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Abstract. Analytical models of object lifetimes are ap+ive at a discrete distribution. Most performance-related
pealing because they would enable mathematical analysipoopositions have dealt with mortality, which is a deriva-
fast simulation of the memory management behavior of ptive form; since obtaining a derivative of a discrete ob-
grams. In this paper, we investigate models for objectrteid served function involves inherently arbitrary smoothing
programs such as Java and Smalltalk. We present analgieécisions, it has been difficult to characterize the mor-
cal models and compare them with observed lifetimes for &8lity of observed distributions, let alone to match it to
Smalltalk and Java programs. We find that observed lifetia@ analytical model. The extremely fast decay of ob-
distributions do not match previously proposed objectiliie  jects exacerbates the situation: most models developedin
models, but do agree in salient shape characteristics hdth other domains are for much more slowly decaying pop-
gamma distribution family used in statistical survival lgs&s ulations.

for general populations. If we knew which distribution family describes typi-
cal object behaviors, we could fit observed lifetimes to
the model of that family, and find the best matching in-
stance (i.e., its parameters). In fact, a running program

If we can develop accurate analytical models for obje‘Ef?‘”d recognize the lifetime distribution of objects allo-
lifetimes in object-oriented programs, they would enabfated (overall, or at a particular allocation site) and stju
faster and more thorough exploration of memory mafellection policies accordingly. But it is not yet known
agement techniques. For instance, given a model of $ftich family this may be.
ject lifetimes, we could compute an estimate of copying In the following, we first briefly introduce terms and
costs of a generational or some other garbage collectmtation related to lifetime distributions (with more de-
If distribution models and garbage collector models at@ls in the Appendix), then review what assumptions
simple enough, we may even arrive at closed-form amve been made implicitly (or stated explicitly) in the
alytical descriptions; but even if both are quite complpast research in garbage collection. We develop models
cated, we can use the lifetime distributions to drive sirbased on a plausible qualitative characterization of life-
ulations of a proposed garbage collector scheme. times; namely, that past lifetime is a strong predictor of
Lifetime models are not sufficient for exploringuture lifetime. Lastly, we put the models to the test of
garbage collection, because they do not account for heappirical evidence against actual lifetime distributions
pointer structure effects: the direct cost of pointer maiffom object-oriented programs.
tenance (including write barriers), and the copying cost
increase owing to the excess retention of objects, both
present in generational schemes. Nevertheless, they .
could be useful as a tool for preliminary evaluation (ard  Background material
understanding) of collector performance.
Observed object lifetime behaviors are inherently dihe lifetime of an object is defined as the amount of al-
crete; we measure the lifetime of each object and #&reation that occurs between the allocation of the object
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and its demisé. We view object lifetime as a randonderstanding of his statement of the weak generational
variable. Future studies may look at object lifetimes agpothesis is this:newly created objects have a much
stochastic processes, and in this context, distinguigh ehigher mortality than objects that are oldeHis state-
allocation site as generating different processes. Hearent of the strong generational hypothesis (which he in
we do not attempt such fine distinctions. fact introduces) is thatven if the objects in question are
Actual object lifetimes are natural numbers, thus digot newly created, the relatively younger objects have a
crete probability distributions are the obvious represdmigher mortality than the relatively older objects sim-
tation. However, continuous models are used for mathly, thatm(t) is an everywhere decreasing function.
ematical ease and convenience. Below we review soméaker clearly pointed out that an exponential distri-
definitions and symbols from probability theory as theyution of lifetimes, withm(t) constant, cannot be fa-
apply to survival analysis; further details appear in ttvorable to generational collection (as opposed to whole-
Appendix along with a summary of properties of confieap collection), and that instean(t) should be de-
monly used analytical distribution families. creasing [Bak93]. Nevertheless, the exponential distri-
The survival function of a random variablé. is bution has a unique cachet among survival distributions:
s (t) =0{L >t}. Forobject lifetimes, it expresses whats mathematical simplicity and the property of “lack of
fraction of original allocation volume is still live at age memory”. In a garbage collector this property assures
We usually drop the subscript. The survivor function that an object just discovered live by the collector has
is @ monotone non-increasing function. Tiebability the same residual lifetime as the lifetime of a newly al-
densityfunction is f (t) = —g/(t). Occasionally we alsolocated object, and this greatly simplifies the analysis.
use thecumulative distributiofunctionF(t) = 1—s(t). Thus, the exponential distribution was used by Clinger
Themortality function ism(t) = % — _% logs(t), and and Hansen in the analysis (and to inspire the design) of
it expresses the age-specific death rate. Mortality is aBdon-predictivecollector, outside the generational realm

known as thehazardfunction (and writterh(t)) in the [CH97]. In our examination of a generalized form of that
literature on lifetime analysis [CO84]. collector [SMM98], we decided to use not only the expo-

nential distributiors(t) = e, but also a variation with
_ _ decreasing mortalitg(t) = e VP as being in agreement
3 Previous statements about objectwiththe strong generational hypothesis, as well as a vari-

lifetime distributions and their in- ationwithincreasing mortalitg(t) = e (®)° for control.

fluence on aarbage collection perfor- In fact, these three are instances of the Weibull distribu-
garbag P tion s(t) = e (PU° [Wei61, Lem82)].
mance

Object lifetime distributions have been of interest to rél- Models derived from the qua“tatwe

searchers of garbage collection, especially generational assertion that “past is like the fu-
collection: the success of a particular garbage collector ture”
organization or promotion policy depends on how well it

is matched to the behavior of typical user programs. imultitude of models can be developed that have de-

faCt, claims have been made about lifetimes. Creasing morta"ty_ But deve|0ping theax Vacuojust
Hayes introduced a distinction between a “weak” angr the simplicity of their mathematical formulation (or

a “strong” generational hypothesis [Hay$1]Our un- their use in other domains) is not satisfactory. We can

1The actual point of demise depends on the accuracy of the mé?ﬁl-se models on a broad experimental study, and in Sec-
ory management scheme. In the empirical data reported tiere, ion 5 we make a first attempt at that. But, our un-
scheme is an accurate-roots garbage collector performibpdap derstanding would be aided more if distribution models
collection at each object allocation. Thus, demise is detepre- ~qyld be derived from certain principles that we expect

;'Izilgl fct)c:thse point when the object becomes unreachable frem to be naturally associated with program behavior. In this

2Unfortunately, the paper could be easily misinterpreténges VEIN, Appel suggested that plausible object lifetime dis-
the term “survival rate” was used both for “the reciprocahudrtal-  tributions should satisfy the following:
ity” and “the amount copied from a generation”, dependingtom
context. (1) An object’s future expected lifetime is pro-




portional to its current age. [App97] so that

Thus, past lifetime is a strong predictor of the future s(t) = L(H_T)l—)\,
(residual) lifetime. This stands in stark contrast with the A-1
exponential distribution.

An object’sfuture expected lifetim€(Xx) is the differ-
ence between its expected lifetime and its current age.

whereA > 2. Normalization:

The expected lifetime (once we know its current age) 1=50) = )\ilTl"‘
is the conditional expected value [Pap91] of the lifetime B
random variablé-, E[L | L > X], wherex is the current gives
age. ltis calculated as:
° A— 1\ YN
EL|[L>X = /tf(t|t>x)dt rz(—B > -
0
et @t i
2 f(t)d We find
_ Sttt (t) 1 1
S G(x) = By (x+ 1> ~ By (x+T)*
ThusC(x) = E[L | L > X] — X, and statement (1) is: Expected value
(3w > 0)(vx > O)C(x) = Wx, 22
1 A—1\*+
. o E[L]=G(0)=p :
with ) a proportionality constant between the current A=2)A-1\ B
agex and the future expected lifetim@(x). Unfortu-
nately, withx = 0, we haveE[L] = E[L | L > 0] = If we take this value as a free paramelfigt. | =V (as it

C(0) = - 0= 0 for any. We look at two ways out of is necessary to do in order to generate a trace for simula-
the quandary: first, by letting the relation (1) hold only ition, where we want to control the heap size in equilib-
the limit asx — o0; and second, by restricting the domaifium), we have

of definition of the distribution to an intervalg, ©).

We shall find use for an alternative form of (1): Let B=A-1)(V(A— 2))A*l
= J{tf(tdt thenE[L L >x] = SR LetA(x) =

% _ ELL>A _ Clix _ O g We can then simplify:

Then statement (1) is

T=VA-2).
(AW > 1)(Vx = 0)A(X) = Y,
The ratio
with ¢/ = P+ 1.
G(x) A-1 1 1t A-1
A(X) = = + - = +—,

4.1 Past-is-future in the limit XX A-=2 A-2x A-2

Let us weaken the statement (1) so that the proportiorfaénce
ity holds asymptotically, for large values &f We look

for a distribution such tha}(LILM(X) exists and is strictly lim A(X) = A-1 >1
greater than 1. Here is one such distribution. X A=2
Let as required. Varying changes the valu&(x) uniformly
B for all x; lower values ofA produce distributions with
f(t) = RN heavier tails.



4.2 Past-is-future restricted tox > Xg The expected live amount in the heap is:

We make condition (1) strictly hold fox > X9, where W\ 71
Xo > 0, and we define the distribution (functiofs f, V(X) = W'xo — (P — 1) (ﬁ) )
s, andm) in that interval, but we sdt =0, f =0,s= X

1, andm = 0 in the interval[0,Xo]. This formulation is

intuitively appealing, since lifetimes in practice take on o
discrete values ifN, and hence setting, = 1 is quite €XPected value ok, which is Y. What are reason-
natural. able parameter values? Suppose that we wish to set

Condition (1): V =50000°% Suppose also that we waxtto be 1. Then
' =V /x = 50000. However, the live volume in the
(aqj’ > 1)(VX > Xo)A(X) = g, heapV(x), approaches its limit valué at the rate of de-
cay of the second term, that is, as the 49999-th roat of
that is, With such a slow approach, that is, with such a heavy tail
in the distributions, one must allow a time63 - 10°9997
G(X) = Y'xs(x), to pass before the heap is within 1% of equilibrium; until
the heap is in equilibrium, the distribution of objects in
it does not reflect the heavy tail of the source distribu-
® A tion. Simulating that many objects is somewhat imprac-
/X tft)dt= llJX/x f(tydt. tical. Moreover, can actual programs exhibit such ex-

] ) . ] ) tremely slow heap growth as withl = 500007 Suppose
It is easy to obtain the corresponding differential equgy,; 5 program does. We can only observe executions

The steady-state heap voluMe= )!ln v(X) equals the

gives the integral equation,

tion: of much shorter duration than 9997 say, up to1#;
, W(1—-F(x)) but then we cannampiricallydistinguish the postulated
F 0= W Y/ = 50000 past-is-future distribution from another dis-
tribution that agrees with it up tb= 10'°, but lacks the
The solution, with the boundary vall€(Xo) = 0, is heavy tail beyond that age. Alternatively, to allow 99%
v of the steady-state volume to be reached withdlfjects
F(x)=1— (ﬁ) V-1 7 simulated, one must hawg < 2.5 (approximately), but
X thenxp > 20000. Thus, beyond the construction of an el-
egant analytical model of object lifetimes, we must keep
1y % %711 in mind the need to be able to validate it—or invalidate—
f(x) = U1 (;) e against real data.
v 5 Comparing postulated models with
S(X) = (%) v empirical evidence
In validating lifetime models, we apply the tools of sta-
Y o1 tistical analysis of survival data to the distributions of
m(x) = P—1x object lifetimes. The populations traditionally studied

o _ in statistical analyses are quite different from programs’
The mortality is indeed an everywhere decreasing fungsjects. Moreover, the relevant literature concentrates

tion. mostly on statistical confirmation of explanatory vari-
e = ables (e.qg., in clinical trials), which is different fromrou
- oal: finding distributions.
G(x) = ¢/ (’%) , g g
3This number is sufficiently large so that in simulation, evéren

a heap is divided inte-v 100 regions, each one contains at least
100 objects, which allows us to vary the heap configuraticehelyi
G(x0) = Y'Xo. without incurring significant discretization errors.
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Figure 1: Coefficient of skewnesg, versus coefficient of variation for several analyticatmlisition families and
for empirically observed object lifetime distributionsof. linear scale; bottom: logarithmic scale. (See Appendix
for definitions.)



One recommended test for comparfagiliesof dis- us to exclude certain analytical distribution families as
tributions is based on the graph of moment ratios: the ¢nedels for a set of observed distributions. Note, how-
efficient of skewnesyg; vs. the coefficient of variatiop  ever, that the two moments displayed do not completely
These moment ratios are dimensionless quantities indapture the shape of a distribution. For positive matching
pendent of time-scale [CO84, p.24—28] that reflect orfiyrther statistical tests are necessary.
the shapeof the distribution. The coefficient of varia-
tion is a measure of the spread of the distribution arou&d S
its mean; the coefficient of skewness is a measure of the ummary
asymmetry of the distribution, and large positive values . . . I . .
. y y . o gep eAnaIytlcaI modelling of object lifetimes is desirable for
indicate heavy tails. Each distribution corresponds li'? . ; ) . .

. . i . . ._ the design, analysis, and simulation of dynamic mem-

a single point(y,ys); a single-parameter family of dis- . . -

oo . X . ory management systems, but it has remained a diffi-
tributions defines a parametric curve in tre/s plane.

(See Appendix for definition of andys.) Three fam- C.UIt problem. We exammed'ce'rtam gughtapve crite-
o L ; . ria that may be imposed on lifetime distributions. We
ilies of distributions commonly used in survival analy-, . . .

. . . . demonstrated the use of a simple graphical technique for
sis (log-normal (Sfectlon A.4.3), Weibul (Sectlon A'4'2)(1n)validating postulated distribution models againstem
and gamma (Section A.4.1)), are plotted inyhg; plane

i . .pirical evidence.
in Figure 1. Note that the Weibull and gamma curves |P|—
tersect at the pointl, 2); at this point each has degener- Acknowledgments.We are grateful to Andrew Appel

ated into the exponential distribution. The two familie%);ﬁgg?qeesr:tzgd discussions that spurred the develop-
introduced here are also shown (past-is-future in the limit '
(Section 4.1) and past-is-future restricted (Section)4.2)

Also, the figure contains scatter poirfigys) of object References
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bounded expected value? On the one hand, the running time of
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are observingnitial segment®f potentially infinite computa-
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D : : : -
and it expresses the age-specific death rate. Mortalitsis afU€ care in analysis and simulation.

known as thehazardfunction (and writterh(t)) in the liter-
ature on lifetime analysis. Occasionally we also use the
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A Vademecum of lifetime distributions

A.1 Basic definitions

A4 Distribution families of Figure 1
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A.4.1 Gamma

b+1

ft) = r?b:ntbe_a
m = (b+1)(b+2)---(b+k)c*

_ by
M= "7
be =255+

_ 1
Y=

_ 2
Yo = o
Thereforeys = 2y is a straight line in Figure 1.
A.4.2 Weibull
ft)=ctc et
my = %r(%)z
Mg =T (1+3)

The curvey-ys is plotted parametrically with respect tin
Figure 1.

A.4.3 Log-normal

_ (logt—-2)2
25

_ 1
f(t) = i

It can be shown that, with abbreviation= e52, y=vw-1
andys = (w+ 2)v/w— 1, thereforeys = 3y+y® in Figure 1.



