
On Models for Object Lifetime Distributions
(short paper)
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Abstract. Analytical models of object lifetimes are ap-

pealing because they would enable mathematical analysis or

fast simulation of the memory management behavior of pro-

grams. In this paper, we investigate models for object-oriented

programs such as Java and Smalltalk. We present analyti-

cal models and compare them with observed lifetimes for 58

Smalltalk and Java programs. We find that observed lifetime

distributions do not match previously proposed object lifetime

models, but do agree in salient shape characteristics with the

gamma distribution family used in statistical survival analysis

for general populations.

1 Introduction

If we can develop accurate analytical models for object
lifetimes in object-oriented programs, they would enable
faster and more thorough exploration of memory man-
agement techniques. For instance, given a model of ob-
ject lifetimes, we could compute an estimate of copying
costs of a generational or some other garbage collector.
If distribution models and garbage collector models are
simple enough, we may even arrive at closed-form an-
alytical descriptions; but even if both are quite compli-
cated, we can use the lifetime distributions to drive sim-
ulations of a proposed garbage collector scheme.

Lifetime models are not sufficient for exploring
garbage collection, because they do not account for heap
pointer structure effects: the direct cost of pointer main-
tenance (including write barriers), and the copying cost
increase owing to the excess retention of objects, both
present in generational schemes. Nevertheless, they
could be useful as a tool for preliminary evaluation (and
understanding) of collector performance.

Observed object lifetime behaviors are inherently dis-
crete; we measure the lifetime of each object and ar-

rive at a discrete distribution. Most performance-related
propositions have dealt with mortality, which is a deriva-
tive form; since obtaining a derivative of a discrete ob-
served function involves inherently arbitrary smoothing
decisions, it has been difficult to characterize the mor-
tality of observed distributions, let alone to match it to
an analytical model. The extremely fast decay of ob-
jects exacerbates the situation: most models developed in
other domains are for much more slowly decaying pop-
ulations.

If we knew which distribution family describes typi-
cal object behaviors, we could fit observed lifetimes to
the model of that family, and find the best matching in-
stance (i.e., its parameters). In fact, a running program
could recognize the lifetime distribution of objects allo-
cated (overall, or at a particular allocation site) and adjust
collection policies accordingly. But it is not yet known
which family this may be.

In the following, we first briefly introduce terms and
notation related to lifetime distributions (with more de-
tails in the Appendix), then review what assumptions
have been made implicitly (or stated explicitly) in the
past research in garbage collection. We develop models
based on a plausible qualitative characterization of life-
times; namely, that past lifetime is a strong predictor of
future lifetime. Lastly, we put the models to the test of
empirical evidence against actual lifetime distributions
from object-oriented programs.

2 Background material

The lifetime of an object is defined as the amount of al-
location that occurs between the allocation of the object



and its demise.1 We view object lifetime as a random
variable. Future studies may look at object lifetimes as
stochastic processes, and in this context, distinguish each
allocation site as generating different processes. Here,
we do not attempt such fine distinctions.

Actual object lifetimes are natural numbers, thus dis-
crete probability distributions are the obvious represen-
tation. However, continuous models are used for math-
ematical ease and convenience. Below we review some
definitions and symbols from probability theory as they
apply to survival analysis; further details appear in the
Appendix along with a summary of properties of com-
monly used analytical distribution families.

The survival function of a random variableL is
sL (t)=℘fL > tg. For object lifetimes, it expresses what
fraction of original allocation volume is still live at aget.
We usually drop the subscriptL . The survivor function
is a monotone non-increasing function. Theprobability
densityfunction is f (t) = �s0(t). Occasionally we also
use thecumulative distributionfunctionF(t) = 1�s(t).
Themortality function ism(t) = f (t)

s(t) =�

d
dt logs(t), and

it expresses the age-specific death rate. Mortality is also
known as thehazardfunction (and writtenh(t)) in the
literature on lifetime analysis [CO84].

3 Previous statements about object
lifetime distributions and their in-
fluence on garbage collection perfor-
mance

Object lifetime distributions have been of interest to re-
searchers of garbage collection, especially generational
collection: the success of a particular garbage collector
organization or promotion policy depends on how well it
is matched to the behavior of typical user programs. In
fact, claims have been made about lifetimes.

Hayes introduced a distinction between a “weak” and
a “strong” generational hypothesis [Hay91].2 Our un-

1The actual point of demise depends on the accuracy of the mem-
ory management scheme. In the empirical data reported here,that
scheme is an accurate-roots garbage collector performing full-heap
collection at each object allocation. Thus, demise is detected pre-
cisely at the point when the object becomes unreachable fromthe
global roots.

2Unfortunately, the paper could be easily misinterpreted, since
the term “survival rate” was used both for “the reciprocal ofmortal-
ity” and “the amount copied from a generation”, depending onthe
context.

derstanding of his statement of the weak generational
hypothesis is this:newly created objects have a much
higher mortality than objects that are older. His state-
ment of the strong generational hypothesis (which he in
fact introduces) is thateven if the objects in question are
not newly created, the relatively younger objects have a
higher mortality than the relatively older objects, or sim-
ply, thatm(t) is an everywhere decreasing function.

Baker clearly pointed out that an exponential distri-
bution of lifetimes, withm(t) constant, cannot be fa-
vorable to generational collection (as opposed to whole-
heap collection), and that insteadm(t) should be de-
creasing [Bak93]. Nevertheless, the exponential distri-
bution has a unique cachet among survival distributions:
its mathematical simplicity and the property of “lack of
memory”. In a garbage collector this property assures
that an object just discovered live by the collector has
the same residual lifetime as the lifetime of a newly al-
located object, and this greatly simplifies the analysis.
Thus, the exponential distribution was used by Clinger
and Hansen in the analysis (and to inspire the design) of
anon-predictivecollector, outside the generational realm
[CH97]. In our examination of a generalized form of that
collector [SMM98], we decided to use not only the expo-
nential distributions(t) = e�ρt , but also a variation with
decreasing mortalitys(t) = e�

p

ρt as being in agreement
with the strong generational hypothesis, as well as a vari-
ation with increasing mortalitys(t) = e�(ρt)2

for control.
In fact, these three are instances of the Weibull distribu-
tion s(t) = e�(ρt)c

[Wei61, Lem82].

4 Models derived from the qualitative
assertion that “past is like the fu-
ture”

A multitude of models can be developed that have de-
creasing mortality. But developing themex vacuo, just
for the simplicity of their mathematical formulation (or
their use in other domains) is not satisfactory. We can
base models on a broad experimental study, and in Sec-
tion 5 we make a first attempt at that. But, our un-
derstanding would be aided more if distribution models
could be derived from certain principles that we expect
to be naturally associated with program behavior. In this
vein, Appel suggested that plausible object lifetime dis-
tributions should satisfy the following:

(1) An object’s future expected lifetime is pro-

2



portional to its current age. [App97]

Thus, past lifetime is a strong predictor of the future
(residual) lifetime. This stands in stark contrast with the
exponential distribution.

An object’sfuture expected lifetimeC(x) is the differ-
ence between its expected lifetime and its current age.
The expected lifetime (once we know its current age)
is the conditional expected value [Pap91] of the lifetime
random variableL , E[L j L > x℄, wherex is the current
age. It is calculated as:

E[L j L > x℄ =

Z ∞

0
t f (t j t > x)dt

=

R ∞
x t f (t)dt
R ∞

x f (t)dt

=

R ∞
x t f (t)dt

s(x)
:

ThusC(x) = E[L j L > x℄�x, and statement (1) is:

(9ψ > 0)(8x> 0)C(x) = ψx;

with ψ a proportionality constant between the current
agex and the future expected lifetimeC(x). Unfortu-
nately, with x = 0, we haveE[L ℄ = E[L j L > 0℄ =
C(0) = ψ �0= 0 for anyψ. We look at two ways out of
the quandary: first, by letting the relation (1) hold only in
the limit asx!∞; and second, by restricting the domain
of definition of the distribution to an interval[x0;∞).

We shall find use for an alternative form of (1): Let
G(x) =

R ∞
x t f (t)dt; thenE[L j L > x℄ = G(x)

s(x) . LetΛ(x) =
G(x)
xs(x) =

E[L jL>x℄
x =

C(x)+x
x =

C(x)
x +1 .

Then statement (1) is

(9ψ0

> 1)(8x> 0)Λ(x) = ψ0

;

with ψ0

= ψ+1.

4.1 Past-is-future in the limit

Let us weaken the statement (1) so that the proportional-
ity holds asymptotically, for large values ofx. We look
for a distribution such that lim

x!∞
Λ(x) exists and is strictly

greater than 1. Here is one such distribution.
Let

f (t) =
β

(t + τ)λ ;

so that

s(t) =
β

λ�1
(t + τ)1�λ

;

whereλ > 2. Normalization:

1= s(0) =
β

λ�1
τ1�λ

gives

τ =

�

λ�1

β

�1=(1�λ)
:

We find

G(x) = β
1

λ�2
(x+ τ)2�λ

� τβ
1

λ�1
(x+ τ)1�λ

:

Expected value

E[L ℄ = G(0) = β
1

(λ�2)(λ�1)

�

λ�1

β

�

2�λ
1�λ

:

If we take this value as a free parameterE[L ℄ =V (as it
is necessary to do in order to generate a trace for simula-
tion, where we want to control the heap size in equilib-
rium), we have

β = (λ�1)(V(λ�2))λ�1
:

We can then simplify:

τ =V(λ�2):

The ratio

Λ(x) =
G(x)
xs(x)

=

λ�1

λ�2
+

1

λ�2

τ
x
=

λ�1

λ�2
+

V
x
;

hence

lim
x!∞

Λ(x) =
λ�1

λ�2
> 1;

as required. Varyingλ changes the valueΛ(x) uniformly
for all x; lower values ofλ produce distributions with
heavier tails.
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4.2 Past-is-future restricted tox> x0

We make condition (1) strictly hold forx > x0, where
x0 > 0, and we define the distribution (functionsF , f ,
s, andm) in that interval, but we setF = 0, f = 0, s=

1, andm= 0 in the interval[0;x0℄. This formulation is
intuitively appealing, since lifetimes in practice take on
discrete values inN, and hence settingx0 = 1 is quite
natural.

Condition (1):

(9ψ0

> 1)(8x> x0)Λ(x) = ψ0

;

that is,

G(x) = ψ0xs(x);

gives the integral equation,
Z ∞

x
t f (t)dt = ψ0x

Z ∞

x
f (t)dt:

It is easy to obtain the corresponding differential equa-
tion:

F 0

(x) =
ψ0

(1�F(x))
(ψ0

�1)x
:

The solution, with the boundary valueF(x0) = 0, is

F(x) = 1�
�x0

x

�

ψ0
ψ0�1

;

f (x) =
1

x0

ψ0

ψ0

�1

�x0

x

�

2ψ0�1
ψ0�1

;

s(x) =
�x0

x

�

ψ0
ψ0�1

;

m(x) =
ψ0

ψ0

�1

1

x
:

The mortality is indeed an everywhere decreasing func-
tion.

G(x) = ψ0

 

xψ0

0

x

!

1
ψ0�1

;

G(x0) = ψ0x0:

The expected live amount in the heap is:

v(x) = ψ0x0� (ψ0

�1)

 

xψ0

0

x

!

1
ψ0�1

:

The steady-state heap volumeV = lim
x!∞

v(x) equals the

expected value ofL , which is ψ0x0. What are reason-
able parameter values? Suppose that we wish to set
V = 50000.3 Suppose also that we wantx0 to be 1. Then
ψ0

= V=x0 = 50000. However, the live volume in the
heap,v(x), approaches its limit valueV at the rate of de-
cay of the second term, that is, as the 49999-th root ofx.
With such a slow approach, that is, with such a heavy tail
in the distributions, one must allow a time 3:67�1099997

to pass before the heap is within 1% of equilibrium; until
the heap is in equilibrium, the distribution of objects in
it does not reflect the heavy tail of the source distribu-
tion. Simulating that many objects is somewhat imprac-
tical. Moreover, can actual programs exhibit such ex-
tremely slow heap growth as withψ0

= 50000? Suppose
that a program does. We can only observe executions
of much shorter duration than 1099997, say, up to1010;
but then we cannotempiricallydistinguish the postulated
ψ0

= 50000 past-is-future distribution from another dis-
tribution that agrees with it up tot = 1010, but lacks the
heavy tail beyond that age. Alternatively, to allow 99%
of the steady-state volume to be reached with 107 objects
simulated, one must haveψ0

< 2:5 (approximately), but
thenx0 > 20000. Thus, beyond the construction of an el-
egant analytical model of object lifetimes, we must keep
in mind the need to be able to validate it—or invalidate—
against real data.

5 Comparing postulated models with
empirical evidence

In validating lifetime models, we apply the tools of sta-
tistical analysis of survival data to the distributions of
object lifetimes. The populations traditionally studied
in statistical analyses are quite different from programs’
objects. Moreover, the relevant literature concentrates
mostly on statistical confirmation of explanatory vari-
ables (e.g., in clinical trials), which is different from our
goal: finding distributions.

3This number is sufficiently large so that in simulation, evenwhen
a heap is divided into� 100 regions, each one contains at least�

100 objects, which allows us to vary the heap configuration widely
without incurring significant discretization errors.
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Figure 1: Coefficient of skewness,γ3, versus coefficient of variation for several analytical distribution families and
for empirically observed object lifetime distributions. Top: linear scale; bottom: logarithmic scale. (See Appendix
for definitions.)
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One recommended test for comparingfamiliesof dis-
tributions is based on the graph of moment ratios: the co-
efficient of skewnessγ3 vs. the coefficient of variationγ.
These moment ratios are dimensionless quantities inde-
pendent of time-scale [CO84, p.24–28] that reflect only
the shapeof the distribution. The coefficient of varia-
tion is a measure of the spread of the distribution around
its mean; the coefficient of skewness is a measure of the
asymmetry of the distribution, and large positive values
indicate heavy tails. Each distribution corresponds to
a single point(γ;γ3); a single-parameter family of dis-
tributions defines a parametric curve in theγ–γ3 plane.
(See Appendix for definition ofγ andγ3.) Three fam-
ilies of distributions commonly used in survival analy-
sis (log-normal (Section A.4.3), Weibull (Section A.4.2),
and gamma (Section A.4.1)), are plotted in theγ–γ3 plane
in Figure 1. Note that the Weibull and gamma curves in-
tersect at the point(1;2); at this point each has degener-
ated into the exponential distribution. The two families
introduced here are also shown (past-is-future in the limit
(Section 4.1) and past-is-future restricted (Section 4.2)).
Also, the figure contains scatter points(γ;γ3) of object
lifetime distributions obtained empirically, and a line of
least-squares fit for these points. These empirical distri-
butions come from 58 Smalltalk and Java programs.

The scatter points of empirical distributions show a
trend of correlation betweenγ andγ3. This trend is some-
what surprising, since there is noa priori reason to ex-
pect it from a haphazard collection of benchmark pro-
grams. Perhaps the presence of this trend points to fun-
damental properties of program behavior, and it certainly
ought to be studied further.

The scatter points lie for the most part well to the right
and below the common analytical distribution families.
The one exception is the gamma family: in fact, even
though most scatter points are to the right and below the
gamma curve, they are quite close to it.

The two past-is-future families are a disappointment:
they both have much lower coefficient of variation and
much higher coefficient of skewness than the empiri-
cal distributions. Therefore, however intuitively plausi-
ble they are, they should not be employed to model ob-
ject lifetimes. Indeed, we must concentrate the search
for analytical distributions on those—not in standard
literature—with much higher coefficient of variation; in
the meantime, the gamma family is to be favored as a
candidate. We see that theγ–γ3 diagram usefully sum-
marizes the shape properties of distributions and allows

us to exclude certain analytical distribution families as
models for a set of observed distributions. Note, how-
ever, that the two moments displayed do not completely
capture the shape of a distribution. For positive matching
further statistical tests are necessary.

6 Summary

Analytical modelling of object lifetimes is desirable for
the design, analysis, and simulation of dynamic mem-
ory management systems, but it has remained a diffi-
cult problem. We examined certain qualitative crite-
ria that may be imposed on lifetime distributions. We
demonstrated the use of a simple graphical technique for
(in)validating postulated distribution models against em-
pirical evidence.
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A Vademecum of lifetime distributions

A.1 Basic definitions

The survival function of a random variableL is sL (t) =

℘fL > tg. For object lifetimes, it expresses what fraction
of original allocation volume is still live at aget. We usually
drop the subscriptL . The survivor function is a monotone
non-increasing function.

Theprobability densityfunction is f (t) =�s0(t) Occasion-
ally we also use thecumulative distributionfunction F(t) =
1�s(t). Themortality function ism(t) = f (t)

s(t) =�

d
dt logs(t),

and it expresses the age-specific death rate. Mortality is also
known as thehazardfunction (and writtenh(t)) in the liter-
ature on lifetime analysis. Occasionally we also use the in-
tegrated mortality:M(t) =

R t
0 m(u)du. Certain properties al-

ways hold:s(0) = 1; lim
t!∞

s(t) = 0;
R ∞

0 f (t)dt = 1 (normaliza-

tion of density);s(t) = e�M(t) [CO84, p.14].

A.2 Moments

The momentsof a distribution of random variableL are de-
fined asmk = E[Lk

℄ =

R ∞
0 tk f (t)dt. Thecentral momentsare

defined asµk =E[(L�m1)
k
℄ =

R ∞
0 (t�m1)

kdt. Herem1 is the
mean, or expected value, andm2 is the variance, or dispersion;
a common notation isσ2

= µ2, whereσ is calledstandard de-
viation. In calculation, we usually first find momentsm1, m2,
andm3, by integration in the case of analytical definitions, or
by summation over observed discrete points in empirical dis-
tributions, and then compute central moments using the for-
mulaeµ2 = m2�m2

1 andµ3 = m3�3m1m2+2m3
1.

The coefficient of variationis γ =

σ
m1

. The standardized

third momentor coefficient of skewnessis γ3 =

µ3
σ3 ; it is also

writtenη3 or
p

β1.

A.3 Finiteness of expected value

It is a simple exercise to show that the expected value of the
live amount in the heap at timex (that is, after an amountx has
been allocated) isv(x) =

R x
0 s(t)dt, and that

V = lim
x!∞

v(x) =
Z ∞

0
s(t)dt =

Z ∞

0
t f (t)dt = E[L ℄;

when they exist.

We impose on the object lifetime distribution an additional
property of finiteness (existence) of expected value, to ensure
that a heap equilibrium is reached in the limit. (Heap equilib-
rium has been the underlying assumption in some compara-
tive analyses of garbage collection costs [CH97, SMM98]. A
relative heap size parameter is used as the basis for compari-
son of two collection algorithms: heap size is a fixed multiple
of a steady-statelive data amount.) How essential is this re-
quirement, and could we also consider distributions with un-
bounded expected value? On the one hand, the running time of
real programs is finite, and thusf is finally-zero, henceE[L ℄
is finite. On the other hand, it is theoretically plausible that we
are observinginitial segmentsof potentially infinite computa-
tions, and so it is useful to investigate heaps that grow without
bound. From a purist standpoint, many realistic programs that
run indefinitely do use increasing amounts of space; for in-
stance, counting requires logarithmically increasing space.

If the live data amount does not stabilize, but rather grows
indefinitely, then the available heap size ought to grow in equal
proportion—if one desires measurements in terms of the rela-
tive heap size parameter. This property must be ensured with
due care in analysis and simulation.

A.4 Distribution families of Figure 1

Basic definitions of distribution families, compiled from text-
books [BM70, Dev86, EJJ80, EHP93, JK70, MF65, Pap91].
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A.4.1 Gamma

f (t) = cb+1

Γ(b+1) t
be�ct

mk = (b+1)(b+2) � � �(b+k)c�k

µ2 =
b+1
c2

µ3 = 2b+1
c3

γ = 1
p

b+1

γ3 =
2

p

b+1
Thereforeγ3 = 2γ is a straight line in Figure 1.

A.4.2 Weibull

f (t) = ctc�1e�tc

m1 =
1
cΓ( 1

c)

m2 = Γ(1+ 2
c)

m3 = Γ(1+ 3
c)

The curveγ–γ3 is plotted parametrically with respect toc in
Figure 1.

A.4.3 Log-normal

f (t) = 1
tδ
p

2π e�
(logt�ζ)2

2δ2

It can be shown that, with abbreviationω = eδ2
, γ =

p

ω�1
andγ3 = (ω+2)

p

ω�1, thereforeγ3 = 3γ+ γ3 in Figure 1.
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