Shape Analysis with Reference Set Relations

Mark Marrort, Rupak Majumdaf, Darko Stefanovi¢, and Deepak Kapgr

1IMDEA-Software,mark.marron@software.imdea.org
2University of California Los Angelesupak@cs.ucla.edu
3Universi’[y of New Mexico{darko, kapur }@cs.unm.edu

Abstract. Tracking subset relations between the contents contaimettse heap

is fundamental to modeling the semantics of many commonraming idioms
such as applying a function to a subset of objects and maintamultiple views

of the same set of objects. We introduce a relationst reference setsvhich
subsumes the concept wiust-aliasingand enables existing shape analysis tech-
niques to efficiently and accurately model many types of@ionmtent properties
without the use of explicit quantification or specializeditrs for containers/sets.
We extend an existing shape analysis to model the concepterénce setdRef-
erence sets allow the analysis to efficiently track a numbanportant relations
(must=, andmustC) between objects that are the targets of sets of references
(variables or pointers). We show that shape analysis augaenith reference
set information is able to precisely model sharing for a eaofjdata structures

in real programs that cannot be expressed using simple atiastinformation.

In contrast to more expressive proposals based on logiaiéayes (e.g., exten-
sions of first-order predicate logic with transitive closar the use of a decision
procedure for sets), reference sets can be efficientlyedhtka shape analyzer.

1 Introduction

Precise reasoning about the structure of the program heapdgal to understanding
the behavior of a given program, particularly for objedeated languages. Traditional
points-toanalyses, which calculate sharing properties based ose&aggregations of
the heap (for example by coalescing all cells from the saioeation site and ignoring
program flow [15]), are known to be too imprecise for many ayaions. More precise
shape analysitechniques[1,5,6,9,13,16-19] have been proposed wheaacourate
information is desired. These analyses recover precigenmgtion by distinguishing
heap cells based on additional reachability, allocatite sir type information. Using
this additional information, these analyses can precissbglel recursive data struc-
tures [5, 19] and composite structures [1, 6, 18].

Most work on shape analysis has focused on existemtial)(sharing properties
(and by negation, separation properties) of pointers dabbrs—the fundamental ques-
tion asked of the abstract heap representations is whetbeatistract referencesay
represent pointers thatias each other. While this is often enough to prove many so-
phisticated properties of data structures that have laratmounts of sharing or where
the sharing is simple (e.qg., variable aliasing), the remgpbecomes overly restrictive
(and imprecise) for more complex subset relationships ansets of shared objects.
Such relationships arise in programs that use multiple viefsthe same collection of

01 Vector V =new Vector (); 05 for(int i = 0; i < A.length; ++i) {

02 Data[] A = new Data[N]; 06 Data d = A[i];
03 for(int i = 0; i < N; ++i) 07 if (d.f > 0) V.add(d);
04 A[i] = new Data(abs(randlint())); 08 }

09 for(int i = 0; i < V.size(); ++i) {

10 Data d = V.get(i);

11 d.f = 0;

12 }

Fig. 1. Initialize array (lines 3-4), Filter values (lines 5-7),cadpdatef fields (lines 9-11)

objects (for efficiency, a class might keep the same set afobbjin aVectorand in
a Hashtablg or when performing updates on a set of shared elements-(fip and
subset-remove loops, where a sub-collection is first coetpthten operated on).

We introducereference setelations that track set relationsigst=, andmustC)
between the targets of sets of variables/pointers in theret&program. Thusyust ref-
erence seinformation is stronger than, and subsunmasst-aliasingwhich only tracks
must= between pairs of variables/pointers). We show that whexistirey shape anal-
ysis is extended with two simple relations to track the mostmonly occurring refer-
ence set relations it can efficiently and precisely modelynsnaring properties in the
program, and also model how these properties affect thevimetad the program.

Sharing relations between sets of objects, including eefeg set relations, can be
modeled by extending the analysis with a theory for sets [&]yoquantification with
a “forall-exists” quantifier structure (i.e., for all objscpointed to by a reference in
arrayA, does there exist a reference in arBagointing to the same object?). However,
the introduction of additional theories or using more gahlagics (with quantification
and disjunction) makes reasoning computationally expensistead, as demonstrated
in this paper, many sharing properties can be efficientigkigd on top of an existing
shape analysis with enough accuracy to prove many impastening relationships.

2 Example and Motivation

Consider the three loops in Figure 1: array initializatifitbering elements into a sub-
collection, and updating the contents of the sub-collectier simplicity the example
uses a dummy cla$3ata with a single integer field .

The first code fragment allocates an arfegnd then fills it withData objects with
random non-negative values stored in thefields. The second loop scans the array for
elements that have strictly positive values in théelds and constructs a new vector
V of these elements. The third loop sets thield of every element in the vectdfto
zero. If these loops are analyzed using one of the existiagesanalysis that can model
collections, such as [12], we get the abstract heap graplrsimoFigure 2(a) at the end
of the second loop. In this figure we have simplified the edud#nabels to focus on the
concept of howmustsharing relations between sets of objects can be used ts@sec
model the behavior of a program.

The simplified model shows the variabdereferring to a node with ai tag of 1
(a unique identifier given to each node/edge to simplify tiseuksions of the figures)
which abstracts an object of tyfata[] . There may be many pointers stored in this

1L, Al [3, V]

[1, Datal]] [3, Vector]

2.7

2, Data, f:0

4,7 Y [5,7
4, Data, f:+

@)

Fig. 2. Abstract model and two possible concrete heaps.

array (these pointers are abstracted by the edges witd'th2, 4); since these pointers
are stored in an array we give them the special stoddfget? (indicating that they
are stored at an indeterminate index in the array/contpifi@e two outgoing edges
indicate that the pointers stored in the array may eitharref objects abstracted by
node 2 or to objects abstracted by node 4. The notétion f:+ , andf:0+ indicates
the values of the integer fields using a simpign domain [4], wherd:0 in node 2
indicates that all the objects that are abstracted by thie tave the value 0 stored in
thef field while thef:+ entry in node 4 indicates that all the objects abstractetaty t
node have values in the ranffe) in theirf fields (andf:0+ , used later, indicates f
values in the rangf®, «)). Figure 2(a) also shows the variabevhich has an edge to a
node abstracting ¥lector object. The pointers stored in this vector are abstracted by
edge 5 and they refer to objects abstracted by node 4.

Based on this information both of the concrete heaps showigimre 2(b) and 2(c)
are consistent with this model (i.e., they are valid conzations). In Figure 2(b) we
see that arrayA contains thre®ata objects (some of which have 0 field values and
some of which have positive values), the first and third ofolkdre also stored in the
Vector V (which only contains objects with positive values). Thisapés clearly a
possible result of the construction and filter loops in ouaregle. If we look at the
concrete heap shown in Figure 2(c) it is apparent that thognam state is infeasible
since the contents of are not a subset ok and there is @ata object inA with a
positive field value that is not iN. However, this concrete heap is consistent with the
information provided by the abstract graph model, as thetfet edges 4 and 5 end
at the same nodenly means that thermayexist an object that is referred to by both
a pointer abstracted by edge 4 and a pointer abstracted l&y®dg particular, the
abstraction is too weak to prove that at the end of the thig levery element iA has
the value zero in thé field.

Thus, in order to precisely represent the desimagstsharing relations between
various sets of pointers stored in the array and vector we toeextend the graph model
with additional information. The analysis presented irs thaper extends a standard
shape analysis by tracking tweference set equivalencelations on the heap. The first
relation is on pairs of abstract edges, which tracks paiedges such that the sets of
references abstracted by the two edgesstalways refer to exactly the same set of
objects. The second relation is on edges and nodes, and gdgles that abstract a set
of references such that all of the objects abstracted by a apglpointed to by one of
the references in the set.

EdgeEQ={(4, 5)}
[1, Al [EAY]

(1 Datap, (1)) (3, Vector, (13)

[5,7]
4, Data, f:+, ({4}, {5})

Fig. 3. Abstract Graph With Reference Set Information

These reference set properties allow the analysis to gigceisodel the result of the
construction and filter loops in our example. The model enbdnvith the reference set
properties is shown in Figure 3. We have made two additiottetmodel in Figure 2(a).
First, theEdgeEQrelation tracks which edges abstract references that alwefgr to
the same sets of objects. Second, for each node we add adistsodf edges such that
every object abstracted by the node is referred to by a mfereepresented by one of
the edges in the set. Intuitively, these additional reteitell us that the set of objects
referred to by references abstracted by edge 4 is equal setlud objects referred to by
references abstracted by edge 5. This information and thetste of the graph imply
that every object stored in the vecmustalso be stored iA and also that if an object
is stored inA it must be either abstracted by node 5 (and have the valugé€dsitothe
f field) or by node 4 (and be stored V) which as desired, excludes the concrete heap
in Figure 2(c) from the set of feasible concretizations).

This last property then allows us to precisely model thedthdop in the running
example. In particular we know that since every objecAiwith a non-zerd field is
stored inV we can infer that if every object il has thef field set to 0 then after the
loop every object irA will have 0 in thef field.

3 Concrete and Abstract Heaps

3.1 Concrete Heap and Reference Set Relations

The semantics of memory are defined in the usual way, usiegaronmentmapping
variables into values, andstiore mapping addresses into values. We refer to the envi-
ronment and the store together as the concrete heap, whieprissented as a labeled,
directed multi-grapltV, O, R) whereV is a set olvariables O is a set ofobjectson the
heap, anR C (VUO) x O x L a set ofreferenceswhereL is the set of storage location
identifiers (a variable name in the environment, a field idienfor references stored in
objects, or an integer offset for references stored in afcajlections).

A regionof memoryl = (C,P,Rin, Rout) consists of a subsé&t C O of the objects
on the heap, all the referend@s= {(a,b,p) € R|a,b € CA p € L} that connect these
objects, the references that enter the re@lgr= {(a,b,r) e R|ac (VUO)\CAbeCA
r € L}, and references exiting the regiBs,:= {(a,b,r) e Rlac CAbe O\CAr €L}.
Note thatl is determined b, and we say a region is induced bya setC of objects.

Given a regiori] = (C,P,Rin,Rout) @and a set of referencé® C Ry, we define the
function:Targe{Rs) = {o€C|Jac (VUO),r L s.t.(a,0,r) € Rs}.

Definition 1 (Reference Set Relations)Given a regiori]l = (C,P, Ry, Rout), reference
sets BRC Rp and R, C Ry, we define the following relations:

Reference ContainsR; < Rs if TargetR,) C TargefRs).
Reference Equivalent R, ~ Rs if TargetR,) = TargefRs).
Region CoversRs > O if C C TargetRs).

Aliasing of two references, y in the concrete heap is equivalent to the reference
set relation{x} ~ {y}, thus theconcrete reference set relatiosabsume the standard
notion of aliasing.

3.2 Abstract Graphs

Our abstract domain is based on #terage shape grapf2, 3] approach. Let. be a
set of abstract storageffsets(variable names, field offsets, or special offsets for ref-
erences stored in arrays/collections) which are relatebletstorage locatioris by an
abstraction functiomofset : L — L. A storage shape graph (sstp)a tuple of the form
(V,N,E), whereV is a set of nodes representing the varlamess a set of nodes (each
of which intuitively abstracts a regidn of the heap), ané C (V U N) x N x L are the
graph edges, each of which intuitively abstracts a set efegices.

Definition 2 (Valid Concretization of a ssg). A given concrete heap+ (V,O,R) is
a valid concretizatiorof a labeled storage shape gragh= (V N,E U) if there are
functionsr, :V —V, My : O— N, I, : R— E such that7, is 1-1, and
— forall (01,02, p) € Rwith 0,02 € O, if 1 (01,02, p) = (N1,Ny,1), thenn = My(01),
Nz = My(02), and 1= Oofrsed P)-
— forall (v,0,v) € RwithveV and o€ O, if I1;(v,0,v) = (ny,ny, 1), then n = My(v),
ny = lp(0), and I=v.

We say(Iy, o, ;) witnessthat h is a valid concretization of g. We introduce the
following notation for pre-images of nodes and edges of gn ss

— We write h|g e for the sefr € R| I1;(r) = e} of references in the concrete heap h
that are in the pre-image of e E underfT;.
— We write h| 4 n for the concrete regiofl induced by the segto € O| M1,(0) = n}.

In our analysis, we extend ssg'’s with a set of additionarumsentation predicates
that restrict the set of valid concretizations of an ssg.lULatenote a set of relations
(calledinstrumentation predicat¢®n concrete objects and references, andlete-
note instrumentation relations on the nodes and edges aftamithu: U — Uai-1
map between them. labeled storage shape graphs (Issgn tuple(V N,E U) where
(V N,E) is a ssg antl is a set of relations ové¥ andE. In the foIIowmg we refer to
Issg’s simply asabstract graphsA concrete heap is a valid concretization of an Issg
(V,N,E,U) if his a valid concretization of the s$y/,N E) through the function§ly,
Mo, I'Ir, and additionally, for each € U, nodesn,...,nx €N, and edges;,...,q € E,
if (N1,...,Ng€1,...,6) € pholds, then each tuple if(01,...,0¢,r1,...,0) |0 €h g
ni,i € {17...,k}7r,- ehlge,je{l,... 1} isinu(p).

For example, in Section 2 we introduced two instrumentati&lationstype and
sign Formally, for a sef{1y,..., 7} of object types, we add an instrumentation re-
lation Type [{11,...,Tc}] € N to U corresponding to the relatioho.typeof (o) €
{11,..., Tk} on objects, and require that for eacke Type [{11,...,Tk}] we have that
each objecb € h |4 n satisfiestypeof (0) € {11,...,7}. Thesignrelation can be
similarly defined.

4 Instrumentation Predicates

4.1 Abstract Reference Sets

We introduce two instrumentation relations that allow usack many useful properties
of the heapabstract edge equivalencehich relates two abstract edges, aibtract
node coveragenhich relates a set of abstract edges to an abstract node.

Abstract Edge Equivalence Given two edges, € € E, we sayeis edge equivalertb
€, writtene<¢, iff every valid concretizatioih of the abstract grappmust satisfy
(hlge)~ (hlg€). . .

Abstract Node CoverageGiven a set of edgds; C E and an abstract nodec N we
sayE; node covers nwritten E¢5n, iff every valid concretizatiom of the abstract
graphg must satisfyJ{h |g € | € € Ec} > (h [g n).

Proposition 1. GivenIssg g= (V,N,E,U), a valid concretization h of g,,n’ € N, and
e € cE.

1. If{e}nand h|ge=0thenh|gn=0and h|g€ = 0 for all & ending at n.

2. Ifetéd andh|ge=0thenh|y€ =0.

3. If {e}tn and{€'}5n then &¢.

4. If Ecbn, Es C {es| esends at fy thenJ{h |ges|es € Es} < U{h |gec| & € Ec}.

Given the definition foabstract edge equivalenae can express the standard con-
cept of must-aliasingof edgese; ande, as a special case of tlabstract edge equiv-
alence relation e; ande, must aliasiff e;, e, each represent a single reference and
e1~e.

We restricted the definition of thabstract referenceelations to equivalence of
edges plus a special relation on nodes. This allows us tk thecmost common occur-
rences of reference equivalence (the edgelation) and subset relations (theelation
and Proposition 1). We could define a more general relatiber@/subset relations be-
tween sets of edges are tracked. However, this formulaéquires tracking a binary
relation on the power set &, which is undesirable from a computational standpoint.

4.2 Additional Instrumentation Predicates

In addition to tracking type properties of the nodes, anattigee/node abstract reference
set relations defined above, the nodes and edges of stormgjesgare augmented with
the following instrumentation relations introduced inyiceis work [11].

Linearity. Thelinearity relation is used to track the maximum number of objects in the
region abstracted by a given node or the maximum number efertes abstracted by
a given edge. Thknearity property has two values: 1, indicating a cardinality@®fl],

or w, indicating any cardinality in the rang@, o).

Connectivity and Interference. We use two instrumentation relations to track the po-
tential that two references can reach the same heap objiwt nregion that a particular
node represents. For this paper we use simplified versiahseder the reader to [11]
for a more extensive description of these relations.

Given a concrete regidi = (C, PRy, Rout) and we say objects o' € C, arerelated
in O if they are in the samaeakly-connectédcomponent of the grapit, P).

To track the possibility that two incoming edge® to the noden abstract refer-
ences that reactelatedobjects in the region abstracted byve introduce theonnec-
tivity relation. We say, € areconnecteavith respect ta if theremay3(a,0,r) € (h |4
e),(@,d,r') e (h]g€)s.t.o,0 e (h|gn) A (o, 0 arerelated. Otherwise we say the
edges areélisjoint

To track the possibility that a single incoming edgt the noden abstracts mul-
tiple references that reach the same object in the regiomaaisd byn we intro-
duce theinterfererelation. An edge representinterfering pointers {p) if there may
J(a,0,r),(&,0d,r") e (h|ge) s.it.(a,0,r) # (&,0,r') A (0, 0 arerelated). Otherwise
we say the edge representsradn-interferingpointers Qp).

Pictorial Representation.We represent abstract graphs pictorially as labeled, @idec
multi-graphs. Each node in the graph either representd@arefthe heap or a variable.
The variable nodes are labeled with the variable that thesesent. The nodes repre-
senting the regions are represented as a refidrdype scalar linearity
nodeCover] that tracks the instrumentation relations for the objepes/type, the
simple scalar domairs€alar), the number of objects represented by the néidedrity,
omitted when it is the default value 1), and the edge setscntr the nodenode-
Coven.

Each edge contains a record that tracks additional infaomatbout the edge.
The edges in the figures are represented as reciddoffset linearity
interfere connto }. Theoffsetcomponent indicates the offsets (abstract storage
location) of the references that are abstracted by the &dgenumber of references
that this edge may represent is tracked with lthearity relation. Theinterfererela-
tion tracks the possibility that the edge represents ratergthat interfere. Finally, we
have a fieldconntowhich is a list of all the other edges/variables that the adgg be
connected to according to tikennectedelation. Again to simplify the figures we omit
fields that are the default domain valli@éarity = 1, interfere= np, connto= 0).

Finally, we use a global equivalence relation on the edgastwitacks the abstract
edge equivalence relationsdgeEQin the figures).

5 Abstract Operations

We now define the most important and interesting dataflovsfeaifiunctions for the ab-
stract graph domain, including how the reference set mglatare updated. The domain
operations arsafeapproximations of the concrete program operations. Forityrere
omit proofs of these safety properties (which rely on singalse-wise reasoning about
the graph structure and the instrumentation relations).tli@se algorithms we also
assume that all the variables have unique targets (in peathis is done by creating
one new abstract graph for each possible variable targetenih each new graph the
variable of interest has a unique target).

1 Two objects are weakly-connected if there is a (possibly@mpty) path between them (treat-
ing all edges as undirected).

5.1 Operations

Variable Nullity. When performing tests we generate one version of the abgtrach

for each possible outcome. For the nullity test of a varial@ereate one abstract graph

in which the variablenustbe null and one abstract graph in which the variatlast

be non-null In the case where the variable is assumed taulewe are asserting that
the concretization of the edge that represents the varialget is empty. Thus, if the
variable edge cover$) a node we infer that the node does not represent any objects
and all the other incoming edges must also have empty coratiens. Similarly any
edge that is~"to the edge representing the variable target must also haenaty
concretization (and can be removed from the graph).

Algorithm 1: Assume Var Null¢ == null istrue)
input : graphg, varv
ey «— the edge representing the targewpf
n « the target node dd;
if eSnthen E,y < {all incoming edges ta};
else Eny — {€]€~e};
for edge e= E, do
g.removeEdged);

Indexing Bounds. In order to analyze nontrivial programs that manipulataysrand
collections we must be able to accurately model the effdqtsagrams that use integer
indexed loops to traverse them. To do this we use severaiapeenes for the edges
that represent the pointers stored in arrays/collectibms name? indicates elements at
arbitrary indices in an array when it is not being indexedtigh,at represents the dis-
tinct element at the index given by the indexing variablegpresents all the elements
stored at indices less than the indexing variable @mepresents all the elements stored
at indices greater than the indexing variable.

In order to simulate the effect of the test< A.Length , we again create two
new abstract graphs, one where the test resutusand one where the test result is
false The true result does not provide any additional infornratioat is applicable
in our heap domain so we do not need to do anything. The fatdtradicates that
the indexing variable now refers to an index larger than timayasize. This implies
that there are no elements stored at indices equal to oregriwn the current value
of the indexing variable, which means that the edges witbets atandai must have
empty concretizations and can be eliminated from the atisgraph. Further, as with
the variable nullity test we can use the reference set oglatiformation to eliminate
other edges and nodes that must also have empty concratizati

Figure 4(a) shows the most general abstract heap that aviseis using simple
integer indexing in a loop (to focus on the loop indexing wauaise the body is empty)
to traverse an array as initialized in lines 3-4. In this fegwe have three outgoing
edges from node 1, the edge with offsé{edge 6) which represents all the elements at
indices less than (elements that have been processed), the edge with theatf{selge
7) which represents the single element stored at indéke element currently being

processed), and the edge with offag{edge 2) which represents all of the elements at
indices greater thain (elements not yet processed).

EdgeEQ={} EdgeEQ={}

1, Data[], ({1})

12, ai, w] [6, bi, w] [6, bi, w]

2, Data, £0+, w, ({2}) 5, Data, £0+, w, ({6)) 5, Data, £0+, w, ({6))

6, Data, f.0+, ({7}))

(@for(i = 0; i < A.Len; ++i) (b)i < A.Len isFalse

Fig. 4. Integer Indexing and Test

Figure 4(b) shows the abstract graph that results from asguthe test,i <
A.Length , is false. In this figure the analysis has determined thatesthe index-
ing variable {) is off the end of the array all of the elements in the arraytrbasstored
at indices less than and that edges 2, 7 have empty concretizations. This allogs t
analysis to remove them and since these edgesr(>) nodes 2, 6 respectively we can
infer that these nodes have empty concretizations and ceanfieved as well.

Load. The field load operationx(= y.f) first computes which node is the target of
the expressiog.f , creating a more explicit representation as needed (Stibséc?).
Then it adds an edge fromto this node and if the storage locationyof is unique
then we know the target of must be equal to the target pf (and the edges repre-
senting them are- and have the santeproperties).

Algorithm 2: Load k = y.f)
input : graphg, varx, vary, field f
nullify x;

if y.f # null then
g.materialize(the unique target pff);

n < target node of;
e« the unique edge atf;
assignx to refer to the target of;
if n.linearity = 1then
n « the target node o
set edge representing~ to €
if e n' then set edge representings ';

5.2 Materialization

The materialization operation [13] is used to transforngkdrsummary nodes into more
explicit subgraph representations. For the example inpgéyer we only need a simple

version ofSingletormaterialization which is restricted to handle the follog/tase and
otherwise conservatively leave the summary region as it iee incoming edges can
be partitioned into two or more equivalence classes basélddemonnectednstrumen-
tation relation. Once we have identified a node and the edgiigas we create a new
node for each patrtition.

Figure 5(a) shows the heap abstract graph that capturekta possible states at
line 4 of the example program. The varialfleefers to a node with the identifier 1,
which represents Bata[] array, and we know it represents at most one array (the
default omittedinearity value of 1). This array may have multiple pointers stored,in i
represented by thaearity valuew in the edge with id 2. Each of these pointers refers
to a uniqueData object since the edge has the omitted defai#rferevalue ofnp.
Thef:0+ entry indicates that all objects abstracted by node 2 haues#n the range
[0,00) in theirf fields. Finally, based on thi2} entry of thenodeCoveset for the node
2, we know that each object is referred to by a pointer abisttdny edge 2.

EdgeEQ=() EdgeEQ=((4, 11))
[1, A] [3. V] [1, Al [3.: V]

(1. Datall, (1) (3. Vector, (3) 1, Datal], ({1} 3, Vector, ({3))
[2, ai, w]
2, Data, f:0+, w, ({2})
2.2 w] [4, at, (11)]
Y Y
2, Data, f:0+, w, ({2}) 4, Data, f:0+, ({4}, {11})
(11, d, @)
(a) Result From Initialization Loop (b) Load ofA[i] (when i =0)

Fig. 5. Load of A[0] on result of first loop

The result of the load] = A[i] wheni = 0 during the analysis of the first itera-
tion of the filter loop (line 6), is shown in Figure 5(b). In $Higure we have split edge
2 from Figure 5(a) into two edges, one representing the posibred at index 0 (edge
4, with offsetat) and one representing all the pointers stored at indites) (edge
2, with offsetai). We have also split the node which representdihta objects into
node 4 representing the object targeted by the point&fdh and node 2 representing
the objects targeted by the pointers stored at the otherdsdin the array.

Since we know that the edge that was split (edge @) node that was split (node
2) we know that the resulting edges in Figure 5(b) muste resulting nodes (edge 2
S node 2 and edge & the node 4). Further we know that edge 4 represents a single
pointer (it represents the single pointe®d]) and, since it node 4, that node must
represent at most one object (the default omilireghrity value of 1).

Finally, we have set the target of the variadléo be the same as the target of the
edge that represents the pointers stored[B] . Based on the load algorithm we set
the new edge (edge 11) to betd edge 4 and since edgéode 4, we know that edge
118 node 4 as well.

6 Examples

Filter Loop Example. The filter loop (lines 5-7) demonstrates how the analysis use
reference set information and the control flow predicdté & 0) to infer additional
information about the heap, in particular that the set oéotgj stored iV mustequal
the set of objects with positivie fields in A. To simulate the effect of the test.f{ >

0) on the state of the program we create two abstract graplesfoorihe result when
test result is true and one when the test result is false.

EdgeEQ=((4, 5, 11)) EdgeEQ=((4, 11}
[A]? B, V]%) I, A]? 3, V]%)
(1. Datapl, 419 (3. vector, (3)) (1 Datap, (1)) (3, vector, (3)
[4, at, (5, 11)] [4, at, (11)]
[5.7,(4,11)]
[2, ai, w] [2, ai, w]
(2 Data, fo+, w, (2)) (4, Data, £+, (4} 51, (11) (2. Data, fo+, w. @2)) (4 Data, o, (4, (11)
[11,d, (4, 5)] [11,d, (4)]
(a) Assert Test is True (b) Assert Test is False

EdgeEQ={(4, 5), (7, 11)} EdgeEQ=((4, 5))

[ERY] 1 A] BV
3, Vector, ({3}) 3, Vector, ({3})
14.bw, 6] | 15,2 w, @) 470,6] 157w @)
[2, ai, w] [6, bi, w] y [6,?, w] y
(2 Data, 0+, w, ()] | (5 Data £0,w, (6)] (4 Data f:+, w, (4}, (5) (5. Data, £0, w, (161 (4 Data, £+, w, (@), 51)
[7, at, (11)]
Y
Q@ @
(c) Fixed Point of Loop Analysis (d)i < A.Length False, Exit Loop

Fig. 6. Filter Loop Analysis

Figure 6(a) shows the abstract graph that results from a@sgutimat the testl.f >
0 is true (on the first iteration of the loop,= 0) and the entry is added to tMector
V. Since the test succeeds and we kribmust refer to the single object abstracted by
node 11 (default omittelinearity value of 1) we can update the scalar information to
show that thé field must be greater than O (the label). We have updated the graph
structure by adding the edge 5 to represent the pointer shstbred into the vector
object. Since we know this pointer refers to the same obgedt ahich is represented
by edge 4, we add the entry (4, 5) to thdgeEQrelation and since edgeXnode 4 we
know that edge 5 als® node 4.

Figure 6(b) shows the abstract graph that results from asgutimat the testl.f >
0 is false(on the first iteration of the loop,= 0) and the entry is not added Y6 Since

the test fails and again we knofi] refers to a single object we update the scalar
information to show that thé field must equal to 0 (thE0 label).

Figure 6(c) shows the fixed point abstract graph which regmessall the states that
are generated in the loop. We see that there may be many d@emehe vectod and
many elements that are not added to the vector (representibe ledges with théi
labels, 4 and 6 respectively). Since we trackedXhmelation of each individual object
as it was processed we know that every object referred to lmirdagy represented by
edge 4 must have been added to the ve¥tand thus is also referred to by a pointer
represented by edge 5. This implies that edgeédge 4 and both edge*node 4 and
edge 55 node 4.

Figure 6(d) shows the result of assuming that A.Length returnsfalse The
at andai edges (edges 7, 2) must have empty concretizations and calintieated
(as they abstract the pointer stored at indeand pointers stored at indices larger than
i). As desired the analysis has determined that all the abjeith a non-zerd field
have been stored in the vectdr(since node 5 only abstracts objects with 0 in the
field and edge 4-"edge 5).

Update Loop Example. For brevity we omit descriptions of how the reference set in-
formation is propagated during the individual operatiohthe update loop (lines 9-11)
and focus on how this information is used to improve the pieni of the analysis
results at the loop exit. The fixed point abstract graph ferldop body is shown in
Figure 7(a). In this figure we see that the there are poténtigdny pointers that come
before the current index position in the vectbfedge 10 withoffsethi , all of which
point to objects with 0 in thé field). It also indicates that the edges representing the
currentindex location (edge 8 witiffsetat) and the set of pointers that come after the
current index position (edge 5 witiffsetai) cover ¢) their target nodes (nodes 4, 8).

If the exittest { < V.size())isfalsethen we can infer that there are no entries
in the vector at indices that are greater than or equal f6his implies that the edges
at andai (edges 8, 5) have empty concretizations since they regdrpegriers stored
at indices greater than or equalitoBased on the- telations (4, 5) and (7, 8, 11) this
implies that edges 4, 7 and 11 have empty concretizationghs w

The result of this inference is shown in Figure 7(b). Aftez test (and the removal
of the edges/nodes) there are no longer any pointers totehjéth non-zerd fields
in the vectorV or the arrayA. Thus, the loop has successfully determined that all the
objects in the vecto¥ must be updated and further, this update information has bee
reflected in the original arra (i.e., there is no object id that had a non-zero field
that was not updated in the loop). As desired the analysigéi@smined that all of the
objects in the arrays have the value 0 stored in théirfields after the filter/map loops.

7 Experimental Evaluation

We have implemented a shape analyzer based on the instratinantlations and ref-
erence set information presented in this paper. We use aenmibenchmarksfrom

our version of the Jolden suite [7], two programs from SPE8 [14], and two pro-
grams éxp andinterpreter) written as challenge problems. The JOIden suite contains

2 Benchmark/Analysis code is availablevatvw.software.imdea.org/ ~marron/ .

EdgeEQ={(4, 5), (7, 8, 11), (9, 10)}

4, Data, f:+, w, ({4}, {5}

[4,?, w, (5)] [5, ai, w, (4)]

[1, A] [ERY|

[7.2, (8 11)] [8, at, (7, 11)]

1, Data[], ({1})

8, Data, f:+, ({7}, {8}, {11})

16,2, wl [11,d, (7, 8)
5, Data, f:0, w, ({6})

19,2, w, (10)] [10, bi, w, (9)1

9, Data, :0, w, ({9}, {10})

(a) Fixed Point Update of Loop

EdgeEQ={(9, 10)}

1, Data[], ({1}) 3, Vector, ({3})

[6,?, w]

5, Data, f:0, w, ({6})
19,7, w, (10)] [10, bi, w, (9)]

9, Data, f:0, w, ({9}, {10})
(b) After Loop Exit

Fig. 7. Fixpoint and Exit of Map Loop

pointer-intensive kernels (taken from high performancepoating applications). We
have modified the suite to use modern Java programming idibhesbenchmarksy-
trace anddb are taken from SPECjvm98 (with minor modifications to remtmst har-
ness code and threading).

Benchmarkexpandinterpreter, our two internally developed benchmarks, are a
basic arithmetic expression evaluator and an interpretethe computational core of
Java. Theexp program contains a variety of heap analysis challenges+aal heap
structures with and without sharing, copy traversals ofdtnactures and destructive
traversals of the structures), and is still small enoughrideustand. The interpreter
program is a large program with varied heap structures, darge well defined tree
structure in the AST, symbol and local variable tables, & stalck of pending call
frames, and a very poorly defined cyclic structure in therimmemodel of the heap built
by the interpreter (thus the heap analysis must be bothgarenid able to deal with
ambiguity efficiently). It also has substantial amounts lvéring (variables, method
signatures and objects on the interpreters internal reptagon of the heap are shared
in multiple structures). Because of these characteristcbelieve these programs are
excellent challenge problems for this area of research.

The analysis algorithm was written in C++ and compiled uditgvVC 8.0. The
analysis was run on a 2.6 GHz Intel quad-core machine with 2GRAM (although
memory consumption never exceeded 150 MB). Detailed indion on the interpro-
cedural dataflow analysis methods used can be found in [10].

We compare the analysis results when usingréierence set relationdescribed
in this paper and when using a basic equivalence-basedskeglsitive must points to

Benchmark_OC ||Alias TimeRef. Time
em3d 1103 0.09g 0.115
health 1269 1.555 1.875
bh 2304 0.723 0.913
db 1985 0.68g 1.075
raytrace [5809 15.54 15.94
exp 3567 152.3 161.8
interpreter|1529 114.8 119.3

Fig. 8. Alias Time reports the analysis time with bagsicist-aliagracking while Ref. Time reports
the analysis time usingference set relation$ OC is for the normalized program representation
including library stubs required by the analysis.

relation on the abstract graph edges. In each of these bemkbnvhen using the ref-
erence set relations we see a moderate increase in runtinobk wdries based on the
quantity of subset relations generated by the program (tigHargest increase itb,
which represents an in-memory database and views of thibds¢ via arrays). Each
of these benchmarks possess some instances of data stsuatuere the use of refer-
ence set relations allows the analysis to extract informnatiat was not possible with
simple aliasing information. In some cases this infornraismot particularly useful (in
em3d the analysis discovers that the there are 2 vectors eachiohwéfers to every
element in one of the halves of a bipartite graph). Howevemaost of the programs
the reference set information provides potentially valeahformation. For example,

in bh the analysis discovers that the leaves of the space decdinpdrees are always

a subset of a given vector, itb we know the set of entries in each view is a subset of
the entire database, andiiterpreter the analysis determines that each variable symbol
is interned in a special table and that all live stack framjeab must be stored in a sin-
gle list container. In addition the analysis is able to pelyi model (as in the running
example) most of the filter-map and subset-remove type Itgiccur.

8 Conclusion

In this paper we introduced reference set relations, a raoratrete heap property that
subsumes the concept of must-aliasing and allows us to attiygapress a wide range
of must-sharing relationsrust= andmustC) between arrays, collections, and heap
data structures. By extending an existing shape analysistwb simple relations to
track the most commonly occurring reference set relatiegsidlity via theabstract
edge equivalencproperty,~, and subset relations, indirectly, via thbstract node
coverproperty and) we can model many useful sharing properties. As demomstrat
by the experimental evaluation, this approach has a smpdatron computational costs
when compared with classimust-aliasingand allows the tracking of a much richer set
of heap sharing properties. This work also highlights thersgth of the labeled stor-
age shape graph approach, which partitions the heap intwepturally homogeneous
regions. This partitioning enables even relatively singaacepts such as theference
set relationgpresented in this work to extract rich information from thregram (and
conversely may enable the efficient use of strong decisiongutures by limiting the
complexity of the verification conditions encountered dgmprogram analysis).

Acknowledgments. he first author was supported by EU FP7 NoE S-Cube 215483
and FET IST-23162HHATS Spanish MICINN project 2008-05624/TINOVESand
Madrid Regional project S-0505/TIC/04PROMESASThe second author was sup-
ported in part by the NSF grants CCF-0546170 and CCF-07Q2I4i8 material is
based upon work supported by the National Science Foumdatider grant CCF-
0540600. This research is supported in part by the Natiocieh8e Foundation under
grants CCF-0540600, CCF-0546170, and CCF-0702743. Thethank Mooly Sa-

giv and Roman Manevich for their useful comments on a prelami version of this
work.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’'He&rWies, and H. Yang. Shape
analysis for composite data structuresClAV, 2007.
2. D.R.Chase, M. N. Wegman, and F. K. Zadeck. Analysis ofteoérand structures. PLDI,
1990.
3. S. Chong and R. Rugina. Static analysis of accessed seigacursive data structures. In
SAS 20083.
4. P. Cousot and R. Cousot. Systematic design of progranysasdtameworks. IIPOPL,
1979.
5. A. Gotsman, J. Berdine, and B. Cook. Interprocedural slagalysis with separated heap
abstractions. ISAS 2006.
6. S. Gulwani and A. Tiwari. An abstract domain for analyzhmepp-manipulating low-level
software. InCAV, 2007.
7. Jolden Suite. http://www-ali.cs.umass.edu/DaCapwhmarks.html.
8. V. Kuncak and M. C. Rinard. Decision procedures for sétaa fields. Proc. Abstract
Interpretation of Object-Oriented LanguageX)05.
9. T.Lev-Ami, N. Immerman, and S. Sagiv. Abstraction forphanalysis with fast and precise
transformers. IICAV, 2006.
10. M. Marron, O. Lhotak, and A. Banerjee. Call-site heirgsfor scalable context-sensitive in-
terprocedural analysis. Report atvw.software.imdea.org/ ~marron/ , July 2009.
11. M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefaimy and D. Kapur. Sharing
analysis of arrays, collections, and recursive structureBPASTE 2008.
12. M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapdeap analysis in the presence
of collection libraries. I[lPASTE 2007.
13. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-aiglgroblems in languages with
destructive updating. IROPL, 1996.
14. Standard Performance Evaluation Corporation. JVM98side 1.04, August 1998.
http://www.spec.org/jvm98.
15. B. Steensgaard. Points-to analysis in almost linea.timPOPL, 1996.
16. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. C. Rinardeldrconstraint analysis. In
VMCAI, 2006.
17. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysi€dn2000.
18. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Basie, and P. OHearn. Scalable
shape analysis for systems code CAV, 2008.
19. K. Zee, V. Kuncak, and M. Rinard. Full functional verifiicen of linked data structures. In
PLDI, 2008.

