
DESIGN AND IMPLEMENTATION OF SIND, A DYNAMIC BINARY

TRANSLATOR

by

TREK PALMER

B.S. Computer Science, University of New Mexico, 2001

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science
Computer Science

The University of New Mexico
Albuquerque, New Mexico

December, 2003

iii

DESIGN AND IMPLEMENTATION OF SIND, A DYNAMIC BINARY

TRANSLATOR

by

TREK PALMER

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2003

DESIGN AND IMPLEMENTATION OF SIND, A DYNAMIC BINARY

TRANSLATOR

by

TREK PALMER

B.S. Computer Science, University of New Mexico, 2001

M.S., Computer Science, University of New Mexico, 2003

Abstract

Recent work with dynamic optimization in platform independent, virtual machine

based languages such as Java has sparked interest in the possibility of applying similar

techniques to arbitrary compiled binary programs. Systems such as Dynamo, DAISY,

and FX
�
32 exploit dynamic optimization techniques to improve performance of native or

foreign architecture binaries. However, research in this area is complicated by the lack

of openly licensed, freely available, and platform-independent experimental frameworks.

SIND aims to fill this void by providing an easily-extensible and flexible framework for

research and development of applications and techniques of binary translation. Current

research focuses are dynamic optimization of running binaries and dynamic security aug-

mentation and integrity assurance.

iii

Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Dynamic Binary Translation . 2

1.2 Why Another One? . 3

1.3 SIND . 3

1.4 Overview of the Thesis . 4

2 Previous Efforts 5

2.1 Dynamo . 5

2.2 DynamoRIO . 7

2.3 FX
�
32 . 8

2.4 DAISY . 8

2.5 Crusoe, JVMs, and Others . 9

iv

Contents

3 SIND Design 10

3.1 Interpreter . 12

3.1.1 Registers . 13

3.1.2 Instructions . 14

3.1.3 Exceptional Conditions . 15

3.1.4 Signals and Asynchronous I/O 15

3.2 Memory Manager . 16

3.3 Syscall Manager . 17

3.4 Trace Gathering . 18

3.5 Transformers . 19

3.6 Fragment Cache . 19

3.7 Bootstrapper and Dispatcher . 20

3.7.1 Bootstrapper . 20

3.7.2 Dispatcher . 21

4 SIND Implementation 22

4.1 Overview . 22

4.2 Interpreter . 23

4.3 Bootstrapper . 24

4.4 Fragment Cache . 25

v

Contents

5 Evaluation of SIND 26

5.1 Performance of SIND . 26

5.1.1 Speed of Interpretation . 26

5.1.2 Speed of Cached Fragments . 28

5.2 Memory Footprint of SIND . 28

5.3 The Agility of SIND . 28

6 SIND: A History 30

6.1 A Brief History . 30

6.2 Experiences from the Design and Implementation of SIND 32

7 Using SIND 36

7.1 Invoking SIND . 36

7.2 Extending SIND . 37

7.2.1 System-Dependent Code . 37

7.2.2 System-Independent Code . 38

A Technical Details 39

A.1 Source Layout and Directory Organization 39

A.2 Where Functionality Resides . 40

A.3 Compilation and Architecture Support 41

A.3.1 Makefiles . 41

vi

Contents

A.3.2 Compilation Flags . 41

A.3.3 Supported Architectures . 42

References 43

vii

List of Figures

3.1 SIND modules . 11

4.1 CPU inheritance tree . 23

viii

List of Tables

5.1 SIND interpreter slowdown . 27

A.1 Include files to modules . 40

A.2 modules’ source files . 41

ix

Chapter 1

Introduction

Program transformation and optimization are not new ideas; however the notion of per-

forming them at runtime is a recent invention. The attraction of dynamic transformation

and analysis of programs derives, in part, from the fact that the amount of static informa-

tion available to a compiler is shrinking. Object-oriented languages that support dynamic

loading and unloading of code impose a serious restriction on the ability of static analysis

to effectively guide optimization. Even in a fairly static O-O language such as C++, there

are considerably more challenges for a static compiler to overcome than in C. Static com-

pilation techniques fail primarily because they have insufficient information to work with.

When statically compiling a program with loadable modules, for instance, the compiler

cannot make many assumptions about the internal structure of those modules, and conse-

quently standard optimization techniques (such as inlining) become impossible. Also, for

static analysis to be fully effective, it is often necessary to have access to the source code.

For instance, some of the most effective security analysis programs (such as StackGaurd

[4]) need full access to the source code to correctly protect vulnerable code segments. In

reality, however, source code is often impossible to obtain.

1

Chapter 1. Introduction

1.1 Dynamic Binary Translation

Dynamic binary translation is a method to overcome these deficiencies in static compi-

lation techniques. The basic idea is to dynamically monitor a running program and use

the gathered profile (which contains a great deal of information) to guide further program

transformations. The challenge is to do this efficiently and transparently. Both efficiency

and transparency are difficult problems. To provide transparency, the binary translator

must emulate all the idiosyncrasies of the underlying system, and do so in such a way that

control never leaves the translator. This is the problem that most debuggers have to solve.

However, whereas a debugger developer can choose to sacrifice speed for convenience and

reliability, such trade-offs cannot be made with a dynamic binary translator. The efficiency

constraint means that the system as a whole must be able to simulate the underlying archi-

tecture without significantly slowing down the running program. In practice, this means

about a 10% slowdown is acceptable. This leads to the use of many arcane tricks and

techniques to achieve the seemingly impossible goal of dynamic profiling with almost no

slowdown. These are what makes designing and implementing a dynamic binary translator

such an engineering challenge.

Most binary translators have the same basic components: something to profile the

running code and gather traces, something to transform the traces into fragments, and

something to link the fragments up with the program’s address space and run the frag-

ments directly on the processor. It is the last step that makes up for the cost of profiling

and transforming running code. Because most of a program’s execution is confined to

a small portion of the code, if that portion is optimized and run directly on the proces-

sor it would speed up execution significantly. Identifying those hot sections of the code,

however, is effectively impossible to do statically. Fortunately, the runtime characteristics

of many programs are often much simpler than the static whole-program characteristics.

This simplicity, along with the increased information available at runtime, makes it pos-

sible for dynamic translators to identify important segments of code that static analysis

2

Chapter 1. Introduction

would not be able to catch. This ability can be used to guide instance-tailored optimiza-

tions to improve program performance, or to guide runtime security transformations to

improve program stability and security.

1.2 Why Another One?

While SIND is not the first attempt at a dynamic binary translator, it is the first open one.

Many previous systems were created by companies as either an internal research tool[1] or

as a commercial product [3], and consequently were never released. As the discussion in

Chapter 2 reveals, many of these systems also have deficiencies or peculiar requirements.

Some systems are so tied to the target platform that porting them was infeasible [1]. Other

systems have specific (and unobtainable) hardware requirements [5]. SIND was designed

with all this in mind. The SIND framework was intentionally constructed to be portable

and the current implementation for the UltraSPARC can run on commodity hardware with

no custom components. These advantages alone warrant the development of SIND. In

addition, SIND is an open-source system and as such may become an important research

tool with a large developer base. It was, in fact, the very lack of such an open tool that

motivated the development of SIND.

1.3 SIND

SIND is my effort at designing a platform-independent dynamic binary translation frame-

work, and implementing that framework for the UltraSPARC architecture (running So-

laris/SPARC). This effort stems from the fact that there are no real open platforms for

doing dynamic translation. This hinders research, especially in a field where open re-

search tools are the norm. SIND’s design was abstracted from several published dynamic

binary translators and is aimed at providing a general framework for building a binary

3

Chapter 1. Introduction

translator for any given platform. The whole system is organized in an O-O fashion, with

each major component as a separate module. This modularity is intended to aid initial and

subsequent development. In the future, it should be possible to extend a module without

having to modify any other code.

The current SIND system implements user-level integer instructions. No supervisor or

floating point code is currently supported. The lack of supervisor code is not a problem

because in a modern UNIX-like system (such as Solaris), all the supervisor code lives in

kernel space. Requests to this code are made through syscalls, which are proxied by SIND.

Floating-point code is less common than integer code, but for SIND to be truly useful it

must handle floating point operations. These instructions were intentionally passed over

due to the potential complexity of implementing them correctly (and the resultant debug-

ging nightmare). SIND is also unaware of the Solaris threading infrastructure and may

therefore be insufficiently thread-safe.

1.4 Overview of the Thesis

The remainder of this document is organized as follows: Chapter 2 gives a summary of the

previous efforts at dynamic binary translation; Chapter 3 describes, in detail, the design

of the SIND system; Chapter 4 is a discussion of the current implementation of SIND for

the UltraSPARC architecture; Chapter 5 is a discussion and evaluation of the performance

and flexibility of the current experimental system; Chapter 6 is an overview of the history

of the project as well as a discussion of large scale technical issues encountered while

implementing SIND; Chapter 7 describes how to use the developmental SIND tool; and

lastly the document is concluded with an appendix describing the code itself and details

such as directory structure.

4

Chapter 2

Previous Efforts

There have been several notable efforts at dynamic binary translation. The most well-

known is the Dynamo project from HPLabs. This was a dynamic optimization research

project for HPPA systems running HP-UX. Another interesting project was the FX
�
32

project from DEC (now part of HP/Compaq). This system was a dynamic binary translator

that ran IA32 binaries on an Alpha (running Windows NT). FX
�
32 had several notable fea-

tures: not only did it efficiently transform foreign binary instructions, it persistently stored

the fragments on disk and optimized them in an offline batch-processing phase. Other

interesting systems include the DAISY project from IBM, the Hotspot and Jalapeño/Jikes

JVMs, and Transmeta’s Crusoe ‘code-morphing’ technology.

2.1 Dynamo

The Dynamo system [1] is, in many ways, the seminal effort in this field. It is the most

popularized effort that actually achieves noticeable improvements in running time. The

Dynamo system is geared toward dynamic runtime optimization of HPPA binaries run-

ning under a custom version of HP-UX. The system is bootstrapped by a hacked version of

5

Chapter 2. Previous Efforts

crt.o and begins running the binary immediately. The instructions are fully interpreted

by a software interpreter, whose primary task is to identify and capture hot code traces

from the running program. The profiling method used is one of the Dynamo team’s fun-

damental contributions. They experimented with several profiling metrics and found that

a simple statistical approach yielded the best combination of accuracy and speed. First,

the profiler only focuses on code traces that started with trace heads, namely backwards-

taken branches. These branches are indicative of loops within the program, and Dynamo

assumes that this is where most of a program’s work gets done. Secondly, the profiler

assumes that, on average, the branches being taken when it examines the code would be

the ones the program would normally take. Therefore when a trace head became hot (was

visited enough times), only a single code trace would be gathered.

This code trace is then run through several simple compiler passes to yield an opti-

mized fragment. Because overhead had to be small the compiler only performs simple,

linear pass optimizations. The fragments are then loaded into the fragment cache. Dy-

namo’s cache holds the other fundamental contribution. Rather than just linking the frag-

ment so that it correctly accessed program data, the fragment is also potentially linked to

other fragments already in the cache. This obviates the need to leave the fragment cache

from one fragment merely to have to re-enter the cache to execute another fragment. This

single improvement led to impressive performance increases.

Despite its many successes Dynamo has many disadvantages. First, the system is not

open. This seriously hampers research, as the tool cannot be extended when necessary.

Second, Dynamo is specifically tailored to the HPPA architecture and HP-UX operating

system, to which I do not have access. Thirdly, Dynamo would be difficult to port, even

if the source code was publicly available, the system wasn’t engineered to be particularly

extensible. The HP engineers who wrote Dynamo admitted that the whole system may

have to be rewritten to be useful on another platform.

6

Chapter 2. Previous Efforts

2.2 DynamoRIO

DynamoRIO [2] is the successor to Dynamo. It is also a closed, proprietary system, but

it is designed for the Intel IA32 (x86) architecture and has versions that run under Win-

dows and Linux. In addition to the standard problems of building a dynamic optimization

system, DynamoRIO had to overcome the enormous cost of interpreting the dense and

complex x86 instruction set. After several false starts, this was eventually achieved with

the use of a so-called basic-block cache. This is a form of ‘cut & paste’ interpretation

in which the interpreter/decoder fetches basic blocks from memory, rewrites branch/jump

targets and executes the modified code directly on the processor. This alleviated the dif-

ficulty of actually interpreting x86 instructions, but made profiling more complex. The

initial decision to use a basic-block cache also tied the rest of the system to the x86 archi-

tecture 1. In the cause of efficiency, each component of DynamoRIO was written to be as

specific to the x86 architecture as possible. As a consequence, the entire system is highly

non-portable and would have to be completely rewritten to handle a new instruction set

[Personal Discussions with Derek Bruening, the DynamoRIO Maintainer].

Despite the tight coupling between DynamoRIO and the x86 architecture, the system

is more open and flexible than the original Dynamo. Even with the closed nature of the

underlying source code, there is a useful API that allows outside developers to add to

the system. However, such outside additions are restricted by the API and are slowed by

the need to pass data through an additional interface not used by DynamoRIO internals.

Despite the improvements over the original Dynamo, DynamoRIO failed to fully solve the

portability and extensibility problems.

1The basic block cache works by rewriting branching instructions and executing the basic
blocks directly on the processor. Therefore, a basic block cache is very architecture and OS spe-
cific.

7

Chapter 2. Previous Efforts

2.3 FX
�
32

FX
�
32 [3] is a dynamic translation program from DEC. It is designed to translate IA32

binaries to Alpha code at runtime. The whole system runs on Windows NT for the Alpha,

and existed because many NT developers were either unable or unwilling to write Alpha-

friendly code. FX
�
32 has a number of notable features. It does a great job of translating

foreign binaries, facilitated primarily by the fact that the NT API is standard across both

the Alpha and IA32 platforms. This allows rapid translation of system and library calls in

a 1-to-1 fashion. FX
�
32 also optimizes the translated traces, but in a novel way. Rather

than doing optimizations at runtime the FX
�
32 system simply translates the trace and then

saved the translated version to disk. Later on, a batch job examines the saved traces and

optimizes them using potentially long-running algorithms. In practice, this means that

each time a user ran an IA32 application it would be somewhat faster than the time before.

FX
�
32 is an interesting piece of software, but it too suffers from serious drawbacks.

Primarily, it suffers from the fact that its a closed-source system. DEC (and later Compaq)

sold FX
�
32 along with NT for Alpha, and considered releasing the code to be economically

impossible. Also, FX
�
32 is closely tied to the NT platform, which can be difficult to

develop for.

2.4 DAISY

DAISY [5] is a binary translation project from IBM that performs dynamic compilation of

Power4 binaries. It is similar to Dynamo in principle, but it employs more sophisticated

translation and profiling schemes. This allows DAISY to do a more sophisticated analysis

than Dynamo. For instance, a limited form of control flow analysis across branches and

calls is performed (to eliminate as much indirection as possible). However, this added

power comes at the cost of larger runtime overhead. The DAISY project obviated this

8

Chapter 2. Previous Efforts

cost by creating a custom daughter-board that would house an auxiliary processor to run

the DAISY system. This secondary processor only has to run at a fraction of the speed

of the main processor, and the daughter board has several megabytes of isolated memory

available only to the auxiliary processor. Because of this, DAISY has automatic memory

protection at no runtime cost, the additional hardware also removes the distinction between

the operating system and user applications. This means that DAISY can optimize both OS

code and application code (and even optimize call sequences from one through the other).

Unfortunately, the DAISY project never produced a commercially-available version

of the DAISY processor in hardware. All the published results came from detailed soft-

ware simulation of the proposed hardware. Even if the hardware were eventually mass-

produced, it was intended for use in high-end servers, and so would probably have been

very expensive.

2.5 Crusoe, JVMs, and Others

Other dynamic translation projects include the Code-morphing technology used in Trans-

meta’s Crusoe processor [7], the HotSpot and Jalapeño/Jikes optimizing JIT JVMs, and

other virtual machines that employ dynamic (otherwise known as Just In Time) compila-

tion techniques. The main disadvantage with code-morphing is that in addition to being

proprietary, it is specifically tied to the Crusoe VLIW architecture. The JVM and other

language virtual machine projects, although useful from a design perspective, did not con-

tribute much to the actual construction of SIND. This is due to the virtual machines being

tailored to the needs of a specific language. This means that most language virtual ma-

chines, although closer to hardware than the uncompiled program, have features useful to

the source language that are difficult to map directly to hardware.

9

Chapter 3

SIND Design

The SIND system design is not particularly revolutionary. It is a synthesis and extension of

many dynamic translator designs. Because most dynamic binary translators have to solve

similar problems, many have similar designs. This similarity is encouraging, because

it means that if this structure can be expressed in code, the construction of new binary

translators would be reduced to extending the base modules, rather than designing the

whole system from scratch.

Figure 3.1 shows the major components of SIND. The interpreter is the module that

handles the dynamic execution and profiling of the running binary. The transformers trans-

late gathered traces into fragments. The fragment cache handles fragment linking and runs

the fragment code on the processor. The memory and syscall-manager handle the sys-

tem specific aspects of memory protection and operating system interaction, respectively.

They are separated from the other modules to ensure as much platform independence as

possible. Lastly, the bootstrapper and dispatcher initialize the other modules and handle

inter-module communication.

This framework is generic enough to encompass all source and target architecture con-

figurations, and separates the components so that they may act like ‘plug-in’ modules.

10

Chapter 3. SIND Design

DispatchInterp

Bootstrap

Transformer
Fragment Cache

Transformer

Memory
Manager

Running
BinaryTrap/Syscall

Manager

Figure 3.1: SIND modules

For instance, because the interpreter accesses memory through the Memory Manager and

accesses OS functionality through the Syscall Manager, the interpreter only has to emu-

late the source architecture and has no dependence on the operating system. This means,

ideally, that an UltraSPARC interpreter would be able to run (without modifying the in-

terpreter source) on both an UltraSPARC and Power4 and would trust the Memory and

Syscall Managers to take care of OS specifics. The intention is to isolate the interpreter

from all but the most large-scale details of the target architecture. Basically, only the endi-

aness and bit-width of the underlying system need to be taken into account (and this, only

because C++ specifies no standards for the size and endianess of data).

The basic operation of the SIND framework is also platform-independent. The pro-

gram to be run under dynamic translation is started by the bootstrapper. The bootstrap-

per assures that all dependencies (libraries and other shared objects) are loaded and halts

execution just before the program starts. Then, control passes to the dispatcher, which

initializes all the remaining SIND modules and starts up the interpreter. The interpreter

11

Chapter 3. SIND Design

dynamically executes the program and gathers profiling information. According to some

internal metric, the interpreter eventually decides that it has encountered an interesting

code segment and gathers the relevant instructions and processor context into a trace. This

trace is then handed (through dispatch) to the transformers. The transformers transform

the trace into a functionally equivalent fragment. The nature of the transformations could

be varied. Traces could be rewritten to be more efficient, but they could also be rewritten

to be more secure, or to generate more fine-grained profiles. When the final transformer

has finished its transformations, the fragment is handed to the fragment cache. The cache’s

primary responsibilities are to guarantee that the running fragment will have transparent

access to all program data, and to simultaneously guarantee that the running fragment will

not modify SIND or break out of SIND. The cache can protect SIND data by selectively

write-protecting the regions of memory that SIND inhabits when the cache is entered and

un-write-protecting the regions when the cache is exited. The cache also needs to check

for system calls that might un-protect the SIND memory regions. It can do this by placing

itself between the executing fragment and the eventual system call, and checking on the

parameters passed in by the fragment. The cache can guarantee that an executing fragment

will be able to access all program data by performing a final rewriting of the fragment in a

process analogous to dynamic linking and loading. From then on, when program control

reaches the address of a fragment, control is passed to the cache, and the fragment then

runs directly on the processor. When control leaves the fragments in the cache, the SIND

interpreter starts up again and continues dynamic program execution.

3.1 Interpreter

The interpreter’s main function is to gather profiling information and code execution

traces. These are passed to transformers, which use the profiling information to guide

specialized transformations of the code traces. Because one of the goals of the SIND sys-

12

Chapter 3. SIND Design

tem is to do runtime binary optimization, it is vital that the interpreter should introduce as

little overhead as possible. As a consequence, the interpreter must be very efficient and

every reasonable effort must be made to improve its speed.

The first interpreter to be fully designed and implemented in SIND emulates the 64-

bit SPARC v9 architecture. The design was motivated by several factors: first, because

SIND runs in non-privileged mode, the interpreter is primarily a non-privileged instruc-

tion interpreter; second, the interpreter only needs to be functionally correct, therefore no

complicated hardware structure needs to be emulated in order to produce accurate simu-

lation. The interpreter’s job is then to replicate a user’s view of the processor and discard

any lower-level structure that interferes with the efficient execution of code.

3.1.1 Registers

The interpreter replicates user-visible registers as an array of 64-bit quantities in memory.

On a 64-bit host machine these are native unsigned 64-bit integers; on 32-bit machines

they are two-element structs. There are several caveats, however. The SPARC archi-

tecture supports register windows for integer registers. This was emulated by allocating a

large array of 64-bit quantities, setting the lowest 8 to be the global registers, and having

a window of 24 registers slide up and down the array as procedure calls are made and

registers are saved and restored. It is important to be able to restore the user stack in order

to be able fully to emulate a system call. It is also important to keep SIND’s own stack

separate from the user stack, because the interpreter runs in the address space of the user

process and so in principle the user process’s stack entries might clobber the interpreter’s

stack. Creating and maintaining two separate stacks is discussed below, but the discussion

of restoring the user stack is in the Syscall Manager section.

Maintaining two separate execution stacks requires a bit of system hacking. The last

valid stack frame is left alone, and its stack pointer (pointer to the top of the frame) is saved

13

Chapter 3. SIND Design

for reference. A new page is allocated for the separate stack, and its topmost address is

recorded. This topmost address is to become the new frame pointer. Then an explicit save

instruction is issued; it creates a new register window, but with the stack pointer pointing

into the new page. Then the frame pointer register can be manually set. From that moment

on, all further calls should write their stack data to the alternate stack page(s). Apart from

protecting the SIND call stack from manipulation by the interpreted program, this also

means that SIND’s stack can be mprotect-ed to safeguard its contents when executing

code directly on the processor (either issuing traps or when in the fragment cache).

The floating point registers on the SPARC consist of three overlapping sets of 32, 64,

and 128-bit floating point registers. There are 32 32-bit, 32 64-bit registers, and 16 128-

bit registers. The 128-bit and 64-bit registers overlap completely (e.g., the first 128-bit

register is the same as the first two 64-bit registers), and the 32-bit registers overlap with

the bottom half of the other two. This was implemented as a contiguous region of memory,

accessed in different ways depending upon the instruction used (some checking had to be

done to make sure no accesses were attempted to non-existent 32-bit registers).

3.1.2 Instructions

Although the SPARC v9 architecture is 64-bit, the instructions are still 32-bit, which al-

lows backward compatibility (consequently, the software interpreter is also capable of run-

ning SPARC v8 code). The SPARC has 30 different instruction formats, grouped together

into 4 major families. However, these formats are all the same length (32 bits) and were

designed to be quickly parsed by hardware. This permits streamlining the fetch and decode

portions of the interpreter. Each instruction format was specified with its own bit-packed

struct, and all such structs were grouped together in a union with a normal unsigned 32-bit

integer. Each format family is distinguished from the others by the two high-order bits of

14

Chapter 3. SIND Design

the instruction.1 Thus the interpreter has jump tables for each instruction format family

(actually three jump tables and one explicit function call), that are keyed by the opcode,

whose position depends upon the format family. A case statement branches on the two

most significant bits to the correct jump table, and then the correct function is called.

3.1.3 Exceptional Conditions

Occasionally during execution, an instruction will cause an error. The SPARC v9 architec-

ture manual clearly defines these exceptions, and, for each instruction, specifies which ex-

ceptions it can raise. Many of the exceptions are caught by the operating system and used

to handle things like page faults and memory errors. Non-recoverable exceptions usually

cause the operating system to send a signal to the executing process. To mimic this, if the

interpreter decides a given instruction would cause an exception (such as divide-by-zero),

then a procedure similar to that used for system calls can be used. The running binary’s

state is restored on the stack, and then the interpreter executes the offending instruction

directly on the processor. This generates the appropriate operating system action (usually,

killing the process).

3.1.4 Signals and Asynchronous I/O

In the Solaris operating system there are really only two ways of communication between

user and supervisor (kernel) code. One, the system call or trap, is discussed in the Syscall

Manager section. The other, signals, had to be dealt with differently. Because the SIND

system is guaranteed to be loaded before all other libraries, its definitions of functions

will take priority (if they’re exported). The SIND interpreter interposes on the signal

1To be precise, Format 3 and Format 4 both can have the values 10 or 11 in their upper bits, but
in SIND Format 3 instructions are instructions with 10 in the upper bits and Format 4 instructions
have 11 in the upper bits.

15

Chapter 3. SIND Design

functions, and registers a special handler for all registrable signals. Thereafter, when the

interpreted program registers a signal, it will go through SIND’s registration system, rather

than the system’s. This means that SIND has to record the signal handlers registered by

the program (in order to execute them when a signal is generated). When the OS sends the

process a signal, it will be first intercepted by SIND, which will need to start interpreting

the handler registered for that signal. In this way a signal cannot cause control to leave the

SIND system.

3.2 Memory Manager

The SIND memory manager provides a generic interface between the process’s address

space and SIND’s (possibly separate) address space. In the non-architecture specific

memory manager, the interface consists of a small number of memory access and mod-

ification functions. To access memory, there are ReadByte, ReadHalf, ReadWord,

ReadDoubleWord, and ReadQuadWord. These functions take an Address argument

(the size of which is determined at compile time), and return the data located at that lo-

cation. The names are meant to convey the size of value returned and follow the modern

RISC convention of a word as a 32-bit value. But this does not mean that somehow the

memory manager interface is only appropriate for RISC machines. To modify memory

there are corresponding Write ... methods.

The interface exists as a separate module to support variations of SIND in which the

interpreter and transformer exist in separate address spaces. In fact, the initial SIND sys-

tem did exist in a separate space and accessed the processes address space using procfs

[9]. For the current incarnation of SIND (which inhabits the process’s address space), the

memory manager just checks the address (to make sure that the program is not modify-

ing SIND), and dereferences it appropriately. The Read and Write methods are also

prefixed with inline directives to further eliminate overhead.

16

Chapter 3. SIND Design

3.3 Syscall Manager

Because SIND sits on top of the kernel and only interprets user-space code, system calls

must be executed directly on the processor to initiate the correct kernel action. SIND

cannot simply execute the trap instruction directly, however the interpreted process’s state

must be reincarnated in the hardware, and then the trap can be issued correctly (returning

into SIND, of course).

To restore the user stack, the original stack top (before control was passed to SIND)

address must be preserved. The simulated stack (in the register windows array), must

then be copied over to the stack area before the system call can be made. However, just

copying the registers is insufficient. Each stack frame may have an arbitrarily large spill

area, and that must also be preserved and copied over for trap emulation. Each time a

save instruction is issued, it is remembered so that the stack offset for each frame can be

properly reconstructed. However, the spilled variables do not have to be remembered. Be-

cause the interpreter is executing in the same address space as the target process, values

written to the spill area will be at the correct location for the stack, so the stack frame and

its corresponding registers just need to be copied around such spilled variables. However,

even this is not enough to completely recreate the user stack. The register window state

must also be replicated in the underlying processor. Basically, this means ‘rolling back’

the current stack to its state when SIND took over and then pushing on all the necessary

frames. When rolling back the stack, it is necessary to save the stack frames as they are

deallocated (because they will need to be restored before normal execution can resume).

In practice, because the two stacks are kept separate, this means mprotect-ing the in-

terpreter’s stack area and issuing the necessary number of restore instructions. When

the stack has been rolled back to its starting position, the simulated register windows need

to be copied to the processor and then explicitly saved to the stack. Although this is also

time-consuming, we get register saving around spilled variables automatically.

17

Chapter 3. SIND Design

3.4 Trace Gathering

The identification and collection of traces happens within the interpreter but can be consid-

ered a separate subsystem. This is possible because the trace identification and gathering

code is completely independent of the rest of the interpreter (but for efficiency reasons

is part of the interpreter object). Identification of traces happens at the instruction level;

an instruction with the potential to be interesting is identified as it is being emulated. On

the side, the trace gathering system maintains a data structure (currently a hash table) that

contains all encountered trace heads. When an interesting instruction is being emulated,

the tracing code checks to see if it has been encountered before, increments its counter if

it has, and inserts a new record if it hasn’t. In the current experimental system, the trace

gathering code looks for branches whose target is behind them (a characteristic signature

of a loop). In order to avoid gathering traces for rarely executed code a certain number of

iterations have to pass before a trace head can be considered hot. Currently, the system

also has a threshold of 15, which means that on the 15th execution of the same potential

trace head the instruction is assumed to be a genuine trace head and trace gathering can

begin in earnest.

A trace is simply a sequence of instructions gathered after encountering a trace head.

There are no restrictions placed on the termination conditions for a trace, however the

current system will stop gathering instructions if a certain numerical limit is reached (cur-

rently 256), or if the trace head is encountered again (indicating that we have completed

one iteration of the loop). Note that these restrictions do not prevent a trace from including

a complete function call (and the corresponding function’s body), so function inlining is

essentially free. A trace is essentially an array of instructions, each of which may have

some annotation (for instance, it might be useful to record whether or not a branch was

taken). A trace also includes an array of registers that contain the machine state when

the trace head was encountered. This information is then passed on to the Dispatcher for

subsequent transformation and insertion into the fragment cache. If these operations com-

18

Chapter 3. SIND Design

plete successfully, the entry in the trace-head data structure is updated, so that next time

the interpreter will jump directly to the fragment cache, rather than interpreting the trace.

3.5 Transformers

A SIND transformer has a simple interface: it accepts a trace and returns a trace. In this

way transformers can not only optimize a particular machine code trace, but can be used

to convert a trace from one machine to another, or to convert a trace from machine-level to

an intermediate form more appropriate for optimization. Input validation is accomplished

by extending the base trace class to a concrete, platform-specific version, and writing the

transformers to use the most specific trace class. Then, if an incorrect type of trace is

handed to a transformer, the type error will be caught during compilation. The proper

sequencing of Transformers is the job of the dispatcher and is described in detail later.

3.6 Fragment Cache

The fragment cache has a simple interface. Apart from constructors, the fragment cache

has only two real methods; the first takes a new trace and inserts it into the cache, and the

second executes a fragment (keyed by the program counter) stored in the cache and returns

the new processor state (for the interpreter). Internally, however, these functions are far

from simple. The fragment cache maintains three sets of data. The first is the fragments

themselves, the second is the fragment prologues, and the third is the fragment epilogues.

The prologues act as guard code to fragment entry. They perform any checks specific

to a fragment. These checks may be dictated by the types of transformations applied (for

instance, constant folded instructions may need to check and make sure the constant hasn’t

been changed). The epilogue serves as the fragment’s only exit point. All possible exit

points (such as branches, calls, and jmps) have their target addresses changed so that

19

Chapter 3. SIND Design

on exit from the fragment code, they jump to the epilogue. The epilogue’s job is then to

clean up after the fragment, capture the processor’s state, and then jump to the fragment

cache’s function to return control to dispatch.

The insertion function (newTrace()) takes a fragment, generates a prologue and

an epilogue, and rewrites crucial instructions to correctly jump to the epilogue. This

function then has a reduced instruction parser that looks for these crucial instructions,

rewriting them as it copies them from the trace into the cache. The execution function

(jumpToCache()) has a simpler job: it jumps directly to the prologue code for the ap-

propriate fragment. After the fragment has finished, jumpToCache() packages up all

the new processor context in a class wrapper (FragExitContext) and returns to the

dispatcher, which updates the interpreter’s state accordingly.

3.7 Bootstrapper and Dispatcher

3.7.1 Bootstrapper

The SIND bootstrapper has the task of correctly halting normal execution, initializing the

SIND modules, and then transferring control to the interpreter. The current incarnation of

SIND for Solaris/SPARC is a preloaded library that loads itself before any other libraries

(excluding ld.so). The bootstrapper runs as the .init function for this preloaded library.

The bootstrapper first initializes the SIND modules in memory, then sets SIND’s signal

handler to handle all handleable signals, and finally overwrites the first two instructions

from the start symbol with a call to the SINDstartup() function. Therefore, when

the bootstrapper initialization function has finished, all signals generated during normal

program execution will be correctly intercepted by SIND and when all the initialization

routines of all the dependencies are done, control will return to the bootstrapper.

20

Chapter 3. SIND Design

The SINDstartup() function’s job is to correctly capture the state of the process

at the start symbol and then jump into the interpreter’s executeLoop() function,

which does the actual interpretation. The process’s state is captured with a bit of SPARC

slight-of-hand. The address of the interpreter’s registers is loaded into a register known to

be zero, and then each register is stored into the interpreter’s register array at the correct

offset. SINDstartup then allocates several pages for SIND’s separate stack, initiates

the new stack with an explicit save, and overwrites the new framepointer (passed through

global registers). Thus SINDstartup forms a buffer between the process and SIND it-

self, but because SINDstartup has no immediate variables of consequence (everything

is stored in the interpreter object), the user process can overwrite its stack frame without

adversely affecting SIND.

3.7.2 Dispatcher

The Dispatcher’s main purpose is to serve as a common interface through which all the

SIND modules can interact. In particular the dispatcher coordinates all the details of trace

processing. The transformers are akin to optimizations in an optimizing compiler and it

is the responsibility of the dispatcher to properly sequence the transformers (as well as

handle any shared data needed by several transformers). This ordering is very specific to

the transformers used, and is an additional detail not necessary to the functioning of either

the interpreter or the fragment cache. Once all the transformers are done, the dispatcher

then hands the annotated machine instructions to the fragment cache. If, for instance, the

transformers operate on a different instruction set (either an intermediate representation

or a foreign architecture), the dispatcher will need to further transform the code to the

architecture that the fragment cache wants.

21

Chapter 4

SIND Implementation

4.1 Overview

SIND is currently implemented in a subset of C++ that is basically C, but with classes

rather than structs. This exploits the convenience of C++’s object-oriented infrastructure,

but avoids the more troublesome aspects of the language, such as templates and iostream.

I/O is done using the traditional C functions, but dynamic memory is allocated with the

new operator. The bulk of the SIND system is implemented as classes (the only excep-

tions being the bootstrapper and the signal handling code). The classes form interface-

implementation pairs, where an implementation inherits from its parent implementation

and implements an interface that inherits from its parent’s interface. Although this is tech-

nically multiple inheritance, only one non-interface class is inherited from so all the com-

plications endemic to C++-style multiple inheritance are avoided. The following figure 4.1

illustrates this relationship in terms of the abstract CPU class and the concrete SPARCCPU

class.

22

Chapter 4. SIND Implementation

CPUCPU_interface

SPARCCPUSPARCCPU_interface

Figure 4.1: CPU inheritance tree

4.2 Interpreter

The SPARC interpreter is implemented in the class SPARCCPU. Internally, the class con-

tains the array of registers needed to implement register windows (as described in subsec-

tion 3.1.1). SPARCCPU also contains representations of all user-visible registers (like the

condition code registers). The only other significant amount of internal data to the inter-

preter are the jump tables for instruction decoding/execution. There are 4 format classes

of instructions in SPARC, and each one is keyed by the 2 high order bits in an instruction

word. Format 1 has only 1 instruction (the call instruction) and so when decoded, the

method implementing call can be called directly. All other formats need further de-

coding. However, SPARC is RISC, so this decoding is very simple. Each format family

has an additional op specifier (for instance Format 2 has an op2 field), and the specific

instruction is keyed by this op field. Therefore the methods implementing instructions are

grouped by format into jump tables, and a switch (on the format number) will then call the

function stored at the op specifiers offset in the appropriate jump table.

All of the instruction implementation methods return an int. Following the standard

C programming style, a return value of 0 indicates success. Non-zero returns indicate

failure. A positive result indicates a SPARC exception (such as divide-by-zero). These

need to be emulated correctly (as described in subsection 3.1.3). Negative return values

indicate a SIND internal error (such as an unimplemented instruction, or strange stack

usage). These will usually cause the interpreter to spit out a error message and exit. The

23

Chapter 4. SIND Implementation

error conditions are defined in the SPARCExceptions.h file.

In general, the implementation of the interpreter was a straightforward if time-consum-

ing task. Certain instructions were non-trivial, however, and a source of constant frustra-

tion. save and restore are two particularly notable members of this category. Their

implementation was complicated by all the array manipulation they had to perform. Off-

by-one errors, or incorrect specification of boundary conditions were a particular problem.

4.3 Bootstrapper

The bootstrapper is perhaps one of the ugliest and strangest pieces of C code I have had

to deal with. The current version is actually the third iteration of bootstrappers for SIND.

It exploits the LD PRELOAD functionality to load itself into the process’s address space,

and overwrites the first two instructions to jump to SIND. Getting this to work involved

a lot of research into the Solaris linking infrastructure [8] [6] [11]. The bootstrapper has

to locate the start symbol, and then overwrite part of its code (which involves some

mucking about with mprotect). The implementation of the bootstrapper was plagued by

all the problems associated with system code. Poor documentation leading to poor code,

strange documentation leading to strange code, and of course, the ever-present threat of

undocumented features. The bootstrapper’s greatest nemesis was in the form of such un-

documented behavior. To locate start the bootstrapper uses the dlsym() function to

find the address. According to the documentation for the dlfcn functions, dlsym()

needs a handle to the loaded object in order to work correctly. Such a handle is provided

by a call to the dlopen function. Normally, dlopen() is used to open dynamic objects

on the fly (as Apache does with its loadable modules), but if handed a NULL rather than

a filename, dlopen() will return a handle to the current object. This is the method rec-

ommended in the documentation, yet when dlsym() was handed this handle it returned

a strangely offset value of start (it was, in fact, always 200 bytes away from the real

24

Chapter 4. SIND Implementation

location). This odd behavior led to numerous errors, and was finally dispelled by consult-

ing independent code examples (that is, code not written especially for the Solaris linkers

guide[11]). This is a problem known to a small group of people on line, and has something

to do with accessing symbols that begin with a “ ”. The solution is to use another form of

dlsym(), and hand it a NULL handle. This will default to the current object.

4.4 Fragment Cache

The fragment cache was another tricky piece of coding. Although the SPARC instruction

set is RISC, control transfer instructions are scattered throughout all the format families,

so the mini-decoder could not be compact. As the instruction trace is stepped through,

each instruction must be checked to see if it can leave the fragment. If it can, its target

address (or the code following it, if not taken) must be adjusted to jump into a part of the

epilogue. This part of the epilogue is then generated which will remember the PC of the

exiting instruction and then transfer control to the state capture/cleanup code. Because the

current fragment cache doesn’t do any fancy internal linking, the code is not particularly

complex, just rife with detail. Needless to say, this code is the resting place of many bit

level errors and other demons of the assembly/machine code world.

25

Chapter 5

Evaluation of SIND

5.1 Performance of SIND

To measure the performance of SIND, several sample programs were run, and their execu-

tion times compared against those when using SIND. The programs in question were the

simple test programs used to debug SIND itself. These programs were used rather than

conventional benchmarks because SIND cannot currently run SPECint to completion.

5.1.1 Speed of Interpretation

The interpreter’s speed was measured by timing the main loop of the executeLoop()

function in the interpreter. The timing was performed using the high-resolution timing

facilities of Solaris. Trace-gathering and fragment caching were both turned off, so the ex-

ecution was completely within the interpreter. Debugging statements were also disabled1.

As the table shows, the emulator introduces a slowdown factor of 150 to 225. This

1Initially, I erroneously gathered data with them enabled first, which allowed me to see that
SIND’s voluminous debugging output causes an additional slowdown of roughly a factor of 20.

26

Chapter 5. Evaluation of SIND

test description slowdown
sind test arithmetic and logic test 140x
sindIO test hello world 210x
sindTimingTest timing calls and I/O 223x

Table 5.1: SIND interpreter slowdown

multiple is consistent with an inspection of the compiled code for the SIND interpreter.

The simple arithmetic functions have little or no branching statements and are between

100 and 150 instructions in length. The more complicated instruction functions, such as

those for branching, are many thousands of instructions long, although most of that code

lies in mutually exclusive branch targets. Inspecting a trace of instructions running from

the initial decoding, through condition code checking, etc., shows instruction counts of

between 200 and 250. Traps are the longest running instruction. The tcc SPARC instruc-

tion has to do all the condition code checking of a normal branch, but control is passed

to the handleTrap() function, which must restore program state to the processor and

execute the trap directly on the hardware. The situation is even worse for a syscall (ta

8), because it must pass through the handleSysCall() function first, which checks

the arguments to make sure that the syscall will not side effect SIND itself. Fortunately,

traps are rare.

Most of the interpreter’s time was spent in the linking code. A program such as hello

world, will require the execution of roughly 19,000 instructions 2. Most of the time is spent

in the linker back-patching the procedure linkage table with dynamic function addresses.

2Specifically, 19177 instructions.

27

Chapter 5. Evaluation of SIND

5.1.2 Speed of Cached Fragments

Because the current system has no translators of note, the fragments in the cache are not

very different from the gathered traces. The branch and jump targets have been rewritten,

but no instructions have been eliminated. As a result, the fragment executes at almost the

same speed as the native code. The prologue only adds 2 instructions (currently), although

future transformers could enlarge this. Although the epilogue is many instructions long, it

is not executed in its entirety. On an exit from a fragment, only two instructions would be

executed. The first instruction is to jump to the fragment cache exit code, and the second

loads the exiting PC value to a memory location (this instruction is in the branch delay

slot). Therefore, the fragment is only 4 instructions longer than the original trace.

5.2 Memory Footprint of SIND

Almost all of SIND’s data is statically allocated before hand or is on the stack. Those data

structures that use dynamic memory have a default constructor that statically allocates a

fixed amount. SIND can be built so that it allocates no dynamic memory. In this case,

SIND occupies 440K of space 3. This footprint will grow, however, as SIND is made

self-contained (as explained in 7.2).

5.3 The Agility of SIND

The current experimental SIND system is capable of running ‘toy’ programs such as

hello world. Current development efforts are focused on getting SIND to execute

the SPECint2000 benchmarks (with the exception of the mtrt benchmark which is multi-

threaded). Because the toy programs generate only a few long running loops, the fragment

3Actually 451568 bytes.

28

Chapter 5. Evaluation of SIND

cache is insufficiently tested by them. Therefore, the bugs in the current system that pre-

vent execution of SPECint are almost certainly in the fragment cache.

29

Chapter 6

SIND: A History

6.1 A Brief History

SIND began its life as a class project in a Java seminar (Spring 2001). Dino Dai Zovi

and I were inspired by the Dynamo paper to try and implement a similar system for the

SPARC. Very shortly we discovered why it took a small team of HP engineers over a year

to construct Dynamo. We began with the ISEM 1 source, but soon ran into two limitations.

First, ISEM only interprets 32-bit SPARC v8 code, and second (and more importantly)

ISEM is a whole system emulator. ISEM emulated both privileged and non-privileged in-

structions, as well as a fully-featured memory subsystem and S-bus-style system bus. This

was too much overhead to deal with, and after a summer of sporadic hacking, I decided

that it would take less time to code an UltraSPARC emulator from scratch than to rip out

the salient parts of ISEM. Also, initially we used ptrace [10] to access the running pro-

cess, and had lifted most of our (poorly understood) bootstrap code from gdb. This led to

a whole stream of difficulties with ld.so and memory protection. By the Christmas of

2001, I had given up on the ISEM ptrace combination and started coding the SPARC v9

1The Instructional SPARC EMulator, a 32-bit SPARC v8 emulator written by Barney Maccabe

30

Chapter 6. SIND: A History

interpreter. Dino Dai Zovi elected to start a PowerPC interpreter, but because of conflicts

with work, school, and other research obligations could only make infrequent and minor

contributions to SIND.

By the following summer I was the only developer working on SIND, and was mostly

finished with the core interpreter. By the fall, the interpreter was sufficiently complete to

warrant construction of a new bootstrapper. This lead to several branches of experimenta-

tion. Initially, I attempted to use the Solaris procfs facilities, but this proved to be overly

complex and fraught with peril. I then decided that in the interest of both efficiency and

ease of coding, I would locate SIND in the same address space as the running program.

There were several implementation options: I could modify a system program (such as

ld.so or libcrt.o) to automatically load SIND whenever a program was loaded; or

I could use the LD PRELOAD trick to cause SIND to be loaded as a shared object. The

former option had the disadvantage of making SIND difficult to install and maintain (after

all, I would have had to keep up with the latest release of whatever system program I mod-

ified), and the latter option had the disadvantage that my code would have to be massaged

into position-independent library code. The latter option was more general and ultimately

easier however, and so, compelled by my innate laziness, I made SIND a preloadable

library.

The bootstrapper itself was the scene of some vicious entanglements with the So-

laris Operating Environment[6]. I initially caused execution to return to SIND code by

mprotect-ing the start symbol’s page to non-executable. Thus, when control finally

transferred to the target program, a segfault would be triggered and intercepted by my

handy bootstrapper cum signal handler. This had the disadvantage of being inexact and

limited by the restrictions on actions inside signal handlers. This approach was abandoned

by Spring of 2003, and replaced with the current bootstrapping system. The new sys-

tem is exact and considerably more complete than that which it replaced. The spring also

saw the stabilization of the interpreter, the beginnings of a trace-gathering system, and the

31

Chapter 6. SIND: A History

introduction of the Syscall Manager.

6.2 Experiences from the Design and Implementation of

SIND

The design of the interpreter itself presented several challenges. There are two main op-

tions for an instruction set interpreter. It can be a full-fledged software interpreter, emu-

lating the source instructions in software, or, if we are planning on running it on the same

architecture as the instructions, we can do a ‘cut-and-paste’ interpreter. The cut-and-paste

solution (otherwise known as a basic block cache) works by copying each instruction en-

countered to an area in memory, remembering to rewrite control-transfer instructions to

jump to the correct new locations and then executing these copied instructions directly on

the processor. This is a very lightweight interpretation system, and because it requires a

decoder only capable of distinguishing control transfer instructions from the rest, it is the

preferred solution on x86 platforms (systems such as Valgrind [12] and DynamoRIO [2]).

However, such cut-and-paste systems have one major disadvantage. They can only be run

on the platform whose instructions they are interpreting. This presented a disadvantage for

our work, because we not only wanted to explore dynamic optimization, but also foreign

binary execution (a lá FX
�
32 [3]). If we wanted to run this interpreter on another platform,

it would have to be a full-fledged instruction set emulator.

The core interpreter itself is not complicated: emulating a compact RISC machine is

not too difficult. Most of the effort went into the bootstrapper and system call subsystems.

The bootstrapper itself has gone through many permutations. In the end, there were two

major options. Either the interpreter starts itself up in the library initialization routine, or

it causes control to transfer from the target binary’s start symbol into the interpreter.

The problem with the first option is that it halts the loading process halfway through.

32

Chapter 6. SIND: A History

Normally the binary and all its dependencies are loaded and then, in the loading order,

all the dependencies have their initialization routines called. If SIND were to take over

in its initialization routine, then it would have to act like the loader and finish process

loading. The second option, though it appeared to be more complicated, actually turned

out to be the easier route. In SIND’s initialization routine, the bootstrapper mprotects

the loaded .text segment to allow writes. The first two words/instructions after start

are saved to a reserve area, and then are overwritten with an explicit call instruction into

the interpreter’s code. This means that SIND will only be started after the loader has

finished. This system is imperfect, however. If any loaded library prevents control from

transferring to the start symbol (such as, for instance, by never exiting the initialization

routine), then SIND will never be entered. This is not a big problem, however; because

the SIND bootstrapper can easily be replaced without affecting the interpreter, a more

thorough system can be developed and inserted without difficulty.

The syscall subsystem was discussed thoroughly in the design section above and took

time to develop simply because of its complexity (almost all owing to the use of register

windows). Development on the whole system was hampered by several tool deficiencies.

The debugger we were using (gdb) has only limited support for 64-bit objects, and this

severely hampered diagnosis. The debugger was also of limited use because we were not,

in fact, debugging the running program: we were debugging a library that was loaded

with the Unix LD PRELOAD facility. Trying to use gdb’s built-in facilities turned out to be

more trouble than it was worth. The best method we discovered was to compile SIND with

debugging on (and explicit stabs support), and cause an intentional segfault (by derefer-

encing NULL) near the suspect method. We could then load the core into gdb, and it would

often give us enough information to help with debugging. When we needed more control,

we inserted an asm block with an explicit debugger trap (ta 5 on Solaris/SPARC).

Debugging, in fact, has proved to be the most complicated part of developing SIND. In

an effort to make debugging easier I developed two tools. Both were actually modifications

33

Chapter 6. SIND: A History

to SIND in order to capture state correctly. The first was the driver. This was a program

that stood between SIND and the running program and hand-fed SIND an instruction at

a time. This was useful for debugging individual instructions in the interpreter, but not

at all useful for dealing with all the strange interactions possible when SIND was in the

process’s address space. When debugging SIND in the process’s address space, simply

dereferencing NULL to cause a segfault was insufficient. gdb would not correctly load

the preloaded library and so certain things (like %sp and the PLT) would be different than

when the program crashed. In order to get a clear picture of memory at the point of interest,

a ‘BOGUS’ flag was added to the SIND build process. When compiled with BOGUS, the

SIND binary would insert itself into the running program’s address space, and trigger a

transfer of control at start. However, control would not enter the interpreter, instead

the overwritten instructions would be replaced and the PC of interest would be overwritten

with a jmp to the BOGUS function that would print out the relevant parts of memory and

then quit. These values would be those computed by the binary on the processor itself,

and could then be compared against the voluminous debugging output of the normal (that

is, not BOGUS) SIND.

The GCC compiler itself introduced problems. We were originally using the gcc 2.95

compiler collection which had somewhat buggy 64-bit support. The biggest problems

were with C++ name mangling. In older versions of gcc, symbols defined in .c files or

header files whose implementations were in .c files used normal C linking. That is, a

function defined as void foo() was exported as the symbol foo. In gcc3 and up,

anything touched by a C++ file was made to use C++ linking. C++ linking involves a

technique known as name-mangling, whereby the symbol name has characters appended

or prepended to it that the system uses to extract type information. Therefore a function

foo in a class bar gets mangled to something like ZNKbar1fooEv. This meant that

many of the function interpositions we had created were no longer working when we

upgraded to gcc 3.2 because their symbolic names were mangled beyond recognition. The

way around this was to devise macros to enclose C-style definitions in a way that tells the

34

Chapter 6. SIND: A History

C++ compiler to leave them alone.

The GCC compiler also caused problems with register usage. On Solaris/SPARC sys-

tems, a shared object cannot write to the %g2 or %g3 registers (which are dedicated to

passing values to syscalls). With gcc it is simple enough to specify not to use either global

register; however, it is not possible to tell it to only avoid writes to those registers. This

means that any code we have that explicitly copies values from %g2 or %g3 has to be

compiled separately and then linked in later, which is cumbersome. On a load-store ar-

chitecture, it should be trivial for an assembler to determine whether an expression that

references a register is writing to it or just reading it!

35

Chapter 7

Using SIND

7.1 Invoking SIND

Because SIND is force-loaded into the running binary’s address space, SIND must be a dy-

namic object. When SIND is finished building, there will be a file named libsind.so in

the directory. To use this, a shell script is provided (run sind). This will set LD PRELOAD

correctly and invoke the supplied binary. For example to run the hello world program, one

would simply type ‘run sind hello world’. There are some caveats, however. Be-

cause SIND uses LD PRELOAD, there are some restrictions. To prevent an attacker from

installing a malicious library in their home directory and causing everyone to interpose

with their dangerous code, Solaris (and other ELF OSs) requires that any setuid program

can only load LD PRELOADed libraries from certain ‘safe’ areas. Under Solaris this can

be configured using the crle program.

36

Chapter 7. Using SIND

7.2 Extending SIND

The current experimental SIND system is not functional enough to be of much use to the

average user, but because of its progressive open source licensing, SIND can be readily

extended by needy coders. At the moment SIND will only work on 64-bit Solaris/SPARC

system. An effort has been made to make the system capable of running on a 32-bit

platform, but that code has not been tested and is certain to contain numerous bugs. SIND

has also not been rendered self-contained, which is to say that I/O functions and memory

management have not been replaced with local, specialized functions. For programs that

‘play nice’ this isn’t a big problem. But for any advanced application (that may define

its own new operator, for instance) SIND may fail horribly. Therefore SIND’s I/O and

memory needs must be met within SIND. This should not be a particularly difficult task,

however. Many of SIND’s data structures are fixed size and so dynamic memory is rarely

used. In addition, when debugging is disabled, SIND performs no file I/O, and contains

only a few print statements. The current SIND system also has no real threading or multi-

process support. Although when a new process is created (with fork()), SIND should

be copied along, this hasn’t been tested.

For an overview of what functionality is in which files, please consult appendix A.

That appendix also contains details on building SIND.

7.2.1 System-Dependent Code

In SIND terms, the system dependent code is that code that is either OS specific, or ar-

chitecture specific. Basically, that means any code which depends upon low level system

behavior, or has inlined assembly code (for state capture, for instance). In the current

version of SIND, the bootstrapper and the trap handling code (SPARCTrap.cc) are de-

pendent upon both the processor and operating system. The fragment cache is depen-

37

Chapter 7. Using SIND

dent upon the processor (it processes SPARC code), and the signal handling code (sig-

nal handling.c) needs a system with support for POSIX signals (it handles both signal

and sigaction).

7.2.2 System-Independent Code

The rest of the SIND code is intended to be platform independent (insofar as C or C++

can be). The interpreter (SPARCCPU.cc) is meant to run on both 64- and 32-bit systems

(by emulating a 64-bit datum with a class). SPARCMMU is only dependent upon SIND

running in the same address space as the target process. Much of the rest of the code

is supporting classes for the interpreter (SPARCInstruction, etc) or data structure

classes (AddressHash, etc), and is not specific to any platform. To avoid the annoying

unknown bit-width of int problem, all the code that needs to specify a given bit width

uses the POSIX typing standard (i.e. uint32 t for a 32-bit unsigned int).

38

Appendix A

Technical Details

This appendix describes the nitty-gritty details necessary to take the current SIND code

base and build it, or (hopefully) extend or debug it.

A.1 Source Layout and Directory Organization

The base directory contains all the standard GNU files, as well as an out of date config-

uration script. The doc directory contains documents related to SIND, in particular this

thesis and the technical reports written about it. All the code is located in the src di-

rectory. All of the base classes are in src the class definitions are in include and the

implementation files are in src. src also includes a simple makefile for building these

classes. Off of this directory are directories for each architecture. Currently there are only

two PowerPC and SPARC. PowerPC contains Dino Dai Zovi’s beginnings of a PowerPC

interpreter, and SPARC contains all of my SPARC and Solaris specific code. The architec-

ture directories are organized similar to the base class directory, class definitions and other

header files are in include, and the implementations as well as the Makefile are in the

SPARC directory.

39

Appendix A. Technical Details

A.2 Where Functionality Resides

In order to get a good handle on the code base it is necessary to create a mapping between

the modules described in the design section and the actual files in the directories.

Include Files

AddressHash.h definition of the AddrHash data structure
bootstrap.h function prototypes for bootstrapping
driver.h definition for driver program
signal handling.h prototypes of internal signal handling functions
signal stuff.h prototypes of superposed signal functions
SPARCCPU.h definition of the SPARCCPU (interpreter) class
SPARCDispatch.h definition of the SPARCDispatch class
SPARCExceptions.h definitions of error conditions in the interpreter
SPARCFPU.h definition of the floating point unit
SPARCFragCache.h definition of the SPARCFragCache class
SPARCInstruction.h the SPARC instruction class
SPARCInstrFmt.h a wrapper for a 32-bit integer to readily

parse it as an instruction
SPARCMMU.h definition of the SPARC MMU class
SPARCRegisters.h definition of registers

(both general purpose and special)
SPARCTrace.h definition of the data structure used to hold traces
SPARCTransformer.h interface class for transformers
SPARCTrap.h definition of trap handling functions

(for syscall manager)

Table A.1: Include files to modules

40

Appendix A. Technical Details

Files and Modules

Module File(s)
Bootstrap bootstrap.h, bootstrap.c
Interpreter SPARCCPU.*, SPARCExceptions.h,

SPARCFPU.*,SPARCInstrFmt.h,
SPARCInstruction.h, SPARCRegisters.h

Trap/Syscall Manger SPARCTrap.*
Dispatch SPARCDispatch.*
Transformer anything implementing SPARCTransformer
Memory Manager SPARCMMU.*
Fragment Cache SPARCFragCache.*

Table A.2: modules’ source files

A.3 Compilation and Architecture Support

A.3.1 Makefiles

Compilation is currently managed by a set of Makefiles. Each directory that has com-

pilable source will have its own Makefile. The main one for the experimental system is

the Makefile in the SPARC directory. This Makefile follows the convention of having the

all and clean targets. all will build everything (including files in parent directories)

and link it together to create the SIND shared object. After building there should be a file

named libsind.so in the directory. This is SIND.

A.3.2 Compilation Flags

There are several compilation flags that guide the preprocessing of the SIND source. The

first is SIND ARCH64. If this is defined, then it is assumed that the SIND code is running

on a 64-bit machine and so can use native 64-bit integers. If this is not defined, then

41

Appendix A. Technical Details

emulation of 64-bit wide data is done through a class (DoubleWord) using overloaded

operators. The second flag is DEBUG; if this is defined, scores of debugging statements

will be compiled into SIND. This generates voluminous output, and should only be used

for debugging. If not defined, SIND’s printouts will be limited to a few lines of text

when starting up. Also, this means that any extensions made to SIND should respect

this convention and enclose debugging statements in #ifdef DEBUG conditionals. The

next flag of note is TRACING, if defined the interpreter will be compiled with tracing

support, otherwise all code will be executed in the interpreter. This flag was introduced to

allow me to debug interpreter errors even after I had implemented a tracing infrastructure.

Another notable flag is TIMING; if defined, then SIND will time itself and print out the

results. Currently, timing code exists only in the interpreter, and this times the execution

in the main interpreter loop (executeLoop()). Lastly, there’s the BOGUS flag, this

flag should only be set if compiling a BOGUS version of SIND. The bogus version is

used to get a highly accurate snapshot of the machine state for debugging purposes and is

discussed in more detail in section 6.2.

A.3.3 Supported Architectures

All the platform independent code should work on any 64-bit platform, and includes

enough infrastructure that it could readily be made to work on any 32-bit platform. All the

platform dependent code will only work on an UltraSPARC running Solaris2.x and up.

42

References

[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent
dynamic optimization system. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 1–12, 2000.

[2] Derek Bruening and Saman Amarasinghe. The DynamoRIO Collaboration.
http://www.cag.lcs.mit.edu/dynamorio/.

[3] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. Yadavalli, and
J. Yates. FX!32 a profile-directed binary translator, 1998.

[4] Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zang. Automatic detection and prevention of
buffer-overflow attacks. 7th USENIX Security Symposium, 1998.

[5] Kemal Ebcioğlu and Erik R. Altman. DAISY: Dynamic compilation for 100% archi-
tectural compatibility. In ISCA, pages 26–37, 1997.

[6] Richard McDougall Jim Mauro. Solaris Internals: Core Kernel Architecture. Pren-
tice Hall PTR, first edition, 5 October 2000.

[7] A. Klaiber. The technology behind Crusoe processors, 2000.

[8] John R. Levine. Linkers and Loaders. Morgan Kaufmann, first edition, 15 January
2000.

[9] Sun Microsystems. proc - /proc, the process file system. In SunOS 5.8 Manual,
chapter 4.

[10] Sun Microsystems. ptrace - allows a parent process to control the execution of a child
process. In SunOS 5.8 Manual, chapter 2.

[11] Sun Microsystems. Solaris linker and libraries guide. Online PDF manual, Part
Number 816-0559-10.

43

References

[12] Julian Seward and Nick Nethercote. Valgrind, an open-source memory debugger for
x86-linux. http://developer.kde.org/ sewardj.

44

