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Abstract. Tag interactions refer to interactions in which software agents
are intentionally or opportunistically involved. Intentional tag interac-
tions allow agents to observe each other, like when one observes the
physical condition of others. Opportunistic tag interactions occur when
one agent receives information about others without requesting for it,
like when one realizes that a friend is ill. Such cases seem natural for
human-beings, but software agents need specific support. In this paper
we model tag interactions based on the agent environment and com-
putational bodies to enact, maintain, and regulate their execution. We
discuss our model and we identify further issues in the current state of
the research. An example application is described in detail to show the
potential of introducing tag interactions. Future work aims at addressing
the present research issues and to implement the example application to
experimentally evaluate the computational and communication cost of
tag interactions.

1 Introduction

In Software Multi-Agent Systems (SMAS), interactions are usually message-
passing between two agents, so that the main research activities deal with com-
munication languages, interaction protocols, and their exploitation (e.g. nego-
tiation, argumentation). However, systems capabilities appear limited in com-
parison to interaction opportunities in human agencies [11]. The potential for
interaction diversity of software agents seems underexploited, although some
situations can leverage interaction schemes with different semantics, such as in-
direct (e.g. stigmergy, see [14] for a survey), implicit [26], or opportunistic inter-
actions [1]. Typically, one can conclude a friend is ill just due to her appearance,
even though she does not communicate her state intentionally. How to model
such an interaction? To this end, we exploit the idea that human-beings do not
only communicate through their languages, but also through their bodies. We
name tag interaction this type of interactions and propose to endow software
agents with an explicit computational body that exposes observable information
labeled as tags.



The management of tag interaction based on a software body differs from
message-passing techniques. The source agent is not always aware of the infor-
mation it expresses and it cannot always be considered as the ‘operational sender’
(e.g. my ill friend). Similarly, agents that receive information via tag interaction
do not always know they play the role of receivers (e.g. realizing my friend is
ill). Consequently, tag interaction requires an active entity that allows and exe-
cutes such situations by dealing with the software body. The scope of this entity
must encompass all agents that can participate in tag interaction and we think a
natural candidate for this function is a computational environment. This paper
describes how the environment supports tag interaction with intuitive examples
from social and natural sources, and a detailed example application.

Section 2 first details our terminology and it demonstrates that an environ-
ment is required by tag interaction. Section 3 then exposes our formalization of
the notion of tag interaction and environment. Section 4 exploits this formal-
ization to describe environmental mechanisms. Section 5 exposes an example
application devoted to an agent-based load balancing problem. Section 6 dis-
cusses the current state of our work, and section 7 summarizes our current plans
for future improvements.

2 Tag interaction and Environment

2.1 Software Agent for Tag interaction

In the literature, a software agent is thought of as an autonomous computational
entity with interactive capabilities [22, 5]. Our definition in the frame hereafter
is related but separates explicitly the interactive nature of agents from their
internals as shown on Fig. 1.

A software agent is an autonomous problem-
solving entity endowed with an explicit bound-
ary named softbody that exposes:

Sensors to receive information from the en-
vironment

Actuators to send information to the envi-
ronment

A public state of the agent, observable in the
environment

Agent
Internals

Softbody

Sensor Actuator

Public State

Fig. 1. A Software Agent.

The problem-solving capabilities of the agent internals refer to the various
existing agent architectures, like BDI [18] and KGP [8]. Internals are usually
hidden from other agents in SMAS. The boundary delimits the agent and it
captures the interactive capabilities with other entities in the system. We refer
to this boundary as the softbody of software agents. This computational body



features sensors and actuators for interactions with other agents and entities in
the SMAS [22].

In addition, the softbody exposes a public state of the agent. A public state
exposes information about the agent that can be sensed by other agents in the
environment. Concretely, the public state is a list of variables named tags whose
values reflect agent internals. The contents and types of information in the public
state can be configured by the designer or dynamically by the system to define
what can be observed about each agent. For example, we can infer in a discussion
that someone may be lying when we observe her to blush, i.e. her public state
exposes a change to a ‘red skin color’. On the other hand, system designers
might choose to prevent such an observation in a software auction system to
avoid collusion means by body signals [21]. Public state content information can
indeed influence agent reasoning processes and consequently their interactions.

In the remainder of the paper, we will now refer to software agents simply
as agent for readability concerns, although our model does not pretend to be
generalized to any kind of agent.

2.2 Tag interaction

Definition We define tag interaction as follows;

Tag interaction is an ensemble of mechanisms that model and enact in a
SMAS: (a) the expression of agent public state, (b) the sensing of agent pub-
lic state, and (c) the intentional and opportunistic cases. All tag interaction
mechanisms are performed and controlled by a SMAS environment.

Tag interaction mechanisms expose and publish changes of public states in
(a) and (b), so that agents are notified about such events. We distinguish two
types of tag interaction to describe different situations in (c). Intentional tag
interaction is related to observation, when an agent’s mental state is to collect
information about others. This active inquiry mode is initiated by an agent and
contrasts with the ‘passive’ reception mode of opportunistic tag interaction. In
that case, an agent receives information about the public states of other agents
without explicitly requesting for it. For instance, one can feel a presence in a
dark room through senses, even though we do not request this information in
the first place. Fig. 2 depicts the two types of tag interaction for the public state.

The left part of Fig. 2 shows the observing agent acting (e.g. looking at) so
that to sense the public state of the observed agent. The right part shows that
the public state of an observed agent is spread out to the sensor of any ‘passing
agent’ (e.g. mobile). We argued in section 1 that these two situations need an
active third-party entity to perform the information flows represented by the
arrows of the two above figures, and the natural candidate is the environment.

Environmental Requirements Observing an agent means the public state is
‘readable’, such as on the left of Fig. 2. But in usual agent approaches, reading
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Fig. 2. Left: Intentional tag interaction of the public state. Right: Opportunistic tag
interaction of the public state.

actions are realized by contacting the observed agent that consequently becomes
aware of this observation. In a discussion, we might however talk and simulta-
neously observe interlocutors to detect clues such as attitudes. The observation
requires for the observing agent to receive information, instead of to request for
it, and the environment can perform this function.

Second, opportunistic tag interaction emphasizes the previous argument,
since no agent triggers any information transfer, as on the right of Fig. 2 where
the environment delivers public state information. Typically, a working place
tends to foster members to focus on their tasks as a global effect: the environ-
ment carries ‘implicit messages’ about the ambiance to any agent.

Finally, tag interaction requires an environment as a regulating entity [27].
The public state is a feature of the softbody that lets malicious agents fake
attitudes if no regulation is enforced. As a general example, the public state
‘position’ should be reliable if agents are to have a fair ordering in a queue. The
environment can enforce correctness of public states against system rules (under
the hypothesis of a perfectly functioning environment).

To summarize, tag interaction requires from the environment the following
support, and our model aims at providing them.

– Enact intentional interactions (observation)
– Enact opportunistic interactions
– Regulate interactions

This support needs to be provided transparently to avoid introducing into
the agent any complexity related to the environment responsibilities. The model
abstracts this issue at this point by only specifying what are the environment re-
sponsibilities. Implementation issues lie at another level of analysis. The environ-
ment might be centralized or distributed depending on application requirements.
This matter is further discussed in section 6.

2.3 Environment Model

Our definition of environment specializes a generic version [28], notably based
on the work of Russell and Norvig [22], and Ferber [5]. An environment for
SMAS is a first-class entity to encapsulate part of the application logic that



cannot be handled by agents, such as system-wide regulation, resource access,
and interaction mediation [27]. Our definition emphasizes the characteristics that
matter for tag interaction.

The environment of a SMAS is the entity where agents exist and that:

– Maintains the system topology
– Maintains mapping information of the agent population to the topology
– Performs tag interaction mechanisms
– Defines and enforces tag interaction rules

The environment is a stateful entity that defines and maintains a topology of
the system, which can be spatial as in many simulations [10], network domains,
file systems, or web-sites [2]. The environment also maintains information about
agent situations in the system to manage information delivery and regulate their
interactions. This information is only related to softbodies. That is, the environ-
ment does not need to deal with agent internals, since these are encapsulated into
agents. Furthermore, the environment mediates tag interaction, which refers to
public state evolution and change notification. On the one hand, the environment
applies rules in the SMAS to enforce certain public state values. Rules define
ranges of possible values, so that system states remain consistent for the appli-
cation. On the other hand, rules define how public state information is spread
out in the system, for instance by defining a range of interaction [12, 17]. These
rules allow specifying change notification strategies to control the amount of tag
information that is exchanged in the system (which can cause a significant cost
variation as illustrated with the example application of section 5).

The definition meets the requirements we defined for tag interaction.

– Interaction mediation enacts an observation framework whereby the envi-
ronment delivers observable events.

– Opportunistic events delivery is configurable by specific rules.
– Regulation is enforced by the rules while mediating interactions.

We notice that the environment has no deliberative capability and no deci-
sion power. The environment merely accomplishes its responsibilities in strict
compliance with rules defined by design.

3 Formalization

3.1 Agent

Our formalization of an agent follows from the definition of section 2.1:

Agent = (ψ, ϕ, INF ) , where ϕ = (S,A,Ps) (1)

First in this formula, ψ denotes the problem-solving abilities of the agent
(its internals), and ϕ is its softbody. A pair (ψ, ϕ) then represents a state of the



agent. The softbody ϕ is further developed into a 3-tuple where S is the set of
sensors of the agent, A the set of actuators, and Ps the public state, which can
be a set of variables, e.g. in predicate logic.

The last element of the formalization is INF , a set of two reaction rules
INFψ and INFϕ to determine the evolution of agent states (ψ, ϕ) on change of
internals or softbody respectively. For any ψ and ϕ:

(ψ, ϕ) and ψ → ψ′

ϕ→ ϕ′ INFψ (2)

(ψ, ϕ) and ϕ→ ϕ′

ψ → ψ′ INFϕ (3)

The operational semantics of INFψ expresses the evolution of the state (ψ, ϕ)
after the evolution from ψ to ψ′. The result of INFψ is the evolution of the soft-
body to reach ϕ′. The agent final state is therefore the pair (ψ′, ϕ′). For instance,
when an agent wants to open a door, it first intends (ψ evolution) and then acts
(ϕ evolution) to complete its intention. INFϕ expresses similarly the evolution
of internals due to the evolution of the softbody, e.g. input on sensors. INF
operators explicate how internals and softbody are linked by a cause to conse-
quence relation. What is modified along the evolution is application-dependent
and relies on instances of our model.

3.2 Environment

Our formalization of the environment follows from the definition of section 2.3:

Environment = (Ω,Φ, TRANS) (4)

First, Ω is a 2-tuple, representing the environment internals:

Ω = (T opology,Rules) (5)

where T opology describes the structure (possible dynamic) of the system,
e.g. the ground in simulations or the hyperlink network of a web-site [2]. Agents
are situated in this topology to define their neighborhood. Management of tag
interactions by the environment is performed according to this topology. Rules
is the set of rules that define how the environment executes agent interactions.

Back to (4), Φ is the set of all softbodies in the system. The environment
exploits softbodies to serve the population of agents (e.g. information delivery)
and to enforce system rules by imposing environmental regulation. Consequently
in our model, each softbody is owned and controlled by an agent in (1), and
the control is regulated by the environment in (4). The regulation lets agents
control their softbodies, but the effect in the system of this control is bounded
by the environment rules. Only softbodies are required to enable the environment
functions, since the softbody synthesizes public features of agents. A complete
state of the environment is then a pair (Ω,Φ).



We finally introduce TRANS, a set of reaction rules TRANSΩ and TRANSϕ
to model the regulation mechanism of the environment over agent softbodies.
For any Φ and Ω:

(Ω,Φ) and Ω → Ω′

∃A ⊂ Φ : ∀ϕ ∈ A, ϕ→ ϕ′ TRANSΩ (6)

(Ω,Φ) and A ⊂ Φ : ∀ϕ ∈ A, ϕ→ ϕ′

Ω → Ω′ TRANSΦ (7)

From an environment state (Ω,Φ) and an evolution of the internals Ω to
Ω′, TRANSΩ causes the set of softbodies Φ to evolve, so that for softbodies in
the subset A = (ϕ1, ..., ϕn) ∈ Φn, the transformation TRANSΩ entails all ϕi to
evolve to some ϕ′

i ∈ Φ′. Similarly, TRANSΦ models the converse transformation.
The subset A depends on the T opology and typically contains a ‘neighborhood’
of agents defined by application-dependent needs, such as an Euclidean or social
(same taste, etc.) distance. In particular, A can be empty (e.g. only one agent
in the SMAS) or the entire set of softbodies (e.g. only two agents in a virtual
shop).

4 Environment Mechanisms for Tag interaction

4.1 Agent Influence on the Environment

When an agent intends to execute an action (i.e. change own public state or
observe) in the BDI sense [18], its internals evolve from ψinit (intention selection)
to ψact (intention attempt). The agent is initially in a state (ψinit, ϕinit), so that
the change of internals causes the softbody to evolve due to the INFψ reaction
rule. The softbody consequently evolves to ϕact:

(ψinit, ϕinit) and ψinit → ψact
ϕinit → ϕact

INFψ (8)

The modification of the softbody entails a reaction on the environment with
the TRANSΦ rule, from Ωinit to Ωcheck:

(Ωinit, Φ) and ϕinit → ϕact
Ωinit → Ωcheck

TRANSΦ (9)

The environment then checks whether its new state is valid according to ap-
plicable rules. If so, it continues the action by applying either process in sections
4.2 and 4.3 and completes by informing the source agent. A successful action
entails Ωok. Success is observed with the softbody that becomes ϕok under the
application of TRANSΩ.

(Ωcheck, Φ) and Ωcheck → Ωok
ϕact → ϕok

TRANSΩ (10)



Environment

:
“Turn black”

Environment

:
Done

Ok “Agent
Public
State

is black”

Fig. 3. Environment validates and com-
mits the influence.

Environment
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“Turn black”

Environment
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Failed
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Fig. 4. Environment prevents the influ-
ence.

Fig. 3 shows the case where a public state is turned from ‘white’ to ‘black’
successfully.

In case rules oppose the agent’s intention, the environment evolves from
Ωcheck to Ωnok and counter-balances the agent attempt.

(Ωcheck, Φ) and Ωcheck → Ωnok
ϕact → ϕfail

TRANSΩ (11)

Fig. 4 shows a case where the agent’s intention to turn its public state to
black has failed. Formula (11) follows formula (9) and cancels the agent’s action
before occurring in the system (e.g. if one wants to push a wall, the body does
not move). In the end, the softbody influences back the agent internals with
INFϕ to ‘report’ the opposition of the environment.

4.2 Environmental Effect on Agents

The environment acts on agents with the mechanisms described in the previous
section. However, the environment cannot be overruled by agents, since the en-
vironment is the rule, so that the sequence of reaction rules differs. With the
same notations as before:

(Ωinit, Φ) and Ωinit → Ωact
ϕinit → ϕupdate

TRANSΩ (12)

The environment acts on the softbody that evolves to ϕupdate, representing
either a change of public state (Fig. 5) or an observation received on sensors.
Then, the softbody informs its agent internals:

(ψinit, ϕinit) and ϕinit → ϕupdate
ψinit → ψupdate

INFϕ (13)

At this point, the agent cannot reverse the process, since it is an environ-
mental effect. Such a situation is shown on Fig. 5.
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Fig. 5. Environmental effect on the agent public state.

However, some agents may ignore the environmental effect, but this is an epis-
temological issue at the agent internals level. Typically, we can ignore someone is
stepping on our feet on a crowded train, either because we are too concentrated
on a specific task (agent busy and unaware of the fact) or because we just think
it is not worth discussing and decide to move on (agent aware of the fact).

Although the agent cannot oppose the environment’s action in the first place,
it can react afterward. The agent can take subsequent actions to attempt to
modify the environment, and such behaviors are governed by the same regulation
sequence as in 4.1. We can illustrate such situations with someone entering a
river stream. The stream has an overwhelming strength at first and it carries
the swimmer downstream. In reply, swimmers can try to oppose the stream and
may succeed in crossing it if their swimming abilities and strength are sufficient.

4.3 Public States Spread Management

Given an agent, three types of events imply a spread of the public state in the
environment, namely modification of the public state by the agent, other agents’
modification attempts through the environment, and environmental dynamics
(such as wind and gravity). Fig. 6 illustrates the case where an agent modifies
its public state (left part). Validation of the modification by the environment
(central part) is followed by the publication of the resulting state to agents in
the neighborhood defined by the topology (right part). We describe hereafter
how to process the public state spread management in the three aforementioned
cases.

Agent modification Each agent controls its softbody and can modify the pub-
lic state, under regulation by the environment. The procedure of modification is
initially the same as the successful agent influence on the environment detailed in
section 4.1. The sequential application of formulas (8) and (9) modifies the public
state of the agent and validates it by the environment. Then, acknowledgment
of the conformance of the new public state is performed with the publication of
the modification in the neighborhood:

(Ωcheck, Φ) and Ωcheck → Ωok
ϕact → ϕok, ∀ϕ ∈ A, ϕ→ ϕnews

TRANSΩ (14)
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Fig. 6. Public State Management from left to right: the top-left agent modifies its
public state; the environment validates the change; the change is spread to neighbors.

A is included in the set of softbodies Φ \ {ϕact}. Each softbody in A receives
a notification of ‘ϕact → ϕok’ on its sensors. Formula (14) is a generalization of
formula (10) that only stated the successful completion of public state change
without publication (case where the agent is alone in the system).

Environmental dynamics Environmental dynamics apply to subsets of agents.
Typically, Archimedes’ Law applies to agents under water in a simulation, while
a clock interrupt to represent time concerns all agents in the system. The ap-
plication of environmental dynamics on public state follows the procedure of
section 4.2. Each dynamics corresponds to an environmental rule set that tar-
gets a particular type of public state variable. If p in the public state of a softbody
is the target of a rule, p is assigned a new value p′ after application of the reac-
tion operator TRANSΩ. Environment and softbody are consequently updated,
and the new value p′ is spread in the system. The corresponding formula is a
generalization of formula (12) that modifies all softbodies, similarly to (14).

Other agents’ attempts When an agent intends to act on another agent to
modify its public state (e.g. push an agent to change its position), the interaction
is mediated by the environment. The procedure begins with a source agent that
intends to act on another’s public state. The intention modifies with INFψ the
softbody that acts in turn on the environment with TRANSΦ. If the action is
authorized in the system, the environment reaction is three-fold by applying the
action to the target agent, publishing the action to other agents, and sending an
acknowledgment to the source agent:

(Ωcheck,Φ) and Ωcheck→Ωok

ϕs
act→ϕs

ok, ϕ
t→ϕt

changed, ∀ϕ∈A, ϕ→ϕnews
TRANSΩ (15)

A is the set of softbodies Φ \ {ϕsact, ϕt}, where ϕsact is the softbody of the
source agent and ϕt the one of the target agent. In the end, each softbody
informs its internals with INFϕ, so that agents are informed about the action.
In particular, the target agent can react to this action.



5 Tag interactions applied to a fault tolerance scenario

In this section, we describe an agent-based application with ‘classical’ and tag
interaction approaches. The application is a load-balancing scenario that requires
a fault tolerance mechanism to support the activity of the system. We detail
the application, the different approaches, and a run of the system where fault
tolerance is required in the case of the ‘agent death’ [9].

5.1 The load-balancing scenario

In this scenario, a client (e.g. the user) submits a set of tasks to the system.
The role of the system is to perform the tasks and to report the results to the
client. All tasks have same importance, they are independent, and they must all
be completed. In other words, we suppose that tasks are not ordered and there
is no time constraint to complete them. The base architecture of this scenario
is a task repository where clients submit their tasks and wait for the results.
The repository is concretely an indexed queue where tasks have three states,
namely todo, doing, and done. The system must perform the tasks marked
todo, signal tasks under process with doing, and mark completed tasks with
done so that the client can take them. The index of the queue points to the next
task marked with todo. The index approach is mainly introduced as a mean to
simplify the task selection process and to ensure mutually exclusive access to
tasks when necessary. Different elements3 that access the repository can only
choose to perform the task pointed by the index (which is then automatically
updated to the next task to be done).

A classical approach in MAS is a supply-chain where a supervisor agent
delegates the tasks in the repository to worker agents, it collects the results,
and it updates the task state. The delegation by the supervisor is the load-
balancing mean of this approach: Tasks are allocated to available workers. The
usual schema of this application is depicted on figure 7. Worker agents interact
with the supervisor to ask for tasks and return their results. Their internal state
cycle is shown on figure 8. A typical run of the cycle is to receive a task, do it,
and inform the supervisor about the result.

A typical problem in this application occurs when a worker fails. Without
any specific mechanism to deal with this issue, the supervisor agent may wait
indefinitely the completion of the task, while the worker agent is ‘dead’, i.e.
the underlying process anomalously stopped. One solution to this issue is to
introduce a system-wide clock and timeouts. Each delegation of a task is com-
pleted with a rendezvous timeout by which the worker agent must finish the
task. Beyond the timeout, the supervisor considers the worker has encountered
a problem and cannot complete the task. The task is then assigned once more
to an available worker.

3 I.e. agents in the following. This description tries to remain general in terms of
Software Engineering.
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Some problems of this approach are the supervisor failure point and the
limited flexibility. Distributed computing techniques exist to recover from su-
pervisor failures (e.g. the ‘primary-backup’ architecture [24]) but they maintain
a centralization point that may cause performance drops in case of failures.
Workers cannot interact directly to recover locally from some issues without the
supervisor. The flexibility of a MAS approach may be improved.

5.2 Tag interaction approach

The purpose of using tag interactions in the load-balancing scenario is to im-
prove the flexibility of the application by removing the supervisor role and opting
for a fully distributed approach. Tanenbaum explains that fully distributed ap-
proaches are ideally ‘better’ than centralized ones, but they are also often less ef-
ficient [24]. In our case, experiments to evaluate the performance of the approach
is let for future work. We focus in this paper on describing how tag interactions
can improve flexibility in the fault tolerance mechanisms of the system.

Figure 9 shows the system workers and their tags. Sensors and actuators
on the softbody are simply message boxes to communicate in the environment
and they are not represented for clarity reasons. Workers are endowed with two
types of tags in their public state. Ref is the reference to the task the agent is
executing (agents get a reference to the task in the object-oriented meaning).
ECD (Expected Completion Time) is the second tag to indicate the time by which
the worker expects to complete the task it is performing.

The internal state machine of the workers is more complex due to the re-
moval of the supervisor role. Figure 10 shows a cycle with a disjunctive branch.
Workers start by ‘looking around’ in the environment about tags on agents in
their neighborhood. If all ECD tags are future dates, the worker gets a new task
from the repository. If an ECD tag is past, it means the corresponding agent is
considered as dead and the worker prehends its task by reading the Ref tag. The
next step in the cycle is for the worker to update its own tags to let others know
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Fig. 10. Internal state cycle of worker
agents with tag interactions. The seman-
tics of the arrow is the same as figure 8.

about its current state. The worker then performs the task and drops the result
in the repository.

The role of the environment is to support the tag interaction processes. It
publishes any change in agent public states and it enforces rules that can depend
on the task type. One general rule serves to maintain the system consistency:
Agents can only publish Ref tags that correspond to references to existing tasks
in the repository, i.e. the environment checks that tag values belong to the set
of task references.

Notice that such a tag interaction process is arguably very costly if the envi-
ronment is to publish any change to all workers in the system. This is the reason
why the topology of the environment has to constrain the spread of change publi-
cation by the definition of the worker neighborhood. We chose to place two agents
in the neighborhood of each worker. In terms of spatial metaphor, workers are
like equally distributed over a circle. The environment publishes the public state
change of a worker to the two agents in its neighborhood, which significantly
reduces the theoretical communication cost of tag interactions (from O(n2) to
O(n), where n is the number of workers).

5.3 System run with fault tolerance

Tag interactions allow to decentralize the fault tolerance aspect of the application
as can be observed in the following run of the application. Initially, the client
places three tasks (t1, t2, t3) in the repository and there are two workers in the
system (w1 and w2). Figure 11 represents a run where w1 fails and w2 exploits
the tag information to automatically recover the failure.

The worker w1 looks around for tags, but does not notice any problem (initial
stage), so it gets t1 and starts performing it with a public state (Ref, t1) and
(ECD, d1), where d1 is a date in the future. The second worker w2 does the same
and performs t2 with the corresponding public state where d2>d1. During the
performance, w1 fails and w2 completes its current task. The worker w2 can start
a new cycle and looks around. As d2>d1, w2 can deduce that w1 is dead, so that
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Fig. 11. Sequence of system states in the considered run.

it prehends the task t1 and performs it. In the last cycle, w2 looks around but
no problem exist in the neighborhood, so that it performs the last task t3. The
system request is then completed, despite one fault that has been automatically
recovered.

6 Discussion

6.1 Applications

A criteria of an application that lends itself to tag interactions is observation.
If observation is an essential characteristic of agents in an application, then
tag interactions can be relevant. Also, the load balancing scenario presented
in section 5 shows how tag-based observation can contribute to the flexibility
of software that rely on more classical schemes (e.g. the supervisor approach).
Applications that could leverage tag interaction are first simulations that need
more realistic interaction patterns encountered in nature, as we illustrated in this
paper. In particular, the environment plays an important role in simulations and
the introduction of tag interaction can rely on extending existing work.

Beyond simulation, tag interactions are useful in some electronic market
types, where interaction opportunities are a critical factor. Auction systems
(see [25] for a survey) and normative agencies such as Electronic Institutions [4]
are active research areas that rely explicitly on direct interactions, and tag inter-
action can introduce more flexibility. We described such an application to show
such a flexibility, and tag interactions contribute positively to the system perfor-
mance [15]. Buyer agents expose the item types they want as public state. While
they are actively searching appropriate sellers (e.g. with the directory facility
of the FIPA), interested sellers can detect the public state of buyers (observa-
tion) and take the initiative to contact them, thus leading to a more dynamic
market. Regulation from the environment implements and enforces functions of
Electronic Institution to state what is authorized in the market, e.g. ranges of
authorized market prices.

6.2 Present Issues

Various improvements can be applied to the current model of tag interaction. In
previous work [16], agents could interact with others and objects. Although the



present paper focuses only on agents, the introduction of the softbody allows
us in future work to exploit and generalize our approach to objects, where an
object is assimilated to an ‘empty softbody’, i.e. without agent internals. In
such a case, the public state would not reflect agent internals but an interface
to handle the object, like with coordination artifacts [13] or the interface of web
services. Another extension is to deal with simultaneous and concurrent events in
the system, whereas we currently treat actions in sequence. In fact, these issues
are discussed for many years [5, 28], and we let them open for the moment. One
consequence is that current implementations of our model feature a centralized
component for the environment, whereas MAS would rather leverage distributed
approaches. The model abstracts distribution issues for system design as it seems
more convenient to first specify a solution by defining the responsibilities of the
environment, and then to analyze appropriate implementation. In the case of
a fully distributed approach, further research must be conducted. The work on
AGV from Weyns et al. seems an appropriate base solution [29]. Agents are
associated to ‘pieces’ of environment that are synchronized when required.

Finally, the issue of environment regulation deserves further studies on how
to specify and implement rules. In particular, the issue of ‘conservative rules’ (in
a physical sense) seem to be a powerful mean to control the system entropy.

6.3 Related Work

Castelfranchi described the Behavioral Implicit Communication (BIC) in [3] to
explain why agents can communicate and coordinate by acting instead of using
languages. For example, an escaping prey ‘communicates’ its position to the
predator only by moving, when it would prefer avoiding it. However, the prey
is not explicitly the sender of messages about its position in the sense of usual
Agent Communication Languages, i.e. it has no mental attitude of a sender. So
who is the sender in the prey example? BIC explains this issue by identifying a
power of observation that allows the observer to ‘pull’ messages. Even though
the prey does not communicate its position, the predator fetches the information
by observation. BIC has been related to the environment of agents as the source
whereby observers can get information about others. The further stage we aimed
at in this paper is to enact the observation of agents (the public state) in a
concrete interaction model.

In the present paper, we proposed to exploit embodiment in tag interaction
among machines, and thus allow software agents using their body and infor-
mation about others. Our proposal can be compared to the position of Kush-
merick [11], with more emphasis on a model that can be engineered and the
environment. To our knowledge, little work has discussed the exploitation of a
body in the interactions among software agents, in spite of the potential benefit
of such an approach. Wrapper agents are usually interfaces to legacy programs or
they add some functionalities such as code mobility. Such wrappers are not en-
tities that reflect the state of the wrapped entity, so that we think it differs from
the softbody. The KGP model of agency is implemented with a stateful body
that features sensors and actuators [23, 8]. The state of this body collects the



sensed information to feed the agent knowledge base about the world. Such state
is complementary but differs from our public state which exposes information
about the agent itself to other agents in the system.

The public state is related to the ‘tags’ proposed by Holland in his theory
of complex adaptive systems [7]. This theory has been exploited in the work of
Hales in biologically-inspired systems [6]. The public state is another version of
the tags. The essential difference with the work of Holland and Hales is that the
public states is an attempt to use tags as an engineering element in engineering
SMAS.

Finally, software environments have been considered in various work to medi-
ate and rule interactions. In particular, the coordination artifacts (CA) of Ricci
et al. allow to build such environments [19]. Engineering environments with CA
populates SMAS not only with agents, but also with artifacts that mediate inter-
actions among agents (coordination). Although CA can provide an engineering
approach to address tag interaction, we think CA cannot cover the notion of
body. The Agent Coordination Context of CA [20] shares similar concepts with
the softbody, but the ACC is an interface that is lent to agents during interac-
tions, whereas the body belongs to the agent architecture.

7 Conclusion

In this paper, the environment in SMAS is seen as a solution to support tag
interaction. The environment provides an adequate abstraction to describe the
mechanisms involved in tag interaction and to lead to an implementation frame-
work. Also, tag interaction exemplifies a category of applications that require an
environment as first-class entity. We think that the connection between tag inter-
action and environment is an indication that future development of interaction
theories should rely increasingly on the environment as key element.

In future work, we intend to refine this model so as to aim at more flexible
and realistic systems. We aim at relating our model to distributed implemen-
tation schemes, whereas the current methodology leads to a rather monolithic
implementation of the environment. Rules of the environment are also an impor-
tant research direction with the definition of ‘conservative rules’. Such rules may
help in defining a metrics of the system entropy to evaluate its states. The exam-
ple application presented in this paper is the subject of a series of experiments
to evaluate the benefit of using tag interactions, compared to its computational
and communication costs. In addition, we are studying other application sce-
narios that leverage tag interaction, so as to identify a candidate methodology
for design issues (e.g. the selection of public state). Although the present paper
focuses on agents, the softbody can be exploited in future work to model objects,
assimilated to an ‘empty softbody’, to seamlessly represent interactions among
agents and objects. Finally, the current mechanisms underlying tag interaction
are to be modified to handle action simultaneity and concurrent interactions in
the system, which should take advantage of other improvements in the modeling
of tag interaction spaces.



Acknowledgment

The authors would like to thank Danny Weyns, Paolo Petta, the teams of
AgentLink III and the Jožef Stefan Institute.
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