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Abstract 

 
Understanding the impact of software changes has 

been a challenge since software systems were first 
developed. With the increasing size and complexity of 
systems, this problem has become more difficult.  There 
are many ways to identify change impact from the 
plethora of software artifacts produced during 
development and maintenance. We present the analysis of 
the software development process using change and 
defect history data. Specifically, we address the problem 
of one-line changes. The studies revealed that (1) there is 
less than 4 percent probability that a one-line change will 
introduce an error in the code; (2) nearly 10 percent of 
all changes made during the maintenance of the software 
under consideration were one-line change; (3) although 
the effort for changing one-line of code is smaller 
compared to larger changes, the vast number of changes 
result in a significant amount of effort. 

 
1. Introduction 
 

Change is one of the essential characteristics of 
software systems [1]. The typical software development 
life cycle consists of requirements analysis, architecture 
design, coding, testing, delivery and finally, maintenance. 
Beginning with the coding phase and continuing with the 
maintenance phase, change becomes ubiquitous through 
the life of the software. Software may need to be changed 
to fix errors, to change executing logic, to make the 
processing more efficient, or to introduce new features 
and enhancements. 

Despite its omnipresence, source code change is 
perhaps the least understood and most complex aspect of 
the development process. An area of concern is the issue 
of software code degrading through time as more and 
more changes are introduced to it – code decay [5]. While 
change itself is unavoidable, there are some aspects of 
change that we can control. One such aspect is the 

introduction of defects while making changes to software, 
thus preventing the need for fixing those errors. 

A software change has different properties such as size, 
diffusion, type, duration, etc., and we are interested in 
studying the impact of the size and type of change on the 
risk of failure. The initial trigger for our research comes 
from a claim made by a software guru from industry: a 
one-line change has a 50% chance of being wrong (He 
did not mean the probability of a one-line change being 
right or wrong but that half of one-line changes are 
incorrect). This intuitively seems to be far too high a 
proportion.  

Managing risk is one of the fundamental problems in 
building and evolving software systems. We deviate from 
what we know to be the best way to do something in order 
to reduce costs, effort or elapse times.  One such common 
deviation is not to bother much about one line changes at 
all.  For example, we often skip investigating the 
implications of one line changes on the system 
architecture; we do not perform code inspections for one 
line changes; we may skip unit and integration testing for 
one line changes; etc.  We do this because our intuition 
tells us that the risk associated with one line changes is 
small. 

However, we all know of cases where one line changes 
have been disastrous. Gerald Weinberg [9] documents an 
error that cost a company 1.6 billion dollars and was the 
result of changing a single character in a line of code.  

In either case, innocuous or disastrous, we have very 
little actual data on the one line changes and their effects 
to support our decisions. We base our decisions about risk 
on intuition and anecdotal evidence at best. 

Our approach is different from most other studies that 
address the issue of software errors because we have 
based the analysis on the property of the change itself 
rather than the properties of the code that is being changed 
[7]. Change to software can be made by addition of new 
lines, modifying existing lines, or by deleting lines. We 
expect each of these different types of change to have 
different risks of failure.  



Our main hypothesis is that the probability of a one-
line change resulting in an error is small. Our second 
hypothesis is that the failure probability is higher when the 
change involves adding new lines than either deleting or 
modifying existing lines of code. 

To test our hypotheses, we used data from the source 
code control system (SCCS) of a large scale software 
project (5ESS). The Lucent Technologies 5ESS™ 
switching system software is a multi-million line 
distributed, high availability, real-time telephone 
switching system software that was developed over two 
decades [6]. The source code of the 5ESS project, mostly 
written in the C programming language, underwent 
several hundred thousand changes. 

The use of data from a generic version control system 
for our analysis ensures that our results can be extended to 
any commercial software product. While historic data 
from project management systems have been used to 
analyze the various attributes affecting software 
development, the use of this data to study the impact of 
making one-line changes to software has not been done 
before. 

In the next section we provide an insight into the past 
research that has addressed issues related to our analysis. 
In section 3, we provide the background for the study, 
describing the change data and the methodology employed 
for our research. In section 4, we describe our approach 
for the analysis of the changed lines, focusing first on how 
we prepared the data. In section 5 we discuss the results of 
our analysis, and finally conclude the paper in section 6. 
 
2. Literature Review 
 

Software maintenance and evolution is the final phase 
of the software life cycle and is frequently viewed as a 
phase of lesser importance than the design and 
development phases. Quite the contrarily, statistical data 
shows that maintaining two to ten year old software 
systems demand possibly as high as 40 percent to 70 
percent of the total development effort [15]. We suspect 
that the number is actually much higher than that. 
Software maintenance still remains as a difficult process 
to understand and manage. 

Understanding the need for classification of the 
software changes, E. B. Swanson [12] proposed that 
change be classified to belong to three types of 
maintenance activities. The three types are corrective, 
adaptive, and perfective. As defined by Swanson, 
corrective maintenance is performed to correct defects 
that are uncovered after the software is brought to use. 
Adaptive maintenance is applied to properly interface 
with changes in the external processing environment and 
very often this translates into new development and new 
features. Perfective maintenance is applied to eliminate 

inefficiencies, enhance performance, or improve 
maintainability. 

Mockus and Votta [3] used the change history from the 
5ESS™ switching software project to identify the reasons 
for software changes. In their analysis, changes were 
classified as corrective, adaptive, and perfective. They 
also introduced a fourth type of change classification – 
changes performed following inspections. Though the 
changes from inspections were mostly perfective and 
corrective changes, the number of such changes justified 
the introduction of a different type of change 
classification. In any systematic software development 
environment, code inspections and modifications of code 
following each inspection are standard procedures. Hence, 
for our results to be valid in such an environment and 
since our analysis was also based on the same data, we 
have retained the “inspection” type of change 
classification. Our research is based on Mockus’ and 
Votta’s [3] classification results. 

In his analysis, Les Hatton [17] relates the defect 
frequency to file size. He states that contrary to 
conventional wisdom that smaller components contain 
fewer faults, medium sized components are proportionally 
more reliable than small or large ones.  

Analysts use both product measures such as the 
number of lines of code and process measures such as 
those obtained from the change history [10]. In their study 
looking for factors to predict fault incidence, Graves et al 
[13] state that, in general, process measures based on 
change history are more useful in predicting fault rates 
than product metrics of the code. They give an example of 
how a process metric such as the number of times the code 
has already been changed is a better indication of how 
many faults it will contain than its length which is a 
product measure. Their study concluded that a module’s 
expected number of faults is proportional to the number of 
times it has been changed. 

Mockus and Weiss [7] have studied the relation 
between the size of the change and probability of error 
and have found that the failure probability increases with 
the number of changes, the number of lines of code added, 
and the number of subsystems touched. They also 
conclude that the probability of error is much more for 
new development as compared to defect fixes because the 
change size associated with defect fixes tend to be much 
smaller in size. Dunsmore and Gannon [14] state that 
there is statistical evidence (Spearman ρ = 0.56 with α = 
.05) that shows a direct relationship between the amount 
of program changes and the error occurrences. 

In the analysis done by Stoll et al [2], the authors 
conclude that large changes to existing code are fault 
prone and provide statistical data to support their claim. 
They go a step further to propose that changes that would 
involve modification of more than 25 percent of existing 
code should be avoided and recommend recoding instead 



of modification. Basili and Perricone [18] categorize 
software modules based on their size (lines of code) and 
then check for the errors at the module level. An 
interesting observation from their research was that, of the 
modules found to contain errors, 49 percent were 
categorized as modified and 51 percent as new modules. 

Our primary contribution in this empirical research is 
an initial observational and relational study of one line 
changes.  As shown from our related research discussion 
above, we are the first to study this phenomenon. Another 
unique aspect of our research is that we have used a 
combination of product measures such as the lines of code 
and process measures such as the change history (change 
dependency) to analyze the data. In doing so, we have 
tried to gain the advantages of both measures while 
removing any bias associated with each of them. 

While several papers discuss the classification of 
changes based on its purpose (corrective, adaptive, 
preventive) there is virtually no discussion on the type of 
change. Software can be changed by adding lines, deleting 
lines or by modifying existing lines. As a byproduct of our 
analyses, we have provided useful information that gives 
some insight into the impact of the type of change on the 
software evolution process. 

The 5ESS™ change history data has been used for 
various research purposes such as, for inferring change 
effort from configuration management databases [4], 
studying the impact of parallel changes in large scale 
software development projects [16], analyzing the 
challenges in evolving a large scale software product [6], 
to identify the reasons for software changes [3], for 
predicting fault incidence [13], to name a few. The wide 
range of studies that have used this particular change 
history data ensures good content validity for the results 
of the analysis based on this data. 

 
3. Background – Change Data Description 
 

Traditionally, analysis of software development 
processes use specific experiments and instrumentation 
that can limit the scope of the results of the analysis. 
Hence, to ensure that the results of this analysis are not 
constrained to just the system under study, data from a 
well known version control system has been used for this 
research. Our experimental design could be easily 
replicated across a wide range of system domains and 
applications.  

In this section, we describe the change process in the 
5ESS software development project and also give an 
introduction to the product subsystem that we use for our 
analysis. 
 
3.1. Change Process 
 

In the 5ESS change management process, a logical 
change to the system is implemented as an initial 
modification request (IMR) by the IMR Tracking System 
(IMRTS). The change history of the files is maintained 
using the Extended Change Management System (ECMS) 
for initiating and tracking changes and the Sources Code 
Control System for managing different versions of the 
files. Hence, to keep it manageable, each IMR is 
organized into a set of maintenance requests (MR) by the 
ECMS as shown in Figure.1 [3][5][7]. The ECMS records 
information about each MR. Each MR is owned by a 
developer, who makes changes to the necessary files to 
implement the MR. Every change that is made is recorded 
by the SCCS in the form of a single delta. Each delta 
provides information on the following attributes of the 
change: Lines added, lines deleted, lines unchanged, login 
of the developer, and the time and date of the change. 

While it is possible to make all changes that are 
required to be made to a file by an MR in a single delta, 
developers often perform multiple deltas on a single file 
for an MR. Hence there are typically many more records 
in the delta relation than there are files that have been 
modified by an MR. 
 

 
 

Figure 1: Change hierarchy 
 
3.2. Change Data 
 

The 5ESS™ source code is organized into subsystems, 
and each subsystem is subdivided into a set of modules. 
Any given module contains a number of source lines of 
code.  For this research, we use data from one of the 
subsystems of the project. The Office Automation (OA) 
subsystem contains 4550 modules that have a total of 
nearly 2 million lines of code. Over the last decade, the 
OA subsystem had 31884 modification requests (MR) that 
changed nearly 4293 files. So nearly 95 percent of all files 
were modified after first release of the product. 
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Change to software can be introduced and interpreted 
in many ways. However, our definition of change to 
software is driven by the historic data that we used for the 
analysis: A change is any alteration to the software 
recorded in the change history database [5]. In 
accordance with this definition, in our analysis the 
following were considered to be changes: 
• One or more modifications to single/multiple lines. 
• One or more new statements inserted between 

existing lines. 
• One or more lines deleted. 
• A modification to a single/multiple lines accompanied 

by insertion or/and deletion of one or more lines. 
The following changes would qualify to be a one-line 

change: 
• One or more modifications to a single line. 
• One or more lines replaced by a single line. 
• One new statement inserted between existing lines. 
• One line deleted. 

Previous studies such as [14] do not consider deletion 
of lines as a change. However, from preliminary analysis, 
we found that lines were deleted for fixing bugs as well as 
making modifications. Moreover, in the SCCS system, a 
line modification is tracked as a line deleted and a line 
added. Hence in our research, we have analyzed the 
impact of deleting lines of code on the software 
development process. 
 
4. Approach 
 

In this section, we document the steps we took to 
obtain useful information from our project database. We 
first discuss the preparation of the data for the analysis 
and then explain some of the categories into which the 
data is classified. The final stage of the analysis identifies 
the logical and physical dependencies that exist between 
files and MRs. 
 
4.1 Data Preparation 
 

The change history database provides us with a large 
amount of information. Since our research focuses on 
analyzing one-line changes and changes that were 
dependent on other changes, one of the most important 
aspects of the project was to derive relevant information 
from this data pool. While it was possible to make all 
changes that are required to be made for a MR in a file in 
a single delta, developers often performed multiple deltas 
on a single file for an MR. Hence there were lot more 
delta records than the number of files that needed to be 
modified by MRs. 

In the change process hierarchy, an MR is the lowest 
logical level of change. Hence if the MR was created to 

fix a defect, all the modifications that are required by an 
MR would have to be implemented to fix the bug. Hence 
we were interested in change information for each effected 
file at the MR level. For example, in Table 1, the MR 
oa101472pQ changes two files. Note that the file 
oaMID213 is changed in two steps. In one of the deltas, it 
modifies only one-line. However, this cannot be 
considered to be a one-line change since for the complete 
change, the MR changed 3 lines of the file. With nearly 
32000 MRs that modified nearly 4300 files in the OA 
subsystem, the aggregation of the changes made to each 
file at the MR level gave us 72258 change records for 
analysis. 

Table 1: Delta relation snapshot 

DELTA relation 

MR FILE Add Delete Date 

Oa101472pQ oaMID213 2 2 9/3/1986 

Oa101472pQ oaMID213 1 1 9/3/1986 

Oa101472pQ oaMID90 6 0 9/3/1986 

Oa101472pQ oaMID90 0 2 9/3/1986 

 
4.2. Data classification 
 

Change data can be classified based on the purpose of 
the change and also based on how the change was 
implemented. The classification of the MRs based on the 
change purpose was derived from the work done by 
Mockus and Votta [3]. They classified MRs based on the 
keywords in the textual abstract of the change. For 
example, if keywords like ‘fix’, ‘bug’, ‘error’, and ‘fail’ 
were present, the change was classified as corrective. In 
Table 2 we provide a summary of the change information 
classified based on its purpose. The naming convention is 
similar to the work done in their original paper. 

However, there were numerous instances when 
changes made could not be classified clearly. For 
example, certain changes were classified as ‘ICC’ since 
the textual abstract had keywords that suggested changes 
from inspection (I) as well as corrective changes (C). 
Though this level of information provides for better 
exploration and understanding, in order to maintain 
simplicity, we made the following assumptions: 

- Changes with multiple ‘N’ were classified as ‘N’ 
- Changes with multiple ‘C’ were classified as ‘C’ 
- Changes containing at least one ‘I’ were classified 

as ‘I’ 

Table 2: Change Classification (purpose) 

ID Change  type Change  purpose 

B Corrective Fix defects 



C Perfective 
Enhance 

performance 

N Adaptive New development 

I Inspection Following inspection 

 
Changes which had ‘B’ and ‘N’ combinations were left 

as ‘Unclassified’ since we did not want to corrupt the 
data. Classification of these as either a corrective or 
perfective change would have introduced validity issues in 
the analysis. Based on the above rules, we were able to 
classify nearly 98 percent of all the MR into corrective, 
adaptive or perfective changes.  

Table 3: Change classification (implementation) 

ID Change Type Description 

C Modify Change existing lines 

I Insert Add new lines 

D Delete Delete existing lines 

IC Insert/Modify Inserts and modifies lines 

ID Insert/Delete Inserts and deletes lines 

DC Delete/Modify Deletes and modifies lines 

DIC All of the above Inserts, deletes and modifies 

lines 

 

Another way to classify changes is on the basis of the 
implementation method into insertion, deletion, or 
modification. But the SCCS system maintains records of 
only the number of lines inserted or deleted for the change 
and not the type of change. Modifications to the existing 
lines are tracked as old lines being replaced by new lines 
(insert and delete). However, for every changed file SCCS 
maintains an SCCS file that relates the MR to the 
insertions and deletions made to the actual module. 
Scripts were used to parse these files and categorize the 
changes made by the MR into inserts, deletes or 
modifications. Table 3 lists different types of changes 
based on their implementation method. 
 
4.3 Identifying file dependencies 
 

Our primary concern was in isolating those changes 
that resulted in errors. To do so, we identified those 
changes that were dependencies – changes to lines of code 
that were changed by an earlier MR. If the latter change 
was a bug fix our assumption was that the original change 
was in error. The one argument against the validity of this 
assumption would be that the latter change might have 
fixed a defect that was introduced before the original 
change was made. However, in the absence of prima facie 
evidence to support either case, and since preliminary 
analysis of some sample data did not support the 

challenging argument, we ruled out this possibility. In this 
report, we will refer to those files in which changes were 
made to those lines that were changed earlier by another 
MR as dependent files. 

The dependency, as we have defined earlier, may have 
existed due to bug fixes (corrective), enhancements 
(perfective), changes from inspection, or new 
development (adaptive). 2530 files in the OA subsystem 
were found to have undergone dependent change. That is 
nearly 55 percent of all files in the subsystem and nearly 
60 percent of all changed files. So, in nearly 60 percent of 
cases, lines that are changed were changed again. This 
kind of information can be very useful to the 
understanding of the maintenance phase of a software 
project. We had 51478 dependent change records and this 
data was the core of our analysis. 
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Figure 2: Distribution of change classification on 
dependent files 

 

In Figure 2, we show the distribution of change 
classifications of the dependent files across the original 
files. The horizontal axis shows the types of changes made 
to the dependent files originally. In the vertical axis, we 
distribute the new changes based on their classification 
based on the implementation type. From the distribution it 
can be noted that most bug fixes were made to code that 
was already changed by an earlier MR to fix bugs. At this 
point of time, we can conclude that roughly 40 percent of 
all changes made to fix bugs introduced more bugs. 

It is also interesting to note that nearly 40 percent of 
all the dependent changes were of the adaptive type and 
most perfective changes were made to lines that were 
previously changed for the same reason, i.e., enhancing 
performance or removing inefficiencies. 

 
5. Results and Analysis 
 



The analysis of the data proceeds in several steps. We 
begin with an investigation of the software project based 
on the change size. 
 
5.1. Change size 
 

Change size is an effective way to estimate the change 
effort in a software development project. From our 
analysis, we were able to derive meaningful information 
that gives a measure of the number of lines that are 
changed as part of an MR. Figure 3 shows the distribution 
of the changed files based on the number of lines that 
were changed. The vertical axis shows the percentage of 
changed files that changed the number of lines specified 
on the horizontal axis. 
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Figure 3: Distribution of small changes 

 
From Figure 3, we can see that nearly 10 percent of 

changes involved changing only a single line of code. 
Since the data fluctuated slightly, we did a second degree 
polynomial regression analysis of the data as shown by the 
regression line in the figure. From the regression line 
obtained, we can see that percentage of effected files 
reduces as the size of the change increases. Nearly 50 
percent of all changes involved changing less than 10 
lines of code. 

So, though the effort for changing one-line of code is 
generally smaller, the magnitude of these changes is very 
large in the software evolution process. However, it has 
been found that developers tend to give less priority to 
smaller changes and especially one-line changes. To 
illustrate further, Figure 4 shows the distribution of all the 
changed files in the subsystem under study across their 
change sizes. From this figure, we note that nearly 95% of 
all changes were those that changed less than 50 lines of 
code. 
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Figure 4: Change size distribution across files 

 
5.2. Erroneous changes 
 

We next analyze those changes that resulted in errors. 
In Figure 5, we present the data for erroneous changes that 
affected less than 10 lines of code. The vertical axis gives 
the percentage of changes that resulted in error out of the 
total changes that affected the number of lines specified in 
the horizontal axis. The data was derived from the change 
file dependencies that we had defined in an earlier section 
of this paper. This analysis also answers a very important 
question: What percentage of one-line changes result in 
error? Less than 4 percent of one-line changes result in 
error. 

It may also be noted that the changes tend to be more 
erroneous as the number of lines changed increases. One 
possible explanation to this behavior can be that as the 
number of lines that are changed increases, it provides 
more avenues for the developer are provided to make 
mistakes. These increased opportunities to introduce 
errors are likely due to an increase in the number of 
possible interactions. 

We mentioned earlier the classification of changes 
based on their type into changes by insertion, deletion, 
and modification. We thought it would be a useful metric 
to analyze the distribution of erroneous changes based on 
the type of change. Figure 6 shows the results of this 
analysis. Changes made by deletion of lines have been 
excluded since our analysis did not produce any credible 
evidence that deletion of less than 10 lines of code 
resulted in errors. 
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Figure 5: Errors introduced by change 
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From Figure 6, we note that while the probability that 

an insertion of a single line might introduce an error is 2 
percent, there is nearly a 5 percent chance that a one-line 
modification will cause an error. It can also be seen that 
while modified lines cause more errors when less than 5 
lines are changed; inserted new lines introduce more 
errors with larger change sizes. 

To emphasize this behavior, in Figure 7, we have 
shown the distribution of the probability of error 
introduced by change over a wider range of change sizes. 
It may be noted that there is nearly 50 percent chance of at 
least one error being introduced if more than 500 lines of 
code are changed. The trend of the lines for change 
implemented by lines inserted and modified clearly shows 
that insertion of new lines generates a lot more errors 
when the change size is higher. One plausible explanation 
for this may be that developers tend to be more cautious 
when existing code has to be modified than when new 
development is done. 
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Figure 7: Erroneous changes versus change size 

 
5.3. Change Process Metrics 
 

How are the types of change related to change 
classifications? In Figure 8, the vertical axis categorizes 
changes based on their purpose and the horizontal axis 
classifies changes based on how the change was 
implemented. As expected, the largest number of lines 
was inserted for adaptive changes since new development 
involves addition of new lines of code. Modifications 
were made to existing lines of code equally for both 
adaptive and corrective changes. 

 

 
Figure 8: Relation between change classification 

and change type 
 
We can see that the Figure 8 holds no surprises except 

maybe that deletion of lines occurred pretty much 
uniformly for adaptive, corrective and perfective changes. 
Note, however, that there are more deleted lines than 
modified, inserted and combined in perfective evolution.  

Figure 9 continues this discussion but restricts the 
change data to only one-line changes. The similarity of the 
data distribution in the two figures show that the behavior 



of one-line changes at least in regard to their distribution 
among the change types is representative of the behavior 
of changes irrespective of the size of the change. The only 
notable difference between the data in Figure 8 and Figure 
9 is in the case when new single lines are inserted – less 
than 2.5 percent of one-line insertions were for perfective 
changes compared to nearly 10 percent of insertions 
towards perfective changes when all change sizes were 
considered. 
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Figure 9: Relation between various change types for 

one-line changes 
 

In the figures 10 and 11, we show the distribution of 
the OA subsystem change data across the different change 
classifications that were defined earlier. We can see that 
the maximum number of changes was made for adaptive 
purposes and most changes were made by inserting new 
lines of code. 
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Figure 10: Distribution of changes based on type 

5.4. Validity and Replicability 
 

There are three types of validity that must be considered 
in this observational and relational study: construct, 
internal, and external validity.  Our constructs are well 
understood and agreed upon in the general context in 

which this research has been done.  Furthermore, the 
observable measures presented here represent the intended 
constructs. 

The straightforward presentation of the data with a 
minimum of manipulation supports our claim for good 
internal validity for the study. 

It is in the case of external validity that we cannot make 
claims as strongly as we would like.  The subsystem used 
for this study is representative of the various subsystems 
of 5ESS and thus can be used a surrogate for the entire 
system. (cf [6]. [16]).  The weakness in our claim for 
external validity lies in the fact that while it is a 
representative system for large, real-time systems and is 
built with a commonly used programming language and 
development environment, it is not clear how well it 
represents smaller systems and systems of different 
domains and applications.  Given the size and complexity 
of the system, we can certainly argue that the problems 
found here are at least as severe as any found in smaller 
systems or systems in other domains. Thus while it is not 
as generalizable as we might like, it is an important fist 
step in understanding one line changes and makes a 
significant contribution to our understanding of  evolution. 

Given that modern SCM systems now include change 
management facilities in addition to the historical version 
management facilities, we argue that our study should be 
easily replicable using systems of differing sizes and 
domains. 
 

33%

8%48%

9% 2%
Corrective (B)

Perfective (C)

Adaptive (N)

Inspection (I)

Unclassified

 
 

Figure 11: Distribution of changes based on purpose 
 
 
 
6. Conclusions and Next Steps 
 

We have found that the probability that a one-line 
change would introduce at least one error is less than 4 
percent. This result supports the typical risk strategy for 
one line changes and puts a bound on our search for 
catastrophic changes. 



Interestingly, this result is very surprising considering 
that the intial claim:  “one-line changes are erroneous 50 
percent of the time”. This large deviation may be 
attributed to the structured programming practices and 
development and evolution processes involving code 
inspections and walkthroughs that were practiced for the 
development of the project under study. Earlier research 
[9] shows that without proper code inspection procedures 
in place, there is a very high possibility that one-line 
changes could result in error. 

We have also provided key insights that can be very 
useful for better understanding the software development 
and evolution process.  In summary, some of the more 
interesting observations that we made during our analysis 
include: 

- Nearly 95 percent of all files in the software project 
were maintained at one time or another. If the 
common header and constants files are excluded 
from the project scope, we can conclude that nearly 
100 percent of files were modified at some point of 
time after the initial release of the software product. 

- Nearly 40 percent of the changes that were made to 
fix bugs introduced one or more other bugs in the 
software. 

- Roughly 50 percent of the changes involve changing 
less than 10 lines of code. 95 percent of changes 
change less than 50 lines of code. 

- Nearly 10% of all the changes made were one line 
changes. 

To fully understand these effects of one line changes in 
particular, and changes in general, this study should be 
replicated across systems in different domains and of 
different sizes. 
 
7. Future Work 
 

Very few studies have been done to understand the 
software development process by the analysis of changed 
lines. While the software project we analyzed had 
modules varying in sizes from 50 lines of code to 50,000 
lines of code, we did not consider the individual module 
sizes separately. Is there a relationship between the size of 
the module and the probability of error due to change? 
Our intuition is that changes (irrespective of change size) 
made to larger files will introduce more errors since the 
developer is less likely to have an understanding of the 
larger modules. 

In this analysis, we have only considered those defects 
that were introduced in the lines affected by the change. 
However, making a change to a part of the code could 
affect another part of the same module, either very close 
to the changed lines or in other parts of the program. In 
the future we intend to extend this research to study 
localization effects of making changes. 

Finally, to understand fully the small set of changes 
that result in faults, some of them catastrophic, we need to 
investigate the context of those changes.  Are there 
common characteristics in the code that is changed? For 
example, is it in abnormal rather than normal code – 
studies in interface faults by one of the authors showed 
that a significant number of faults occurred in error 
handling code [19][20]. Are there common characteristics 
in the changes themselves?  Are there domain specific 
aspects to this set of changes or are they uniform across 
domains? Etc. 
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