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Abstract

The joint exploitation of open-access natural resources is often modeled as a social dilemma
with no escape for rational actors. Nevertheless, real individuals are not helplessly trapped in
this dilemma and are often able to sustainably manage their resources by building endogenous
institutions. The agent-based model presented here simulates the management of a common-
pool resource by focusing on the relation between agents’ beliefs and institutions. The con-
ditions where agents can build management institutions lead to much better outcomes than
the base model, where agents can only rely on individual beliefs in order to limit the resource
consumption. This happens despite the fact that agents act in a competitive environment.
Overall, higher sustainability can be obtained thanks to the establishment of institutions: just
as observed in empirical settings.

Keywords: common-pool resources; agent-based simulation; institutional building; sus-
tainable development; forest management

1 Introduction

Starting from Hardin’s seminal article The Tragedy of the Commons (1968), the joint exploitation
of an open-access natural resource is often modeled as a social dilemma, with no escape for ra-
tional actors. Nevertheless, subsequent work has shown that real individuals are not helplessly
trapped in this dilemma and can instead sustainably manage their resources by building endoge-
nous institutions (e.g. Berkes et al. 2003; Lam 1998; Ostrom 1990; Ostrom et al. 2002; Tang
1992).

This paper focuses on the institutional supply process by explicitly modeling the relation be-
tween the evolution of beliefs among the actors involved in exploiting the common resource and
the development of management institutions. The idea of a macro-level institutional change driven
by changing knowledge, beliefs, informal constraints and other micro-level attributes of actors is
rooted mainly in North (2005) and Ostrom (2005) work. More specifically, actors are supposed to
hold beliefs and mental models of the world, which influence both their perceptions (input from
the external environment) and their choices (output to the external environment). Beliefs and men-
tal models are formed and updated using two sources of information: the feedback received from
the external environment and the shared belief systems. The process of forming beliefs and mental
models is therefore internal, but is also influenced larger cultural/institutional structures. While
the institutional structure influences individuals’ internal models, it is not an independent variable.
North (2005) argues for a strict relation between the institutional framework and individuals’ be-
lief systems The institutional framework is, from many points of view, an external manifestation of
the latter and its evolution strongly depends on changes occurring in belief systems. At the same
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time, the institutional structure constrains choices and actions, directly or indirectly influencing
individual’s beliefs. This picture is, of course, an over simplification both of empirical reality and
of North’s ideas. Nevertheless, for the purposes of our work, it is enough to outline the existence
of a mutual feedback loop between micro-level shared beliefs and macro-level institutions, which
constrains individuals’ actions, but are simultaneously influenced by the aggregation of beliefs.

This framework, however, remains a largely informal one. The nature of the relation between
belief change and institutional evolution needs to be defined with precision. What are the forces
driving micro-level changes? How do individuals’ internal changes translate into macro-level rule
transformations? How can individuals acting in a competitive environment cooperate in order to
build shared institutions? In order to try to answer to these questions, we created an agent-based
model which simulates the management of a common-pool resource (CPR). The choice of the
CPR situation is due to its importance in both theoretical and practical terms. Theoretically, it is
a well studied case of social dilemma, whose implications extend far beyond the strict description
of the situation (e.g. Ostrom 2005; Ostrom et al. 1994). Empirically, the management of shared
natural resources is one of the key challenges facing humanity and its development (e.g. Diamond
2005; Stern 2007; Smil 2002; Volk 2008).

The model proposed here uses a forestry scenario. It can however be easily adapted to the
peculiarities of other resources as well. The simulation focus lies in the relation between micro-
level beliefs held by agents and macro-level institutional changes. What is especially important is
the explicit modelization of internal beliefs. More specifically, each agent, besides having access
to public information regarding the actual state of the resource, also holds individual beliefs about
how this state should be and about the best actions to reach this desirable state. The agent’s beliefs
subsequently aggregates into institutional rules that modify the agent’s actions and may also lead
to the development of new beliefs, thanks to their influence on agents’ behaviors and earnings.

Note that, in order to keep the model simple, many rules that are fundamental in real life are
only assumed in our simulations. For instance, boundary rules defining who has the right to use
the common resource are implicitly incorporated in the model by assuming a stable population
of agents throughout the whole run. Similarly, collective-choice rules (Ostrom 2005, 58–60) are
limited to a single qualified-majority rule. Despites those limitations, the proposed model pro-
duced interesting results. First, due to the competition among agents, the spontaneous beliefs are
insufficient to allow a sustainable management of the common resource. Second, the introduction
of the possibility of building institutions significantly improves resource use both economically
and ecologically under a wide range of parameters. Third, the dynamics of the model substan-
tially reproduce those found in real settings: open-access resources are doomed to destruction, but
strong institutions are created following shocks due to resource overuse and subsequently persist
over time (e.g. Berkes 1998; Carlsson 2003; Johannes 2002; Pinkerton 1998).

The paper is organized as follows. Section 2 presents the theoretical and empirical background.
The base model — where beliefs evolve, but no institutions are created — is defined in Section 3.
Management rules are introduced in Section 4, which presents the Institutional evolution (hereafter
Inst) model. Section 5 concludes the paper by discussing its results.

2 Research background

Common-pool resources (or simply “commons”) are natural or man-made resources shared among
different users. This produces competition that often (although not necessarily) leads to their
degradation or even to destruction. Many natural resources fall in this category and are today
“chronically” overused. Examples are forests, fisheries, water basins, biodiversity and even the
atmosphere. Following Hardin’s original statement, the management of CPRs is often depicted
as a social dilemma and formalized using different variations of n person Prisoner’s dilemmas
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or Public good games. These all share the idea that the rational equilibrium of the game is well
below the collective optimum theoretically achievable by restricting resource use to a sustainable
level (e.g. Casari and Plott 2003; Dawes 1973; Milinski et al. 2002; Ostrom 1990; Ostrom et al.
1994). In contrast with theoretical predictions, much empirical research, in particular Ostrom
(1990) seminal work, shows that successful management of the resources can be achieved by
building endogenous institutional. More specifically, the “tragedy” is avoided thanks to institutions
that define clear exploitation rights and create incentives to prevent resource overuse. In other
words, the tragedy of the commons is the tragedy of open-access resources, not necessarily of
well managed CPRs.

Most studies on CRR management is field-based work. Nevertheless, experimental research
also plays an important role. An important finding of CPR experiments is that, when the protocol
allows communication and/or mutual sanctioning, the participants actively try to devise a shared
set of rules to avoid resource overuse (e.g. Cardenas 2000, 2003; Janssen et al. 2008; Janssen
and Ostrom 2008; Ostrom et al. 1994). One advantage of using experimental procedures is that
the very process of institutional building can be observed in real time. In the course of standard
field-work, researchers can rarely follow the discussion and bargaining processes that lead to re-
source managing rules and subsequently observe the actual effects of the new institution. On the
other hand, many CPR experiments allow communication among the participants between each
exploitation round. This means to observe the process whereby participants agree on a given
management rule can be observed. It is worth noting that, by agreeing on a shared set of rules
to avoid resource overuse, the participants solve a second order social dilemma. Formally, this
is not easier to solve than the original resource dilemma. However, both CPR and Public good
experiments show that subjects are willing both to invest to create rules that foster group coop-
eration and to punish noncooperators (e.g. Barclay 2006; Cardenas et al. 2000; Fehr and Gäcther
2000, 2002; Henrich et al. 2006). The fact that second order social dilemmas are relatively easy to
solve is probably due to the psychological satisfaction that humans derive both from cooperating
with other cooperative individuals and from punishing free-riders (de Quervain et al. 2004). At
a deeper level, it is probably part of our evolutionary adaptation for cooperation in small groups
of hunter-gatherers that represent the human ancestral environment (Boyd et al. 2003; Fehr and
Fischbacher 2003; Gintis et al. 2003; Richerson and Boyd 2005).

Of particular interest is the recent series of experiments by Marco Janssen and colleagues us-
ing an innovative “dynamic interactive spatial commons” experimental platform (Janssen et al.
2008; Janssen and Ostrom 2008). In contrast with standard CPR experiments, based on abstract
descriptions of the game structure and discrete time events, Janssen developed a visual platform
allowing real-time interaction among participants. They play by moving their “avatars” on a two-
dimensional space where the resource units harvested by the participants “grow” (for a detailed
description of the experimental platform, see Janssen et al. 2008). The main aim in building the
new platform was to “create a natural resource harvesting situation with continuous opportunities
for repeated decisions regarding the speed and amount of harvesting [...], and with an intuitive,
interactive way to harvest” (Janssen et al. 2008, 294). Besides improving the participant’s com-
prehension of the situation, the platform allows more realistic management rules, for instance
to define property rights based on spatial boundaries or specific harvesting periods, followed by
resource restoration phases.

In the initial round of both experiments, participants in groups of five were allowed to move
their avatars freely in order to collect tokens representing the resource, each worth $0.01. The
resource was a renewable one and new tokens appeared in real-time on the virtual space following
a density-dependent probabilistic function. Each experimental round lasted a few minutes. Under
this conditions, the participants completely destroyed the resource in usually less than two minutes,
hence realizing sub-optimal earnings (on average, 1/4 of the potentially feasible ones) just as in a

3



standard CPR experiment.
In the subsequent round of the first experiment (Janssen et al. 2008), participants were allowed

to vote for the implementation of an externally enforced private property rule (i.e. to split the
commons into equal parts among them).1 Voting for the rule was costly and the resulting institution
was actually implemented only when the majority of subjects were in favor of the new rule. The
implementation of the institution had therefore the structure of a second-order social dilemma:
more precisely, a public good game with a provision threshold. Nine out of the twenty groups
that enjoyed the voting possibility actually decided to implement the institution. Those groups
significantly improved the management of the commons and their earnings comparing with both
the initial round and the groups that failed to implement it.

The second experiment (Janssen and Ostrom 2008) substituted the voting procedure with a ten
minutes communication phase that occurred between the different exploitation rounds. The com-
munication allowed participants to exchange information and to devise their informal management
rules. Nevertheless, no formal regulation or enforcement of any rule was possible and participants
played the subsequent rounds using a protocol identical to the first round one. In most groups, par-
ticipants actively used the communication time in order to coordinate their action. One common
result was the splitting of the commons into private “properties”, using different visual attributes
of the resource system.2 Other groups tried to envisage strategies enabling a regeneration of the
resource, e.g. waiting before the start of harvesting, establishing resting periods, or envisaging
“zigzag” movements of avatars to avoid the formation of large bare areas. Despite the fact that
the envisaged institutions could not be formally enforced, most groups performed better in the
second round, improving both resource conditions and participants’ earnings. Even better was the
performance during the third round, which followed a second communication period, used mostly
to “tune-up” the management rules devised earlier. It is worth noting that, while the average per-
formance during the second round of the second experiment was similar to the second round one
of the first experiment (where the private property rule was formally enforced), the performance
during the third round of the second experiment was even higher. This shows how various informal
arrangements in a formally open-access situations can work even more effectively than a single
externally-enforced rule.

This second experiment is especially interesting in showing the effectiveness of informal in-
stitutions devised by participants. Note that subjects taking part in the experiment were under-
graduate students without any experience of real-world natural resource management. However,
they rapidly “discovered” two of the strategies mostly used by real CPR managing communities,
namely spacial allocation of the resource and control of the harvesting time. More generally, the
experiment shows how easily participants agreed on building a management institution as a “nat-
ural” way of coordinating their action and fostering cooperation, despite the second-order social
dilemma structure of the situation. This replicates the finding both of previous experiments and of
a huge number of field studies, However, the possibility to observe the actual rule-shaping process,
including its rapidity and its effectiveness, clearly brings added value to this study.

While Janssen and colleagues’ experiments largely inspired our work, before presenting it
it is worth summarizing some previous studies that used simulation techniques to model CPR
exploitation. In one of the first studies using simulation to analyze socio-ecological dynamics with
an explicit “tragedy of the commons” structure, Grant and Thompson (1997) developed a system
dynamics model to check the different performance of optimizing (rational) vs. reciprocity-based
strategies. Their results showed how reciprocity outperforms optimizing both economically and

1Actually, not all the participants’ groups were allowed to vote for the rule. Control treatments included groups
playing all the rounds like the first one, and others where the private property rule was imposed by experimenters.
Since they are not of direct interest for our research, those treatments will not be discussed here.

2This rule was implemented especially when the participants’ group included one or more subject that already
participated to the first experiment.
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ecologically. However, the model was extremely simple with only two “agents”3 sharing the
common resource, both using the same strategy.

In another study, Castillo and Saysel (2005) followed the long ecology tradition of system
dynamic modeling to computationally replicate the results of a field experiment conducted with
fishermen and crab hunters of the Colombian Providence Island, which replicated both the struc-
ture and findings of the Ostrom et al. (1994) and Cardenas (2000, 2003) experiments. Their model
simulated the experimental data with only a relatively poor degree of accuracy. However, an in-
teresting hypothesis deriving from the model was that crab hunters were more cooperative than
fishermen. While plausible in the light of the different gender/age structure of the two populations
(fishermen were adult males, while crab hunters mostly females and children), this hypothesis was
unfortunately not empirically checked by the authors.

Using system dynamics to model CPR management suffers from significants shortcomings.
While it may be appropriate to model the underlying dynamics of ecological systems, system dy-
namics can only roughly portray most of the individual attributes of resource users (preferences,
strategies, norms of behavior, etc.) and completely fails to capture the dynamics of interaction.
Agent-based modeling (ABM) is an approach better suited to model most aspects of social in-
teraction. Using ABM, both individual actions and decision-making routines can be explicitly
included in the model (Gilbert 2008). Probably the first work using ABM to model CPR situations
was Deadman et al. (2000). Deadman modeled agents that replicated most of the findings of Os-
trom et al. (1994) experiments, including the strong effect of communication on cooperation and
sustainable use of the resource. It is worth noting that nothing was included in the model that di-
rectly specified system behavior, which resulted instead from the aggregation of individual agent
choices. Nevertheless, the model succeeded in replicating the experimental findings, especially
when the “communication” routine used a “central authority” to inform agents of the strategy that
best performed in past rounds. What is especially interesting here is that the “central authority”,
although unable to enforce the proposed strategies, represented a rough sketch of an institution.
This is similar to what happens in experiments, where individuals use the communication periods
to devise arrangements that avoid resource overuse. Just as in the Deadman model, subjects par-
ticipating in CPR experiments cannot formally enforce rules. Nevertheless, most of the time, they
succeed in improving their performance thanks to the establishment of informal institutions.

In a recent paper, Janssen and Ostrom (2006) explicitly modeled the emergence of institutions
in a population of heterogeneous agents. In their model, the CPR has a “physical structure” similar
to that subsequently used as experimental platform.4 Besides playing the CPR game, agents had to
decide whether or not to implement an institution able to regulate the exploitation level to a fixed
quantity. The decision routine of agents was based on two factors: the state of the resource and
the amount of trust existing in the system. The latter depended on the outcome of trust games that
agents played as a side activity that accompanied the main CPR game and on the heterogeneity of
agents, modeled using “tags” identifying arbitrary belonging group. The main result of Janssen
and Ostrom’s work was that agents had to experience one or more resource crisis before being
willing to create an institution. Nevertheless, in most conditions once the institution was in place
it appeared to be able to coordinate the agents’ actions and to significantly improve the economical
and ecological performance of the system.

3Note that agents were not explicitly modeled. Rather their behavior was implicitly included in the system dynamic
description.

4The development of the experimental platform was inspired by the simulation results (Marco Janssen, pers. com.).
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3 The base model

Our model retains a number of elements from Janssen and Ostrom’s platform, including the spa-
tially defined resource and the possibility of institutional building. Nevertheless, its focus lies in
the relationship between the internal (micro) states of the agents and system (macro) outcomes,
including the establishment of institutions. The core of the model is the formalization of the “be-
liefs” (or mental models) that agents hold regarding the desirable state of the resource and the
best way to achieve it. All outcomes, including the harvesting levels and (in the Inst model) the
establishment of a management institution, depend on those beliefs.

According to North (2005), a strong relation exists between the belief systems and the in-
stitutional framework that humans use to coordinate their behaviors. Beliefs and other informal
constraints influence human behavior both directly, through shaping the perception of the world
and of what actions are appropriate in a given situation, and indirectly, by affecting the develop-
ment of the institutional structure. Both influences have been considered in our model, even if
the latter will be included only in the Inst one. At the same time, the macro states of the model,
i.e. the competition among agents and the conditions of the resource, influence the agent beliefs.
The resulting feedback loop — which is not explicitly modeled, but results from the interaction of
the agent actions with the characters of the ecological system — is the main driver of the model,
largely influencing its final outcome.

3.1 Base model definition

A total of n = 100 agents act on a regular lattice of degree k = 8, having the form of m×m
toroidal surface with m = 50.5 Each patch represents the forest area that can be logged in one
round. Patches have the attribute bxy ∈ [0,bmax], with x,y ∈ {1, · · · ,m}, which stands for the total
tree biomass present at a given moment, with bmax representing the maximum possible level of
biomass per patch. At the beginning of the simulation, the whole area is green with bxy randomly
distributed in the [1

2 bmax,bmax] interval, simulating the exploitation of a mature forest area.
If not logged, trees in each patch with bxy > 0 grow at a fixed rate (0.5 units per round) up

to the point when they reach bmax. If the patch is empty (i.e. bxy = 0), trees start to regrow
with a probability depending on the state of the neighboring patches. More formally, the function
defining the regrowing probability of an empty patch is

p = p∗
N +1
k +1

(1)

where p∗ = 0.05 is the basic probability of re-growth, N is the number of neighboring patches
with bxy > 0 and k is the degree of the graph, i.e. the neighborhood dimension. This implies that
the regrowth probability of an empty patch with all its neighbor “green” (i.e. with bxy > 0) is 0.05
per round, while the probability for a patch surrounded by other empty patches is only 0.005̄ per
round.

The function presented in (1) is similar to the one used by Janssen et al. (2008) for their
“spatial commons” experiments, with the only difference that the re-growth probability for an
isolated patch is small, but strictly above zero. Janssen’s choice of having a zero probability
of regrowth for isolated patches was motivated by the need of creating a vivid “tragedy of the
commons” situation for participants. However, the function in (1) reproduces the natural recovery
capacity of forests (at least of temperate ones) better, even after large scale clearing, due to seed
conservation in the soil, seed dispersion by birds and other animals or other mechanisms.

5Notice that test exploration of the dynamics of the same model with up to 1000 agents, moving on a correspondingly
increased surface, led to results similar to the ones presented below.
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Agents are defined by two characters representing their beliefs. First, they have a general
belief about the “right” overall level of biomass, which represents a sort of cognitive model about
how the “world” should be. Formally, each agent i ∈ {1, · · · ,n} has a character βi that represents
the fraction of the initial tree biomass that should be ideally conserved in the commons. At the
beginning of each run, this character is drawn randomly from a normal distribution with mean
0.5 and standard deviation 0.25 and it remains subsequently constant. A second belief regards the
level of cutting κi that is able to maintain the actual tree biomass at the desired level. Practically,
this character is the minimal level of tree biomass that a given patch should have in order to be
logged. All agents have κi = 0 when they enter the game, but this value can subsequently change
(see below).

The simulation is divided into periods, each lasting 10 rounds. Each simulation run covers
2000 periods. Periods represents a relatively extended period of time. Each agent i has a payoff,
which is set to zero at the beginning of each period and subsequently depends on its actions. In
every round, i pays a fixed cost c independent of its actions. Its earnings depend instead on the
amount of biomass on its current patch. More specifically, the agent starts logging only if bxy > κi,
where x and y are the coordinates of the current agent location. If the condition is true, bxy is added
to its current payoff. If the biomass in its current patch is less or equal to κi, the agent checks if
any of the patches in the interval x±2,y±2 has biomass above that value. If this is true, it moves
to one of those patches, pays the fixed cost and has no earnings in the current round. If none of
the patches has enough biomass, the agent moves randomly to one of the patches included in the
x± 2,y± 2 interval and has no earnings. Earnings and costs are summed within each period to
form the agent payoff.

At the end of each period a few updates are made. First, agents update their κi belief. More
specifically, each agent checks its current period payoff (Pt) and compares it with the one achieved
in the previous period (Pt−1). If the current payoff is greater or equal to the previous one, it
maintains its previous beliefs. If it is lower, the agent changes κi with a probability proportional
to the absolute value of the difference between the two results. In formal terms, the probability q
of changing κi is given by

q =
|Pt −Pt−1|
|Pt |+ |Pt−1|

(2)

with q rounded to one if greater than this figure. A random extraction determines whether the agent
will actually change its belief. If this happens κi is modified according to βi. More specifically, if
Bt > βiB0 , where B0,Bt = ∑

m
x,y=1 bxy represent the total resource biomass in the initial (0) and in

the current (t) period respectively, the agent decreases κi by a random value in the interval [0,9].
If Bt < βiB0, it increases κi by the same amount. The idea behind this function is that agents
suffering from a payoff reduction are “unsatisfied” and are motivated to modify their beliefs and,
consequently, their behavior. Since they posses a cognitive model of the “right” state of the world
(i.e. βi), if the current proportion of biomass is lower than this benchmark, they will ascribe the
payoff reduction to an excessive cutting level and will therefore increase their own κi. Vice-versa,
if the proportion of biomass is higher than the benchmark, they will reduce their κi and start to log
patches with lower biomass.

At the end of the belief update routine, agents undergo a process of selection, representing
market competition. This leads to the bankruptcy of unsuccessful agents and their substitution by
new entrants. These are assumed to copy the best practices available in the system. The process
occurs in two steps. First, one of the agents with the highest period payoff and one with the lowest
period payoff are selected. Then a copy of the former (i.e. its βi, while κi is always equal to zero
when a new agent enters the game) replaces the latter. In this step, there is a 1% probability of
“mutation”, representing copy errors or simply new entrants with innovative beliefs. At the end of
the selection routine all payoff are reset to zero and a new period starts.
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The base model will be tested on low/high cost and low/high maximum biomass conditions,
namely c ∈ {1,5} and bmax ∈ {10,20}. Note that the actual value of the simulation parameters
has little empirical meaning. The main goal of the parameter setting is to build an environment
of difficult forest management, possibly leading to overharvesting of the commons and to low
average payoffs. The base model will therefore serve as a test platform to check the effects of the
subsequent introduction of the management institutions. All the models presented here have been
implemented using the C++ language.6

3.2 In search for optimality

In order to make the results comparable and independent from the specific choice of the parame-
ters, they will be presented as proportions of benchmark levels. As benchmark levels for the num-
ber of green patches and the total biomass, we will use the values of those variables at the start
of the simulation. In order to evaluate the payoff benchmarks, for each parameter combination
we ran simulations where all the agents were forced to harvest patches only when their biomass
was above of a fixed threshold equal for all. In practice, we set the κi at a fixed level, equal for
all agents. We explored all possible levels of κi ∈ {0,0.5, . . . ,(bmax− 0.5)}, corresponding to all
possible levels of biomass in each patch except bmax (remember that setting κi ≥ bmax means that
the agents simply are not allowed to harvest), by running 50 simulations for each of them. Under
this condition, the system reaches an equilibrium in about 20 periods. We therefore limited the
number of periods of the benchmark model to 120. Figure 1 presents the average payoffs for each
condition, calculated from period 20 onwards.7

[Figure 1 about here.]

The maximal payoff from each combination of c and bmax coincides with the optimal one since
no κi level can guarantee a higher one at equilibrium. The main result of this benchmark model
is probably that the optimal payoffs always occurred for κi close to bmax. More specifically, this
value resulted from κi = 0.95bmax for all parameter combinations. The minimum payoffs always
corresponded to agent that did not harvest anything during the whole period and were obviously
dependent on c (Tab. 1). All results presented from now on will be re-scaled to the interval
corresponding to the minimum and the maximum payoff for each (c,bmax) combination.

[Table 1 about here.]

3.3 Base model results

In the base model, the resource overharvesting reached a point where only a few patches per round
developed new vegetation, which was almost immediately cut down (Fig. 2). This was especially
evident with bmax = 10, while the process proceeds somewhat slower when bmax = 20. However,
even here, a clear trend was present, leading to the complete destruction of the resource.8

[Figure 2 about here.]

6A first exploratory implementation of the model was based on NetLogo 4.0.3 platform (Wilensky 1999). Subse-
quently, a C++ implementation was chosen to increase computational efficiency. Besides some minor differences due
to the impossibility of reproducing the same routines exactly using two largely diverse codes, the models implemented
on the two platform led to analogous results. All codes are available from the author upon request.

7All statistical analysis and plots have been produced using the R 2.8.0 platform (R Development Core Team 2008)
8Some tentative runs, encompassing a higher number of periods, showed indeed that the process of resource deple-

tion of the resource ends up as in the bmax = 10 case.
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Table 2 shows the average results for the final 100 periods of the simulations. Both the number
of green patches and the total biomass were reduced to a small proportion of the initial quantities.
Payoffs were far from the optimum (from 1/8 to 1/3, depending on the parameter conditions),
showing that indiscriminate cutting does not pay off. Especially interesting was the effect of the
selection mechanism on the βi of agents. This variable was steadily reduced over time, although
at a faster rate for lower maximal biomass, up to the point that it eventually reaches zero or even
slightly negative values. This implies that the selection process leads to agents believing that the
“right” state of the resource is one with no biomass on it. The κi value declines accordingly, up
to the point when it almost reaches zero (for bmax = 10) or, at least, a small proportion of the
maximal biomass (for bmax = 20). Note that in the latter case an increase of the number of periods
also leads κi close to zero.

[Table 2 about here.]

All explored parameter configurations led to a qualitatively similar picture, even if increasing
bmax at least reduced the speed of depletion. A closer look at the dynamic of the simulation showed
a failed attempt of sustainable resource management. More specifically, the strong decline of
the biomass in the initial periods of the simulation led to a temporary increase of the agent κi

(Fig. 2e) and to a temporary improvement. However, this trend lasted for only 20–30 periods
and the subsequent biomass decline was no longer reverted. This temporary inversion of the
depletion trend was due to the different speed of change of the agents’ beliefs. While agents can
rapidly adapt their κi to any new situation, the βi changes are driven by the selection process,
which involves only one agent per period. Of course, a faster selection process would be easy
to implement. Nevertheless, the interplay between hard-wired, slow-changing deep beliefs and
easy-to-change operational procedures is probably important for real human beings. Moreover,
the resulting dynamic is instructive in itself: while agents initially try to cooperate by increasing
their κi, the very fact that they share an open-access resource where the dominant strategy (i.e.
the strategy leading to the maximal payoff in the current period) is defection leads in the medium
term to the selection of “rational” agents overharvesting their resource. This is the “tragedy of the
commons” in all its harshness.

4 The institutional evolution model

4.1 Inst model definition

The institutional evolution model retains all the elements of the base model and introduces the
effects of an endogenous management institution. The institution regulates the behavior of agents,
but its evolution depends on their beliefs, which evolve as in the previous model.Nevertheless, the
agents’ beliefs no longer influence the agents’ behaviors directly, which depends instead on the
current institutional rule. This rule is modeled using a system-level variable K that determines the
minimal level of bxy needed to log a given patch. At the beginning of the simulation K = 0, i.e.
the existing institution allows agents to cut any patch, but this value can subsequently change as a
function of the agents’ beliefs (Fig. 3).

[Figure 3 about here.]

Institutional change depends on whether the agents are satisfied with the current institution.
An agent is unsatisfied when its current payoff is declining compared with the previous period (just
as in the base model) or when the current institution is too far from its beliefs. More specifically, a
“tolerance level” τ is now introduced into the model and an agent i become unsatisfied if |K−κi|>
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τ . Note that even unsatisfied agents do not try to cheat by cutting patches with bxy ≤ K (this point
will be further discussed below). Nevertheless, they become willing to change the institution.

When the number of unsatisfied agents exceed 2/3 of the population, a new institution replaces
the former one with the new K equal to the average κi of agents. The relatively high share of the
population needed to change the institution reflects the fact that, in real CPR situations, institu-
tional change is usually costly and a large consensus is needed to achieve this goal, at least when
there is no subset of actors able to impose their rule on the majority (e.g. Ostrom 1990, 2005; Sin-
gleton and Taylor 1992).9 Once the new institution is in place, the agents change their behavior
accordingly. Besides the values of c and bmax derived from the base model, the effect of a low/high
tolerance level, namely τ ∈ { 1

3 bmax, 2
3 bmax}, will be explored as simulation parameter.

4.2 Inst model results

A summary of the results for the Inst model is shown in Table 3. For all c, bmax and τ levels, the
introduction of the possibility of building a management institution increased the sustainability
of resource exploitation. Both the number of green patches at equilibrium and the total system
biomass were much higher than in the base model, ranging on average from 25% to 48% of the
initial number of green patches and from 18% to 30% of the initial biomass. A c change did not
influence those figures in a straightforward way. A higher value of bmax significantly increased
both the number of green patches and the total biomas at equilibrium. It is worth noting that
higher tolerance produced a lower number of green patches and lower biomass levels. This point
will be discussed below.

[Table 3 about here.]

The average payoffs were also much higher than in the base model, ranging now around 90%
of the optimum. This is a noticeable result. Thanks to institutional building, agents were able
to cooperate and to considerably improve their payoffs; an outcome perfectly in line with the
empirical litterature on CPRs. A closer look at the dynamics of the model (Fig. 4 and 5) helps
us to understand better how this happened. Unlike the base case, in the Inst one the average βi of
agents tended to remain constant throughout the simulation. The average figure hinders the fact
that in some runs the βi tended to increase, while in others to decrease (although not reaching
values as low as in the base model).

Despite the fact that the selection routine works as in the base model, it no longer determines
the population dynamic that is now driven mainly by random drift. This happens because the man-
agement institution work tends to reduce the effects of the selection mechanism. The possibility of
logging is no longer a matter of individual κi, but depends instead on the system-level value given
by K. Agents with high βi (and therefore high κi) no longer achieve payoffs significantly below the
ones of agents with low βi and consequently they are not excluded from the game. In other words,
the management institution makes the selection mechanism less effective in positively selecting
selfish agents: a process that spread noncooperation in the base model. As a result, cooperation
can spread in the Inst model leading to a long term situation close to optimality.

[Figure 4 about here.]

[Figure 5 about here.]

9Note that decreasing the share of unsatisfied agents needed to change the current institution, e.g. by using a simply
majority rule, leads to a greater number of institutional changes, and consequently to K closer to the average κi values
of each period, without altering much the general outcome of the simulation.
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The dynamics of the model showed increased κi in the first part of the simulation similar to
that in the base model. However, in the Inst model this produced a corresponding rise of K: an
outcome that stopped the βi decline that occurred without the institution-building possibility. Once
in place, the institutions tended to remain stable, even if some runs showed subsequent K changes
and, in some rare cases, the system failed to reach a clear state of equilibrium (Fig. 4e and 5e).

As in the base model, the raise of fixed cost that agents have to pay in each round does not
seem to change the situation much. Increasing the value of bmax tended to increase (even not to
a large extent) the agent payoffs, expressed as proportion of the optimal one. What is especially
interesting is the significantly negative effect on an increase of agents’ “tolerance” . This is true
both for payoffs (Wilcoxon rank sum test, W = 30376, p < 0.001 one sided) and for the two
“ecological” variables, green patches and biomass (W = 25986, p < 0.001 one sided, and W =
26599, p < 0.001 one sided, respectively). The main reason behind this result is that, being more
tolerant, agents were satisfied even with institutions relatively far from their own beliefs. As a
consequence, once in place institutions changed less frequently and failed to adapt to further agent
κi increases, even when a higher K could lead to better overall results.

5 Discussion

The main result of this simulations was probably the formal acknowledgment of the importance
of institutional building. Indeed all conditions where agents were allowed to build a management
institution produced much better outcomes than those in the base scenario, where agents could only
rely on their individual beliefs in order to limit their harvesting. This is not a trivial result, since
institutional building is driven by the evolution of agents’ beliefs, which occurs in a competitive
environment where agents achieving low payoffs are systematically removed from the system and
replaced by more successful ones.

In the base model, the selection process tends to reduce the agents’ βi over time and conse-
quently to increase their willingness to log any green patch. In the long run, this can only lead to
a “tragedy of the commons” situation. This is no longer true when agents have the possibility of
building a management institution. The rule that agents can implement simply states the minimum
level of biomass that a given patch should possess in order to be logged. Initially this value is zero,
corresponding to a rule allowing any action (Crawford and Ostrom 1995). This situation rapidly
leads to a sharp decline of both the biomass in the system and the agents’ payoffs. However, in the
Inst model, the biomass decline changes the agents’ beliefs, which produces stricter logging rules
that increase both biomass and payoffs.

The fact that agents should “experience” a strong decline in biomass before changing their be-
liefs and becoming willing to implement management institutions is consistent with the findings
of Janssen and Ostrom (2006) model. Unlike artificial agents, real individuals can forecast con-
sequences of their actions and, to some extent, they may anticipate resource depletion by limiting
their harvesting levels before reaching dangerous conditions. Nevertheless, just like the artificial
agents, they rarely appear to seize this opportunity. Usually, individual have to “learn” about the
fragility of their natural resources by depleting them before starting to reduce and regulate their
harvesting levels (e.g. Berkes and Folke 1998; Berkes et al. 2003; Diamond 2005; Johannes 2002).
This dynamic was perfectly reproduced by our model.

Resource depletion and subsequent institutional implementation also occurred in Janssen and
Ostrom’s (2008) “spatial commons” experiment. In the first round, participants rapidly over-
harvested the common resource. Subsequently, the introduction of a communication phase al-
lowed them to devise and implement informal institutions that largely improved their results. The
similarities with our simulations are interesting, starting with the incapacity of both real individ-
uals and artificial agents to overcome the commons dilemma without shared rules of behavior.
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Nevertheless, once they reached an agreement on a harvesting rule, both succeeded in sustain-
ably managing the resource. Our model was not intended to simulate the experimental results and
included no data from its participants. Still, the similarities in the payoffs achieved in the two con-
ditions are noticeable. Janssen and Ostrom report that, before the first communication period, the
average earnings of the participants were, on average, about 1/4 of the potential amount. Similarly,
in the base model our agents “earned” between 1/8 to 1/3 of the optimum, depending on the value
of c and bmax. In the last round of the experiment, after two communication periods, participants
approximately doubled the number of collected tokens and, consequently, their earnings (Janssen
and Ostrom 2008, Tab. 2). Our agents, enjoying a formal institution that did not allow for any rule
breaking, performed even better and achieved at least 70% of the optimum.

Unfortunately, we do not know much about the beliefs and the mental models of the subjects
that participated in the experiment. Nevertheless, by explicitly modeling them the simulation
suggests that a situation where agents possess a general idea of the desirable status of the commons
and a more specific belief regarding the strategy that can to lead to this is sufficient to explain
the observed dynamics, but only when subjects are free to devise and implement management
institutions. It is worth noting that this conclusion is also consistent with the picture of institutional
building and change offered by North (2005). Future experiments may be explicitly aimed at
measuring the beliefs of real individuals in a situation akin to our model. The participants’ κi

could easily be measured by letting them vote for a cutting-threshold rule, while their βi can be
inferred from questionnaire answers. This would be a crucial test for the validity of our model
and, at the same time, an extremely valuable source of data for modeling agents that behave closer
to real individuals.

An interesting side result of the model was the lower payoffs achieved in the Inst condition by
increasing the tolerance level. This is somewhat counter-intuitive, since higher tolerance is often
thought to be positively linked with cooperation. However, in this case higher tolerance simply
meant that agents were already satisfied with the institutions that produced outcomes far from
optimum. In other word, constant research for better situations driven by low-tolerant, unsatisfied
agents is important to allow constant tuning-up of institutions, making them better adapted to their
working environment.

The current model is thought to be a starting point for future research. It would be especially
useful to proceed in two parallel directions by relaxing two of its most demanding assumptions,
i.e. the absence of social influence and the impossibility for agents to break institutional rules.
Unlike real settings, our agents changed their beliefs individually without considering what other
agents do or “believe”. Introducing some form of social influence, e.g. on belief formation, would
allow selective learning and shared improvement of agents’ “knowledge”. This is an important
part of human cultural systems (Richerson and Boyd 2005) and would greatly improve the em-
pirical plausibility of our model. It is probable that social influence will lead to a faster rate of
belief update and therefore of institutional change, especially in the initial part of the simulation.
This will probably make the model behavior more subject to rapid shifts, better reproducing the
dynamics observed in real settings.

In our model, agents always conform to institutional rules. This is obviously not true in reality,
where cheating and rule breaking is widespread when not controlled. Relaxing the assumption of
a perfectly controlling institution is therefore important in making the model closer to empirical
situation. For instance, it is possible to imagine that agents holding beliefs in contrast with the
institutional rule may become willing to cheat by logging forbidden patched (besides trying to
change the institution itself). This will put in question the management capacity of the institution
and lead to the need for a monitoring and sanctioning system, whose effectiveness may also de-
pend, at least partially, on the agents’ beliefs. Janssen and Ostrom (2006) included the possibility
of mutual monitoring. More specifically, monitoring actions depended on a parameter specific for
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each agent, which was hence subject to evolutionary dynamics. Instead of assuming a separate
monitoring propensity, it may be more realistic to relate it to the agents’ beliefs. More specifically,
just as agents are more prone to break the rules further their beliefs are from the current institution,
they may be more willing to monitor compliance the more their beliefs are closer to the institution.
In other words, agents may monitor with a probability that is inversely proportional to the distance
between κi and K. This will lead to an interesting situation where agents with beliefs far from
the current institution will try to cheat, while the ones holding beliefs consistent with it will try to
control logging behavior. At the same time, the beliefs of both populations will participate in the
institutional changing process. Due to the large number of interactions between these factors, it is
difficult to forecast the overall behavior of the system, but it is likely that its implementation will
lead to significant insights regarding the functioning of real institutional schemes.

These improvements will surely make the model more realistic. Nevertheless, the current
version already highlights some basic dynamics of the relationship between individuals and insti-
tutions. What is especially relevant is the formal display of the importance of the feedback loop
existing between beliefs and institutional rules. Institutions for CPR management depend on the
beliefs of actors exploiting the resources. At the same time, by affecting individuals’ actions and
outcomes, institutions actively participate in changing their beliefs in a cycle that can be adaptive,
but also highly destructive. Being aware of this cycle is crucial to better understand the dynamics
of real institutions and therefore to improve our capacity of recognize what is going on both in
the management of shared natural resources and in other situations characterized by one or more
underlying social dilemmas.
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Figure 1: Average payoffs and standard deviations in 50 runs for each condition of the benchmark model.
The (a) panel presents the results for bmax = 10, the (b) panel for bmax = 20. Conditions with c = 1 are
plotted using a filled circle, conditions with c = 5 using an empty one.

Figure 2: Average dynamics in 50 repetitions per parameter configuration of the base model. Green patches
and total biomass are expressed as proportion of the initial conditions; payoffs are are expressed as propor-
tion of the optimum; κi is expressed as proportion of bmax.
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Figure 3: Relation among beliefs, institutions and outcomes in the Inst model.

Figure 4: Average dynamic in 50 repetitions per parameter configuration of the Inst model with c = 1. Green
patches and total biomass are expressed as proportion of the initial conditions; payoffs are are expressed as
proportion of the optimum; κi and K are expressed as proportion of bmax.
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Figure 5: Average dynamic in 50 repetitions per parameter configuration of the Inst model with c = 5. Green
patches and total biomass are expressed as proportion of the initial conditions; payoffs are are expressed as
proportion of the optimum; κi and K are expressed as proportion of bmax.
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Tables

c bmax min. max.

1 10 -10 21.6
1 20 -10 54.0
5 10 -50 -18.5
5 20 -50 13.9

Table 1: Minimum and maximum average payoffs for each condition.

c bmax Green Total Average Average Average
patches biomass payoffs βi κi

1 10 0.025 0.009 0.123 -0.086 0.029
(0.012) (0.008) (0.042) (0.081) (0.094)

1 20 0.189 0.112 0.345 0.051 0.339
(0.132) (0.092) (0.221) (0.131) (0.233)

5 10 0.026 0.009 0.124 -0.086 0.025
(0.016) (0.012) (0.052) (0.088) (0.096)

5 20 0.109 0.054 0.213 -0.021 0.212
(0.106) (0.067) (0.190) (0.123) (0.234)

Table 2: Average results for the last 100 periods in 50 repetitions per parameter configuration of the base
model. Green patches and total biomass are expressed as proportion of the initial conditions; payoffs are
expressed as proportion of the optimum; κi is expressed as proportion of bmax. Standard deviations are in
parentheses.
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c bmax τ Green Tree Average Average Average Average
patches biomass payoffs βi κi K

1 10 L 0.248 0.182 0.895 0.520 1.018 0.810
(0.025) (0.024) (0.079) (0.162) (0.133) (0.070)

1 10 H 0.187 0.119 0.721 0.520 1.068 0.657
(0.021) (0.021) (0.067) (0.100) (0.065) (0.060)

1 20 L 0.475 0.300 0.912 0.495 0.841 0.770
(0.048) (0.044) (0.084) (0.142) (0.181) (0.080)

1 20 H 0.448 0.272 0.867 0.535 0.901 0.721
(0.073) (0.067) (0.130) (0.123) (0.134) (0.117)

5 10 L 0.249 0.182 0.903 0.480 0.960 0.806
(0.013) (0.013) (0.037) (0.124) (0.166) (0.033)

5 10 H 0.220 0.152 0.825 0.486 1.008 0.744
(0.024) (0.023) (0.076) (0.123) (0.155) (0.063)

5 20 L 0.465 0.287 0.901 0.509 0.848 0.745
(0.034) (0.035) (0.057) (0.116) (0.153) (0.061)

5 20 H 0.444 0.263 0.866 0.492 0.882 0.707
(0.041) (0.044) (0.069) (0.132) (0.186) (0.075)

Table 3: Average results for the last 100 periods in 50 repetitions per parameter configuration of the Inst
model. Green patches and total biomass are expressed as proportion of the initial conditions; payoffs are
expressed as proportion of the optimum; κi and K are expressed as proportion of bmax. Standard deviations
are in parentheses.
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