improvements in single threaded processor per-
formance and the increasing use of object oriented languages (which make extensive use of heap allocated
memory and rich pointer structures) have renewed interest in shape driven parallelization techniques.

This paper uses an abstract interpretation framework for performing static analysis of programs and in-
troduces a graph based abstract heap model that can represent all the information on aliasing, shape and
logical data structures [10] that are required to perform thread level parallelization transformations. Along
with accurately representing the required information on shape, aliasing and logically related regions, the
framework enables accurate simulation of the evolution of these properties through many important program
idioms, e.g. sorting, copying, destructive reversal, and element insertion/deletion. A theoretical analysis of
the runtime and our experience running the method on the Jolden benchmarks indicates that the technique is
accurate, efficient and scalable.

A key factor in achieving these results is the use of a novel technique for undoing thesummarizationof
information (the analysis must use a bounded representation to summarize unbounded recursive structures).
For efficiency, it is important to make the summary representations as compact as possible. However, this
summarization may lead to the loss information which is needed to accurately simulate the effect of program
statements on the heap model. Seminal work on heap analysis [16] introduced the notion of refinement but
the proposed technique results in an exponential runtime (due to the desire to model the program with

maximal precision). This paper presents a technique for refinement that sacrifices some accuracy in less
common cases to ensure that the worst case exponential time is avoided and that the method is fast in practice.

1.1 Related Work

There are two research activities closely related to the work presented in this paper. One is the research on
shape analysis by Ghiya [4] and the second is the TVLA (3-valued Logic Analysis) framework introduced
by Reps, Sagiv and Wilhelm [16].

Ghiya’s method is efficient and is able to model simple structures in programs that do not use destructive
updates. In this work shapes are defined on the entire portionof the heap that is reachable from a variable.
This implies that any extraneous sharing of the heap (due to the use of thesingletondesign pattern or shar-
ing of data that is unrelated to the computation that is beingparallelized) will result is very conservative
results. Further, the analysis is unable to strongly updateheap based storage. Thus, the analysis is unable to
accurately handle situations where a section of the heap, through destructive updates, temporarily takes on
a more general shape and then returns to the original shape (e.g. Tree→ DAG→ Tree).

The TVLA framework is very powerful and highly expressive inthe sense that it can be used to represent
the shape and aliasing properties needed for extracting thread-level parallelism. In addition to being expres-
sive enough to model the relevant program properties, the TVLA framework is able to model the evolution of
these properties through destructive updates [17, 12] and is able to model shape on a more localized basis. In
the TVLA framework destructive updates are handled by allowing the summary representations of recursive
data structures to be refined into a number of distinct objects which can be strongly updated. Since there may
be ambiguity about how to refine the summarization TVLA enumerates all the possibilities. This results in a
potentially exponential runtime and in practice leads to large analysis times. There has been work on reduc-
ing the cost of running TVLA or restricted variations of the method [20, 7] but they do not eliminate the ex-
ponential worst case time and have had mixed results in reducing the execution time on various benchmarks.

To compare the proposed method with existing shape analysistechniques we look at some simple exam-
ples with lists and with benchmarks from the Jolden suite. The list benchmarks demonstrate that the proposed
method handles simple heap based structures accurately andthat in practice it is over an order of magnitude
faster than existing analysis techniques of similar precision. The Jolden tests indicate that the proposed anal-
ysis method can determine the correct shape for the majorityof heap based data structures even in programs
that build and manipulate relatively complex data structures while maintaining an acceptable analysis time.

2 Concrete Domain

Our analysis works on the strongly-statically typed, single-inheritance, thread-free, exception-free, object-
oriented imperative core of languages like Java or C#. Usingthis simplified language enables us to focus on
the central issues of the analysis and allows the analysis tobe extended to a large class of source languages.

2.1 Concrete Language and Semantics

Our source language MIL (Mid-Level Intermediate Language)is a structured intermediate representation.
The language has function and method invocations, a conditional construct (if . . . else if . . . else)
and a looping construct with break statements (do . . . while andbreak). The state modification opera-
tions and expressions (load, store and assign along with thestandard collection of logical, arithmetic and
comparison operators) are in a standard three-address form[11, 18].

MIL supports objects and arrays. We useσ to denote the set of all user-defined object types. Each object
type,υ ∈σ , has a set of fieldsFυ associated with it. The set of all field offsets that are defined in a program is
F =

⋃
{Fυ |υ ∈ σ}. MIL has the primitive typesρ = {int,float,char,bool}. Arrays can contain either

primitive types,ρ , or objects,σ . The set of all legal array types for a program isσA = {υ[]|υ ∈ ρ∨υ ∈ σ}.
The set of all types in the program isτ = ρ ∪σ ∪σA. We assume that the types of all variables are explicitly
declared. Since this paper is focused on the operation of theabstract heap model and the local data flow
analysis, we omit any description of how function and methodcalls are handled.

2.2 Concrete Heap Definition

The concrete heap is modeled as a multi-graph with labeled edges where objects and arrays are the vertices
and the pointers are labeled directed edges in the graph. We use the termcell to indicate either an object or
an array on the heap andoffsetto indicate the field or array index that a pointer is stored atin a cell. Thus, the
set of edge labels (offsets) is,L = F ∪N. Edges are modeled as a relation on the cells and the labels. Given
a set of cellsC and the set of labelsL the edge relationE ⊆C×L×C. Variables are modeled as a partial
map from variable names to cells. Given a set of variables,V, the variable map is a function,Vm : V 7→C.
The set of all concrete heaps (which we define as being the heapgraph plus the program variable map) is,
Hs = P(C)×P(E)×{Vm} and the concrete domainH = P(Hs).

2.3 Heap Properties of Interest

Points-to and Paths.Given cellsa, b and offseto, (a,o)→p b denotes a pointerp that has the labelo (is
stored at offseto) a and points tob. We usea→p b to indicate that∃ offseto s.t.(a,o)→p b. Two cells can
be connected by apathψ . We use(a,o) ψ b to indicate the sequence of pointers〈p1 . . . pn〉 s.t. p1 has the
labelo, starts at cella, pn points tob and∀pi , pi+1 in the pathpi ends at the same cell,ci , that pi+1 begins
at (∃o′ s.t. pi+1 is stored ato′ in ci). Definea ψ b to denote that∃o s.t.(a,o) ψ b. We abuse the notation
φ ⊆ P to denote that all the pointers in the pathφ are contained in the set of pointersP.

Regions of the Heap.A regionof memoryℜ is a subset of the cells in memory, all the pointers that connect
these cells and all the cross region pointers that start or end at a cell in this region. GivenC⊆ {c | c is a cell
in memory}, let P = {pointerp | ∃a,b∈C,a→p b}. Let Pc = {pointerp | ∃a∈C,x 6∈C,a→p x⊕x→p a}
Then a region is the tuple(C,P,Pc).

Connectivity. Connectivity within a region describes how cells in the region are connected. For a region
ℜ = (C,P,Pc) and cellsa,b∈C, cellsa andb are connected if they are in the same weakly-connected compo-
nent of the graph(C,P); cellsa andb are disjoint if they are in different weakly-connected components of the
graph(C,P). Figure 2 shows examples of connected and disjoint concreteheaps. In Figure 2(a) the cellsc,d
are disjoint in the regionZ, while in Figure 2(b) and Figure 2(c) the cellsc,d are connected in the regionZ.

Structure Traversals.An important property for program transformations is the layout of data structures in
memory [4, 5]. The idea is to track the layout of the heap as it appears to a program traversing a data structure.
Ghiya considered the shape of the section of the heap that could be accessed staring from each variable.

Our heap analysis identifies logically related sections of the heap (regions). To improve the accuracy of
the shape information we define data structure layouts on these logically related regions instead of the entire
section of the heap reachable from a given variable. Given a regionℜ = (C,P,Pc), we can define several lay-
out predicates on the graph(C,P) to indicate what kinds of traversal patterns a program can use to navigate

through the data structures in the region. A region admits a traversal type if there is a subregion that satisfies
the corresponding layout predicate. Note that these traversals are not mutually exclusive and thatTreetraver-
sal⇒ List traversal⇒ Singletontraversal. In the following definitions, leta,b be cells andφ ,ψ be paths.

– Cycle Traversal iff∃ graph(C′,P′),C′ ⊆C,P′ ⊆ P s.t.∃a∈C′,φ ⊆ P′ s.t.a φ a.
– MultiPath Traversal iff∃ graph(C′,P′),C′ ⊆ C,P′ ⊆ P s.t. ∃a,b ∈ C′,φ ,ψ ⊆ P′ s.t. (a 6= b)∧ (φ 6=

ψ)∧ (a φ b)∧ (a ψ b)∧ (C′,P′) does not admit a Cycle Layout.
– Tree Traversal iff∃ graph(C′,P′),C′⊆C,P′⊆P s.t.(∃a∈C′,a has 2 or more successors inC′)∧(C′,P′)

does not admit a Cycle or Multipath Layout.
– List Traversal iff∃ graph(C′,P′),C′ ⊆C,P′⊆P s.t.(∀a∈C′,a has one or zero successors inC′) ∧(∃b∈

C′,b has one successor inC′)∧ (C′,P′) does not admit a Cycle or Multipath Layout.
– Singleton Traversal holds for all regions.

Figure 1 shows several concrete heaps; the cells are the circles labeled with letters and the edges rep-
resent pointers. Since we are interested in the most generalway a program could traverse a region of the
concrete heap we must assume that a program variable could begin its traversal of the region at any of the
cells in the region. Thus, the figures omit the program variables. Figure 1(a) shows a concrete heap with
three cells(a,b,c). Since there are no edges connecting these cells the only waya program can traverse
them is by individually referencing each cell. Figure 1(b) shows a concrete heap that admits aList traversal
(bothb→ a andc→ a). It also admits aSingletontraversal since a program can always treat the cells as
if they were disconnected. Figure 1(c) shows a concrete heapthat admits aTree traversal(b,a,d) as well
asList andSingletontraversals. Finally, Figure 1(d) adds an edge,c→ b that changes the region to admit a
MultiPath traversal(c,b,a).

(a) Singleton (b) List (c) Tree (d) MultiPath

Fig. 1. Concrete Heaps, Admissible Traversals and Layout Types forthe Regions

3 Abstract Domain

The abstract domain is based on an abstract heap graph model [2, 19, 9]. Each node represents a set of
concrete cells and each edge represents a set of pointers. The model provides a natural framework for rep-
resenting connectivity, aliasing, and region identification information. This section introduces a number of
instrumentation domains that when added to the nodes and edges in the abstract heap graph allow aliasing
and connectivity to be tracked more accurately and enable the modeling of shape.

Numeric Quantities.The only requirement we place on the numeric abstraction is that it differentiates the
case where the value is exactly one and the case where the value is in the range[0,∞]. This gives the binary
domain1 < # (unknown), where1 represents the interval [1, 1] and# represents the interval [0,∞]. Given
this domain,a⊔a′ = 1 if a = a′ = 1 and# otherwise. In the later algorithms we also need an interpretation,
+̃, for +. This is given by,a+̃a′ = #.

Types. Each node represents a set of cells and each cell is either an object (has typeυ ∈ σ) or an array
(υ ∈ σA). Since MIL has dynamic method invocation as well as type casting it is important to model the
types of cells that a given node might represent. The domain for representing the types of each node is
P(σ ∪σA). As usual the join operation⊔ is∪ and the≤ relation is⊆.

Offsets.Each edge in the model represents a set of pointers and each pointer has an offset (label) associated
with it. Since there are only a finite number of fields in a givenprogram the model can be completely sen-
sitive with respect to field offsets (by construction two pointers with different offsets are never represented
by the same edge). However, there may not be a bound on the sizeof arrays. So, we treat arrays as having
a single offset,?, that contains a summary of all the elements that may be in thearray. Thus, the offsets that
are used in the field sensitive parts of the analysis is the setF ∪{?}.

Abstract Layout.Each node,n, in the graph represents a region,ℜ on the heap. To track the traversals that
may be admissible in the regionℜ thatn represents we use a set of layout typesLayouts= {Singleton, List,
Tree, MultiPath, Cycle}.

– if n has aSingletonLayout, thenℜ only admitsSingletontraversals.
– if n has aList Layout, thenℜ only admitsSingletonor List traversals.
– if n has aTreeLayout, thenℜ only admitsSingleton, List or Treetraversals.
– if n has aMultiPathLayout, thenℜ only admitsSingleton, List, Treeor MultiPath traversals.
– if n has anCycleLayout, then any traversal pattern may be admissible inℜ.

This definition leads naturally to the order:Singleton< List < Tree< MultiPath< Cycle. Thenl ⊔ l ′ is
max(l , l ′). Examples are shown in Figure 1.

Connectivity. Given the concretization operatorγ and two edgese1,e2 that start or end at the noden, the
predicates that define connectivity in the abstract domain are:

– e1,e2 connected with respect ton if: ∃p1 ∈ γ(e1)∧∃p2 ∈ γ(e2)∧∃a,b∈ γ(n) s.t.
(p1 starts or ends ata)∧ (p2 starts or ends atb)∧ (a, b connected).

– e1,e2 disjoint with respect ton if: ∀p1 ∈ γ(e1)∧∀p2 ∈ γ(e2)∧∀a,b∈ γ(n)
(p1 starts or ends ata)∧ (p2 starts or ends atb)⇒ a,b are disjoint.

Edgese1, e2 areoutConnectedif: ∃ n s.t. (e1,e2 are out edges fromn) ∧ (e1, e2 are connected inn).
Edgese1, e2 areinConnectedif: ∃ n s.t. (e1,e2 are in edges ton) ∧ (e1, e2 are connected inn).

Figure 2 shows overlays of the abstract and concrete heaps. The concrete cells and pointers are shown
as dotted circles and lines while the abstract nodes and edges are represented with solid boxes and lines.
EdgeE is an abstraction of pointerp, edgeF is an abstraction of pointerq. NodeZ abstracts cellsc,d,e.
NodesX, Y abstract cellsa, b respectively. In Figure 2(a) we can see that the targets ofp, q (cellsc, d) are
disjoint. By the definition of the connectivity abstraction, edgesE andF are also disjoint with respect toZ.
In Figure 2(b) there is an additional pointer which connectscells d, c. This means thatc, d are connected
and in the abstraction,E, F are connected with respect toZ and thusE, F are alsoinConnected. Finally,
Figure 2(c) shows the case where cellsc,d are connected indirectly (but according to the definition they are
still connected). ThusE, F are alsoinConnected.

(a) Disjoint in Z (b) Connected in Z (c) Connected in Z

Fig. 2. Concrete and Abstract Connectivity

Interference.Each graph edge represents a set of inter-region pointers. When combining nodes, it is impor-
tant to know if all the pointers that the edge represents point into disjoint subregions or if there may exist
a cell that two or more pointers may be able to reach and thus they interfere. An edgee represents interfer-
ing pointers if there exist pointersp,q∈ γ(e) such that the cells thatp,q point to are connected. We use a
two-element lattice,np< ip, np for edges with all non-interfering pointers andip for edges with potentially
interfering pointers. This abstraction is a complement to the connectivity relation. The connectivity relation
tracks reachability information between the start or end cells of pointers represented by different edges while
interference tracks reachability information between theend cells of pointers represented by the same edge.

In Figure 3, EdgeE is an abstraction of pointersp andq, nodeZ abstracts cellsc,d,e, andX abstracts
cellsa andb. In Figure 3(a) the targets ofp, q (cellsc, d) are disjoint. Thus, the pointers do not interfere and
the edge,E, that abstracts them should benp. In Figure 3(b) there is an additional pointer which connects
cellsd, c. This means thatc andd are connected and edgeE should beip. In Figure 3(c) the cellsc,d are
connected indirectly. Thus, the edgeE is againip.

(a) Non-interfering (b) Interfering (c) Interfering

Fig. 3. Concrete Connectivity and Abstract Interference

Nodes.The types of the concrete cells that a node represent are stored in a set calledtypes. To track the total
number of cells that may be in the region represented by this node we use thesizeproperty. The internal lay-
out of a node is represented by thelayoutcomponent. Finally, we introduce a binary relationconnR⊆E×E
to track the connectivity of the edges that are incident to this node. If(e1,e2) ∈ connRthene1,e2 are con-
nected with respect to this node otherwisee1,e2 are disjoint with respect to this node. The abstract domain

for the nodes,N = P(σ ∪σA)×Layouts×{1,#},×P(E×E) and each node in the graph is represented as
a record of the form[types layout size]. For clarity we omit a representation of theconnRrelation,
as the inclusion of this information complicates the figuressubstantially. In the cases where the connectivity
relation is of interest we will mention it in the descriptionof the figure.

Edges.As in the case of the nodes, we combine several component abstractions to create the edge abstrac-
tion. Theoffsetcomponent indicates the offsets (labels) of the pointers that are abstracted by the edge. The
number of pointers that this edge may represent is tracked with themaxCutproperty. Theinterfereprop-
erty tracks the possibility that the edge represents pointers that interfere. The domain of the edges is,E =
(F∪{?})×{1,#}×{np, ip}, and each edge is represented as a record{offset maxCut interfere}.

Graph. The domain for the abstract heap graphs is the setG⊆P(N)×P(E)×{Vn}×{Me}. The function
Vn : V 7→ N is a partial map from variable names to nodes in the heap graph, which represents the targets of
the variables. The functionMe : E→N×N defines the structure of the graph by mapping edgese to the pair
of nodes(ns,ne) such thatebegins atns and ends atne. We use the notationMe(e) = (∗,n) or Me(e) = (n,∗)
in the case were we do not care about the identity of the start/end node of the edge.

We restrict the abstract domain by defining a normal form for heap graphs. This normal form simplifies
the structure of the abstract domain and it has several properties that improve the accuracy of the analysis.

First, we define what it means for two nodes to to berecursive(for this work we assume single level re-
cursion but the definitions can be generalized [3]). This definition is used to make the abstract heap domain
finite for a given program. If we limit the maximum size of the graph structure then, since the domains for
the nodes and the edges are finite, the number of graphs is finite. This is done by forcing recursive structures
to have bounded representations. Define two nodesn,n′ ∈ N to berecursiveif:

– ∃e∈ E s.t.Me(e) = (n,n′).
– n.types∩n′.types6= /0.
– 6 ∃ variablev s.t.Vn(v) = n∨Vn(v) = n′.

Another useful concept is that of ambiguous edges. We would like to be able to assume that given an
offset and a node there is a unique outgoing edge that is incident to this node with that offset. Define a noden
as having an ambiguous offset if:∃e,e′ ∈E s.t.e 6= e′∧Me(e) = (n,∗)∧Me(e′) = (n,∗)∧e.offset= e′.offset.
A graphg = (N,E,Vn,Me) is in normal form if:

– It has no unreachable nodes:∀n∈ N,∃ variablev s.t.Vn(v) = n∨ (Vn(v) = n′∧∃ pathφ s.t.n′ φ n).
– It has no recursive nodes:6 ∃n1,n2 ∈ N s.t.n1,n2 are recursive.
– It has no ambiguous edges:6 ∃n∈ N s.t.n has an ambiguous offset.
– No refinement rules can be applied, See Section 5.

4 Example: Building A List

We use two examples to demonstrate our analysis, Figure 4. The first is a loop that constructs a linked list.
The second example copies a linked list (and is the subject ofSection 7). We assume that the datatypes
ListNode andDataNode have been defined.DataNode is a dummy type to represent whatever data is
of interest.ListNode has anext field which points to the next node in the list and adata field which
points to aDataNode.

Figure 5(a) shows the state of the abstract heap after allocating theListNode (abbreviatedLN). The
variableq points to a node of typeListNode and since we just allocated the object that this node represents

Build a List Copy a List (in reverse, for simplicity)

ListNode p, q
p = null
for(int i = 0; i < M; ++i)

q = new ListNode()
q.data = new DataNode
q.next = p
p = q

ListNode q, x, t
x = p
q = null
while(x != null)

t = q
q = new ListNode()
q.next = t
q.data = x.data
x = x.next

Fig. 4. List Example Code

we know that the node represents exactly one cell and has aSingletonlayout (abbreviatedS). Figure 5(b)
shows the state of the heap after allocating and assigning the data object, a cell of typeDataNode (DN).
The data node is also a node of size one with aSingletonlayout. The connecting edge is stored at thedata
offset and since it was just created it must represent a single pointer and benp. Figure 5(c) shows the heap
at the end of the first loop iteration:p points to the newly created list entry andq is nullified since it is dead.

Figure 5(d) shows the abstract heap at the end of the second loop iteration. New nodes represent the
ListNode andDataNode cells allocated in this iteration. The newly allocated listentry has been put at
the head of the list and the old list (shown dotted) is linked in with an edge stored at thenext offset. If we
were to continue, the heap abstraction would grow in an unbounded manner. To prevent this, we normalize
the abstract heap. This is described in detail in Section 6 but for this example the important point is that
we merge the twoListNode nodes into a single summary node that represents the combined information
from these two nodes and the edge between them. By looking at the edge connecting the two nodes and
the internal layouts we can determine that the internal layout of the summary node isList (abbreviatedL)
since we have twoSingletonregions connected by an edge of size one. Since each region isof size one the
summary region must be of size larger than one, represented by # in our abstract domain. Finally, we update
the internal connectivity information for the summary node. In particular, the two edges areoutConnected.
The state of the heap after this merge is shown in Figure 5(e).

After combining the list nodes we have ambiguous targets (two out edges from the same node with the
same label,data) This ambiguity is removed by merging the potential targetsinto a single summary node
and by combining the edges that refer to these targets into a single summary edge. Merging these nodes is
similar to the merge of the list nodes except that the two incoming edges aredisjoint. After merging the nodes
we merge the two edges. Since the summary edge represents twopointers itsmaxCutis #. To determine the
value of theinterfereproperty we check if either edge isip or if the targets of the edges areinConnected.
Because the edges pointed to disjoint nodes they are notinConnectedand therefore cannotinterfere. Thus,
the interference property of the summary edge isnp. The result is shown in Figure 5(f), which is also the
fixed point for the analysis of the loop.

5 Refinement

During the data flow analysis portions of the abstract heap graph are summarized into single nodes to im-
prove efficiency and to eliminate unbounded recursive data structures. This summarization can cause a sub-

(a) Allocated list node (b) Allocated data object (c) End of first iteration

(d) End of second iteration (e) First normalization step (f) Finished

Fig. 5. Building a linked list

stantial loss of accuracy if it is too aggressive. We define a method that (for the most common cases encoun-
tered) allows us to undo the summarization by transforming asummary node into a number of nodes (and
edges) so that relationships between variables and regionsof the heap can be more accurately modeled.

There are three layout types that we refine. The first is a node that represents several disjoint regions of
the concrete heap. In this case we expand each sub-region into a separate node in the abstract graph. The
second is a list node with a single incoming edge. In this casewe make explicit the unique memory location
that the variable must refer to in the list structure. The third is a tree with a single incoming edge. This case
is analogous to the list so we do not discuss it separately.

Disjoint Region Separation.It is possible for a single summary node to represent severalentirely disjoint
regions. If this is the case then there is a partition of incoming edges (from variables or pointers) based on
the inConnectedrelationship. Using this partition we transform the node into a number of new nodes, each
new node representing a single element from partition of edges in the original node. An important special
case is when a node has aSingleton layoutand there is a single incoming edge ofmaxCut1. If a node has
these properties we can safely assume that the node represents a single cell, which enables strong updates in
later analysis steps.

Consider the case in Figure 6(a) where the variablesp andq point to the same node, and assume that
the edges fromp andq are notinConnected. Partitioning results in Figure 6(b) where the summary node
has been partitioned based on theinConnectedrelation from the variables. Since the edge that was split
contained all non-interfering pointers the two edges incident to the node representing theDataNodecells
cannot beinConnected. This now allows us to apply refinement again—the results areshown in Figure 6(c).

Refinement on Lists.Refinement on lists is more complex than refinement of disjoint regions. Since disjoint
region refinement is applied before list or tree refinement weknow that all the incoming edges to the given
list node may be connected. Further, if there are multiple incoming edges we cannot determine an ordering
for them in the list, so we only consider lists with a single incoming edge with amaxCutof 1.

(a) Summarized Singleton (b) Partition variable edges (c) Partition pointer edges

Fig. 6. Refinement of a region with disjoint sub-regions

(a) Summarized List (b) Refined List

Fig. 7. Refinement of a node with a list layout

Figure 7(a) shows a list with one incoming variable. Figure 7(b) shows the most general way in which a
list can be referred to by a single program variable; there isa single cell that the variable points to and a sec-
tion of the list after this cell. We can safely ignore the section of the list before the cell that the variable refers
to since it is unreachable and therefore cannot affect the program in any way. Since the data edge contains
all non-interfering pointers we apply the disjoint region separation rule to the data components of the list.

6 Dataflow Operators

This section describes the principal algorithms used in theanalysis. We first address merging nodes and
edges. Then we define the normalization routines for nodes and graphs. Finally, we use these operations to
build the heap graph upper bound and comparison operations.Detailed descriptions of some algorithms and
proofs for the required safety properties are omitted; see [13] for more details.

Edge Join (Algorithm 1)The edge join method is only well defined when two edges start at the same offset
in the same node and end at the same node. The method checks theend connectivity information to deter-
mine how the component abstraction should be combined. If the edges areinConnectedthen the pointers
that these edges represent may interfere and we set the summary edge asip, otherwise we take the join of
the interferetypes of the edges. For the rest of the components that are used to represent an edge, we can
simply combine them component-wise with respect to the possibility that these edges originated in separate
graphs. That is, when we join two heap graphs that are from separate flow paths in the program we know that
there can be no interaction between edges from different control contexts. The edge join algorithm uses the
functionupdateInternalConnInfoEdgeJoin(ns,ne,ea,eb) to update the internal connectivity info inns andne

to represent the fact thatea now represents pointers fromea andeb.

Algorithm 1 : Join Edges (⊔e)

input : g the heap graph,ea, eb edges,ns,ne the nodes,ea,eb start and end at
if (ea, eb from the same context) then ea.maxCut← ea.maxCut+̃ eb.maxCut;
else ea.maxCut← ea.maxCut⊔ eb.maxCut;
if ea,eb are inConnectedthen ea.interfere← ip;
else ea.interfere← ea.interfere⊔interfereeb.interfere;
updateInternalConnInfoEdgeJoin(ns, ne, ea, eb);
deleteEdge(g, eb);

Node Join and Combine.When summarizing two nodes,na andnb, there are three possibilities. The first is
neither node can reach the other. In this case wejoin them. If there are only edges in one direction between
nodes, fromna to nb or nb to na, then wecombinethem. If there are edges fromna to nb and fromnb to na,
then we replacena,nb with a single nodenc that is a safe approximation ofna,nb.

Figures 5(e) and 5(f) show that the node join is a purely component-wise operation. The combine
operation on a pair of nodes that have a connecting edge is more complicated, as it can be seen in Fig-
ures 5(d) and 5(e), where the two nodes with typeListNode are combined into a single summary node. In
particular we need to account for the fact that the edge(s) connecting nodesna andnb will affect the layout
and the internal connectivity in the new summary node.

Algorithm 2 : Combine Nodes (̃+node)

input : graphg, na,nb nodes,ebt set of edges fromna to nb
na.type← na.type∪ nb.type;
na.size← na.size+̃ nb.size;
na.layout← combineLayout(na.layout,nb.layout,ebt);
na.connR← combineConnR(na.connR,nb.connR,ebt);
remap all edges incident tonb to be incident tona;
deleteNode(g, nb);

The algorithmcombineLayout(la, lb,ebt), is based on a case analysis of the internal layout that results
from the possible combinations of layouts forna, nb along with the total number of pointers represented by
ebtand the potential that any pointers in the edges representedby ebt interfere. We enumerate the possible
combinations of theebtedges and the layout types. Then for each case we use the semantics of the edge and
layout properties to determine the most general layout typethat may result from this particular case.

The combineConnRfunction updates the internal connectivity information inna to reflect that it now
represents the combined regions forna andnb. This involves computing the binary connectivity relation
for all the edges that are incident to the new summary node based on the connectivity information in the
argument nodesna,nb, and the edges that connect the argument nodes,ebt.

Normalization/Join Operators.To normalize a node we check if there are two edges that start at this node
and have the same offset. If they exist and they end at different nodes, we merge the target nodes and then
join the edges. If they already end at the same node, we just join the edges.

To normalize a heap graph we normalize all the nodes, then apply the refinement rules to all the nodes
that they can be applied to and finally we compress all the recursive nodes in the graph. This process is
repeated until the heap graph is no longer changing.

To compute the upper approximation for two heaps, we first normalize both heaps and mark which
graph each edge and node belonged to originally. Then we takevariables with the same name and union
their targets. Once this is done the resulting graph is normalized.

Heap Graph Equivalence.Defining equivalence on the heap graphs is simple if we require that they are in
normal form. This implies that each abstract storage location has a unique edge and we can compare the
graphs for structural equality and equality of the data in the nodes and edges.

7 Example: Copying a List

During the copy operation (Figure 4) there are several attributes that we want to preserve: the source list
should be unaffected, the copy should be a list, and, if the source list contained all independent data elements
so should the copy. For simplicity assume that we know that the source list is already pointed to byp.
Figure 8(a) shows the list at the start of the copy. Figure 8(b) shows the results at the end of the first loop
iteration. The head of the list has been copied;t is nullified andx has been indexed down the list. Note that
in indexing down the list we refined the list on thenext edge so that the node thatx refers to is made explicit
(the node is a singleton of size 1). We show the newly materialized list and data node using dotted lines.

Figure 8(c) shows the heap during the second iteration of theloop after creating the new list node and
assigning it to point to the next data node in the source list.At the end of the loop 8(d) we have again in-
dexed the variablex. We now have recursive nodes (for simplicity assume that we know that keepingp, q
refined does not matter—if we keep them refined the result is the same, it just takes an extra loop iteration
and results in a larger graph). Thus, we compress them duringnormalization. The resulting graph shown in
Figure 8(e). This is the fixed point of the loop and if we interpret the exit condition we see that the result of
the copy loop is the heap graph in Figure 8(f).

8 Performance

Theoretical Performance.In order to analyze a program, the model presented in this paper can plugged
into any dataflow analysis framework. The total cost of analyzing the program is affected by the cost of the
model operations and the runtime of the dataflow framework that is chosen. In this paper we do not assume
a specific framework so our runtime analysis only looks at thecost of the model operations.

We assume that the number of nodes in the abstract heap graph is n, that each node has at mostk
edges and there aret user defined types. The most expensive part of running the heap model is the graph
normalization step, so we only present the analysis for thisand the node combine operation, which is the
dominant cost of the normalization algorithm.

The execution ofCombine Nodes(Algorithm 2), requires combining the type sets,O(t), remapping the
incident edges,O(k), callingcombineLayout(which computes the shape of the combined nodes),O(k) and
calling thecomputeConnRmethod (which computes the transitive closure of the two connectivity relations),
O(k3). Thus, The total time isO(t +k+k+k3). If we assume thatt is a small constant, the time to normalize
a node isO(k3).
The graph normalization step requires:

– Removing all the unreachable sections of the heap graph,O(nk).
– Normalizing each node, visit each edge of each node and potentially combine edges,O((nk)k3).
– Refining all possible nodes, visit each node and potentiallyrefine it,O(nk).
– Removing all recursive nodes, visit each node and potentially combine two nodes,O((nk)k3).

(a) Start of the method (b) First loop iteration

(c) Create copy node in the second iteration (d) End of second loop iteration

(e) Normalization (f) Finished

Fig. 8.Copying a linked list (in reverse order)

These operations need to be done until none can be applied. Since the refine operation can only be applied
to a node twice and the combine operation replaces two nodes by a single node (which cannot be refined), the
algorithm cannot continue for more thanO(n) iterations. Thus the total time for the normalization routine is
O(n)∗O((nk)k3) = O(n2k4).

Benchmarks.In this section we compare the runtime cost of our UMA (Un-named Memory Analysis) with
TVLA (tvla-2-alpha) and a simple flow-sensitive equality-based points-to method (which is not capable of
shape analysis but provides a performance baseline). Then,we examine the accuracy and utility of the in-
formation that the UMA analysis method provides. All measurements were made on a Pentium M 1.5 GHz
laptop with 1 GB of RAM.

We use two sets of benchmarks. The first is a number of simple list manipulation methods that are use-
ful for validating that the information computed by this analysis is accurate. These benchmarks include list
insertion, deletion, find and copy operations. The goal is toensure that the listness and data independence
properties are preserved through all of these operations. The first entry in Figure 9 shows the runtime for
TVLA, the points-to and the UMA analysis. In all of the simplelist tests, our analysis is able to determine
that the result of each list operation is a region with theList shape.

List Analysis Times Jolden Analysis Times and Shape Results
BenchmarkCopy Find InsertDeleteReverse
TVLA NA 0.91s 1.52s 8.00s 3.01s
Points-to 0.05s0.03s 0.04s 0.06s 0.03s
UMA 0.25s0.10s 0.15s 0.19s 0.13s

Benchmark bisort em3d health mst powertreeadd tsp
Points-to 2.10s1.48s12.20s0.54s 0.42s 0.16s0.70s
UMA 12.30s6.90s40.90s5.70s 4.20s 1.80s5.08s
Accurate Partial Yes Partial Yes Yes Yes Yes

Fig. 9. Benchmark Results

The second set of benchmarks is from the Jolden suite [1] (we have not finished implementing the virtual
method dispatch analysis, so bh, perimeter and voronoi are omitted from the table). This set of benchmarks is
designed to test how well the analysis method scales to non-trivial code sizes and as a first test for the ability
of the heap analysis method to provide useful shape information for parallelization transforms. Current work
on interprocedural versions of TVLA indicate that even simple programs take upwards of 30s to analyze [14]
and no results for programs as complex as the Jolden suite have been published so we omit the TVLA analy-
sis from the table. The second entry in Figure 9 shows the timeto run the analysis on each of the benchmarks
and indicates if the analysis was able to correctly determine the shape information required to perform basic
thread levelforeachandrecursive treeparallelization. In the table we have two categories for theaccuracy
of the shape analysis.Yesis used when the shape analysis was able to provide the correct shape information
for all of the relevant heap structures in the program.Partial indicates that the analysis was able to determine
the correct shape for some of the heap data structures but that some important properties were missed.

There were no cases where the analysis failed to produce a non-trivial amount of useful information
on data structure shapes. In the cases where the UMA algorithm is unable to provide completely accurate
information for parallelization the causes can be traced back to the simple modeling of arrays (health) or the
crude technique we are currently using for interproceduralanalysis in recursive functions (bisort and health).

9 Conclusion and Future Work

This paper presented a graph-based heap model that can be used with a standard data flow framework to an-
alyze the evolution of the heap during program execution. The model is shown to be capable of representing
heap properties (aliasing, shape and logical data structure identification) that are needed to extract thread
level parallelism from single threaded programs. The paperthen outlined the model operations required to
perform the program analysis. A key component of the operations was the use of a refinement operator that
enables the accurate simulation of important program operations (copying, reversing, destructive updates,
etc.). Unlike Ghiya’s work where extremely conservative approximations must be made in the presence of
destructive updates, the proposed model is able to retain enough information to provide meaningful shape
information even when destructive updates are being performed. Theoretical analysis shows that all the pro-
gram operations on the model areO(k4) and the upper bound/equality operations areO(n2k4) wheren is the
number of nodes in the heap graph andk is the number of edges incident to a node. This polynomial runtime
is due to our conservative refinement operator (which only refines unambiguous cases) which is in contrast
to the TVLA refinement operator (which resolves ambiguity byenumerating all possible cases).

The method has been implemented and run on several benchmarks. The first set of benchmarks is de-
signed to test the ability of the analysis method to model fundamental list operations. The method analyzed
this set quickly while discovering all the relevant list properties. Next, we analyzed several codes from the
Jolden benchmark suite. Analysis times on these benchmarksscaled acceptably given that a simplistic and
fully context-sensitive interprocedural analysis methodwas used. The method correctly identified the shapes
(Singleton, List, Tree, MultiPath, Cycle) for almost all of the data structures in the programs.

These results are a critical step toward the goal of transforming modern single threaded programs that
make extensive use of pointer rich, heap based structures into multi-threaded parallel programs. Our future
work is focused on improving the accuracy, performance and scope of this analysis technique. We iden-
tified recursive procedures that rely on destructive updates as a major issue in accurately modeling shape
and handling these cases is the next step in our research. Themethod is local in the sense that all abstract
program operations only refer to and modify small portions of the heap, we plan to utilize this to enable
memoization and localization of procedure calls, both of which are crucial to improving scalability. Since
modern programming languages make extensive use of built incollection libraries (hashtables, trees with
parent pointers, iterators, etc.) we are working on how to model these important data structures and generic
programming concepts.

References

1. B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data structures in Java. InPACT,
2001.

2. D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures. InPLDI, 1990.
3. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyondk-limiting. In PLDI, 1994.
4. R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-directed pointers in C.

In POPL, 1996.
5. R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In POPL, 1998.
6. R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelismin C programs with recursive darta structures. InCC,

1998.
7. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. InPOPL, 2005.
8. L. J. Hendren and A. Nicolau. Parallelizing programs withrecursive data structures.IEEE TPDS, 1(1), 1990.
9. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of lisp-like structures. InPOPL, 1979.

10. C. Lattner and V. Adve. Data Structure Analysis: An Efficient Context-Sensitive Heap Analysis. Tech. Report
UIUCDCS-R-2003-2340, Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Apr 2003.

11. C. Lattner and V. Adve. LLVM: A Compilation Framework forLifelong Program Analysis & Transformation. In
CGO, 2004.

12. T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. InSAS, 2000.
13. M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo.Unified memory analysis. Tech. Rep. TR-CS-2006-06,

University of New Mexico, Apr. 2006. Available at “http://www.cs.unm.edu/∼treport/tr/06-04/uma.pdf”.
14. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free programs. InSAS, 2005.
15. R. Rugina and M. C. Rinard. Automatic parallelization ofdivide and conquer algorithms. InPPOPP, 1999.
16. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive updating. In

POPL, 1996.
17. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. InPOPL, 1999.
18. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java optimization framework. In

CASCON, 1999.
19. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. InPLDI, 1995.
20. E. Yahav and G. Ramalingam. Verifying safety propertiesusing separation and heterogeneous abstractions. In

PLDI, 2004.

A Additional Algorithms

Algorithm 3 : Heap Graph Upper Bound,⊔̃

input : graphga,gb
output: None
gan← normalize(ga);
set all nodes/edges ingan as contexta;
gbn← normalize(gb);
set all nodes/edges ingbn as contextb;
gres← gan∪gbn;
normalizeGraph(gres);

Algorithm 4 : Normalize Graph

input : graphg
output: None
Remove all unreachable nodes fromg;
while g is changingdo

while ∃ node n s.t. n can be normalizeddo
normalize(n, g);

while ∃ node n s.t. n can be refineddo
apply the applicable refinement rule ton;

while ∃ nodes n,n′ that are recursivedo
combineNodes(g, n, n′);

Algorithm 5 : Normalize Node

input : noden, graphg, n∈ g
output: None
while ∃ offset o with more than 1 edgedo

e1,e2← two edges with offseto;
n1← endpoint ofe1;
n2← endpoint ofe2;
if n1 6= n2 then

if ∃ edges from n1 to n2 and n2 to n1 then
replacen1,n2 with the⊤ from the lattice of nodes;

else if∃ edges from n1 to n2 then
combine(g, n1, n2);

else if∃ edges from n2 to n1 then
combine(g, n2, n1);

else
join(g, n1, n2);

⊔e(e1,e2,g);

Algorithm 6 : combineLayout

input : la, lb layout types,ebtset of edges fromna to nb
output: the layout of the combined node
mayInterfere←

∨
{e∈ ebt|e.interfere= ip};

totalCut← ∑{e∈ ebt |e.maxCut};
notSingletons← sa 6= Singleton∧ sb 6= Singleton;
isDAGgraph← totalCut> 1∧ notSingletons;
lr ← la⊔layoutlb;
case(mayInterfere∨ isDAGgraph) return lr⊔layout MultiPath;
case(la = List) return lr⊔layoutTree;
case(la = lb = Singleton) return lr⊔layoutList;
otherwise return lr ;

