

Towards Understanding Software Evolution: One-Line Changes

Ranjith Purushothaman
Server Operating Systems Group

Dell Computer Corporation
Round Rock, Texas 78682
ranjith_purush@dell.com

Dewayne E. Perry
ECE & UT ARISE

The University of Texas at Austin
Austin, Texas 78712-1084

perry@ece.utexas.edu

Abstract

Understanding the impact of software changes has

been a challenge since software systems were first
developed. With the increasing size and complexity of
systems, this problem has become more difficult. There
are many ways to identify change impact from the
plethora of software artifacts produced during
development and maintenance. We present the analysis of
the software development process using change and
defect history data. Specifically, we address the problem
of one-line changes. The studies revealed that (1) there is
less than 4 percent probability that a one-line change will
introduce an error in the code; (2) nearly 10 percent of
all changes made during the maintenance of the software
under consideration were one-line change; (3) although
the effort for changing one-line of code is smaller
compared to larger changes, the vast number of changes
result in a significant amount of effort.

1. Introduction

Change is one of the essential characteristics of
software systems [1]. The typical software development
life cycle consists of requirements analysis, architecture
design, coding, testing, delivery and finally, maintenance.
Beginning with the coding phase and continuing with the
maintenance phase, change becomes ubiquitous through
the life of the software. Software may need to be changed
to fix errors, to change executing logic, to make the
processing more efficient, or to introduce new features
and enhancements.

Despite its omnipresence, source code change is
perhaps the least understood and most complex aspect of
the development process. An area of concern is the issue
of software code degrading through time as more and
more changes are introduced to it – code decay [5]. While
change itself is unavoidable, there are some aspects of
change that we can control. One such aspect is the

introduction of defects while making changes to software,
thus preventing the need for fixing those errors.

A software change has different properties such as size,
diffusion, type, duration, etc., and we are interested in
studying the impact of the size and type of change on the
risk of failure. The initial trigger for our research comes
from a claim made by a software guru from industry: a
one-line change has a 50% chance of being wrong (He
did not mean the probability of a one-line change being
right or wrong but that half of one-line changes are
incorrect). This intuitively seems to be far too high a
proportion.

Managing risk is one of the fundamental problems in
building and evolving software systems. We deviate from
what we know to be the best way to do something in order
to reduce costs, effort or elapse times. One such common
deviation is not to bother much about one line changes at
all. For example, we often skip investigating the
implications of one line changes on the system
architecture; we do not perform code inspections for one
line changes; we may skip unit and integration testing for
one line changes; etc. We do this because our intuition
tells us that the risk associated with one line changes is
small.

However, we all know of cases where one line changes
have been disastrous. Gerald Weinberg [9] documents an
error that cost a company 1.6 billion dollars and was the
result of changing a single character in a line of code.

In either case, innocuous or disastrous, we have very
little actual data on the one line changes and their effects
to support our decisions. We base our decisions about risk
on intuition and anecdotal evidence at best.

Our approach is different from most other studies that
address the issue of software errors because we have
based the analysis on the property of the change itself
rather than the properties of the code that is being changed
[7]. Change to software can be made by addition of new
lines, modifying existing lines, or by deleting lines. We
expect each of these different types of change to have
different risks of failure.

Our main hypothesis is that the probability of a one-
line change resulting in an error is small. Our second
hypothesis is that the failure probability is higher when the
change involves adding new lines than either deleting or
modifying existing lines of code.

To test our hypotheses, we used data from the source
code control system (SCCS) of a large scale software
project (5ESS). The Lucent Technologies 5ESS™
switching system software is a multi-million line
distributed, high availability, real-time telephone
switching system software that was developed over two
decades [6]. The source code of the 5ESS project, mostly
written in the C programming language, underwent
several hundred thousand changes.

The use of data from a generic version control system
for our analysis ensures that our results can be extended to
any commercial software product. While historic data
from project management systems have been used to
analyze the various attributes affecting software
development, the use of this data to study the impact of
making one-line changes to software has not been done
before.

In the next section we provide an insight into the past
research that has addressed issues related to our analysis.
In section 3, we provide the background for the study,
describing the change data and the methodology employed
for our research. In section 4, we describe our approach
for the analysis of the changed lines, focusing first on how
we prepared the data. In section 5 we discuss the results of
our analysis, and finally conclude the paper in section 6.

2. Literature Review

Software maintenance and evolution is the final phase
of the software life cycle and is frequently viewed as a
phase of lesser importance than the design and
development phases. Quite the contrarily, statistical data
shows that maintaining two to ten year old software
systems demand possibly as high as 40 percent to 70
percent of the total development effort [15]. We suspect
that the number is actually much higher than that.
Software maintenance still remains as a difficult process
to understand and manage.

Understanding the need for classification of the
software changes, E. B. Swanson [12] proposed that
change be classified to belong to three types of
maintenance activities. The three types are corrective,
adaptive, and perfective. As defined by Swanson,
corrective maintenance is performed to correct defects
that are uncovered after the software is brought to use.
Adaptive maintenance is applied to properly interface
with changes in the external processing environment and
very often this translates into new development and new
features. Perfective maintenance is applied to eliminate

inefficiencies, enhance performance, or improve
maintainability.

Mockus and Votta [3] used the change history from the
5ESS™ switching software project to identify the reasons
for software changes. In their analysis, changes were
classified as corrective, adaptive, and perfective. They
also introduced a fourth type of change classification –
changes performed following inspections. Though the
changes from inspections were mostly perfective and
corrective changes, the number of such changes justified
the introduction of a different type of change
classification. In any systematic software development
environment, code inspections and modifications of code
following each inspection are standard procedures. Hence,
for our results to be valid in such an environment and
since our analysis was also based on the same data, we
have retained the “inspection” type of change
classification. Our research is based on Mockus’ and
Votta’s [3] classification results.

In his analysis, Les Hatton [17] relates the defect
frequency to file size. He states that contrary to
conventional wisdom that smaller components contain
fewer faults, medium sized components are proportionally
more reliable than small or large ones.

Analysts use both product measures such as the
number of lines of code and process measures such as
those obtained from the change history [10]. In their study
looking for factors to predict fault incidence, Graves et al
[13] state that, in general, process measures based on
change history are more useful in predicting fault rates
than product metrics of the code. They give an example of
how a process metric such as the number of times the code
has already been changed is a better indication of how
many faults it will contain than its length which is a
product measure. Their study concluded that a module’s
expected number of faults is proportional to the number of
times it has been changed.

Mockus and Weiss [7] have studied the relation
between the size of the change and probability of error
and have found that the failure probability increases with
the number of changes, the number of lines of code added,
and the number of subsystems touched. They also
conclude that the probability of error is much more for
new development as compared to defect fixes because the
change size associated with defect fixes tend to be much
smaller in size. Dunsmore and Gannon [14] state that
there is statistical evidence (Spearman ρ = 0.56 with α =
.05) that shows a direct relationship between the amount
of program changes and the error occurrences.

In the analysis done by Stoll et al [2], the authors
conclude that large changes to existing code are fault
prone and provide statistical data to support their claim.
They go a step further to propose that changes that would
involve modification of more than 25 percent of existing
code should be avoided and recommend recoding instead

of modification. Basili and Perricone [18] categorize
software modules based on their size (lines of code) and
then check for the errors at the module level. An
interesting observation from their research was that, of the
modules found to contain errors, 49 percent were
categorized as modified and 51 percent as new modules.

Our primary contribution in this empirical research is
an initial observational and relational study of one line
changes. As shown from our related research discussion
above, we are the first to study this phenomenon. Another
unique aspect of our research is that we have used a
combination of product measures such as the lines of code
and process measures such as the change history (change
dependency) to analyze the data. In doing so, we have
tried to gain the advantages of both measures while
removing any bias associated with each of them.

While several papers discuss the classification of
changes based on its purpose (corrective, adaptive,
preventive) there is virtually no discussion on the type of
change. Software can be changed by adding lines, deleting
lines or by modifying existing lines. As a byproduct of our
analyses, we have provided useful information that gives
some insight into the impact of the type of change on the
software evolution process.

The 5ESS™ change history data has been used for
various research purposes such as, for inferring change
effort from configuration management databases [4],
studying the impact of parallel changes in large scale
software development projects [16], analyzing the
challenges in evolving a large scale software product [6],
to identify the reasons for software changes [3], for
predicting fault incidence [13], to name a few. The wide
range of studies that have used this particular change
history data ensures good content validity for the results
of the analysis based on this data.

3. Background – Change Data Description

Traditionally, analysis of software development
processes use specific experiments and instrumentation
that can limit the scope of the results of the analysis.
Hence, to ensure that the results of this analysis are not
constrained to just the system under study, data from a
well known version control system has been used for this
research. Our experimental design could be easily
replicated across a wide range of system domains and
applications.

In this section, we describe the change process in the
5ESS software development project and also give an
introduction to the product subsystem that we use for our
analysis.

3.1. Change Process

In the 5ESS change management process, a logical
change to the system is implemented as an initial
modification request (IMR) by the IMR Tracking System
(IMRTS). The change history of the files is maintained
using the Extended Change Management System (ECMS)
for initiating and tracking changes and the Sources Code
Control System for managing different versions of the
files. Hence, to keep it manageable, each IMR is
organized into a set of maintenance requests (MR) by the
ECMS as shown in Figure.1 [3][5][7]. The ECMS records
information about each MR. Each MR is owned by a
developer, who makes changes to the necessary files to
implement the MR. Every change that is made is recorded
by the SCCS in the form of a single delta. Each delta
provides information on the following attributes of the
change: Lines added, lines deleted, lines unchanged, login
of the developer, and the time and date of the change.

While it is possible to make all changes that are
required to be made to a file by an MR in a single delta,
developers often perform multiple deltas on a single file
for an MR. Hence there are typically many more records
in the delta relation than there are files that have been
modified by an MR.

Figure 1: Change hierarchy

3.2. Change Data

The 5ESS™ source code is organized into subsystems,
and each subsystem is subdivided into a set of modules.
Any given module contains a number of source lines of
code. For this research, we use data from one of the
subsystems of the project. The Office Automation (OA)
subsystem contains 4550 modules that have a total of
nearly 2 million lines of code. Over the last decade, the
OA subsystem had 31884 modification requests (MR) that
changed nearly 4293 files. So nearly 95 percent of all files
were modified after first release of the product.

Feature

IMR

IMRTS

MR ECMS

Delta
Lines Added/Deleted SCCS

�

�

�

Change to software can be introduced and interpreted
in many ways. However, our definition of change to
software is driven by the historic data that we used for the
analysis: A change is any alteration to the software
recorded in the change history database [5]. In
accordance with this definition, in our analysis the
following were considered to be changes:
• One or more modifications to single/multiple lines.
• One or more new statements inserted between

existing lines.
• One or more lines deleted.
• A modification to a single/multiple lines accompanied

by insertion or/and deletion of one or more lines.
The following changes would qualify to be a one-line

change:
• One or more modifications to a single line.
• One or more lines replaced by a single line.
• One new statement inserted between existing lines.
• One line deleted.

Previous studies such as [14] do not consider deletion
of lines as a change. However, from preliminary analysis,
we found that lines were deleted for fixing bugs as well as
making modifications. Moreover, in the SCCS system, a
line modification is tracked as a line deleted and a line
added. Hence in our research, we have analyzed the
impact of deleting lines of code on the software
development process.

4. Approach

In this section, we document the steps we took to
obtain useful information from our project database. We
first discuss the preparation of the data for the analysis
and then explain some of the categories into which the
data is classified. The final stage of the analysis identifies
the logical and physical dependencies that exist between
files and MRs.

4.1 Data Preparation

The change history database provides us with a large
amount of information. Since our research focuses on
analyzing one-line changes and changes that were
dependent on other changes, one of the most important
aspects of the project was to derive relevant information
from this data pool. While it was possible to make all
changes that are required to be made for a MR in a file in
a single delta, developers often performed multiple deltas
on a single file for an MR. Hence there were lot more
delta records than the number of files that needed to be
modified by MRs.

In the change process hierarchy, an MR is the lowest
logical level of change. Hence if the MR was created to

fix a defect, all the modifications that are required by an
MR would have to be implemented to fix the bug. Hence
we were interested in change information for each effected
file at the MR level. For example, in Table 1, the MR
oa101472pQ changes two files. Note that the file
oaMID213 is changed in two steps. In one of the deltas, it
modifies only one-line. However, this cannot be
considered to be a one-line change since for the complete
change, the MR changed 3 lines of the file. With nearly
32000 MRs that modified nearly 4300 files in the OA
subsystem, the aggregation of the changes made to each
file at the MR level gave us 72258 change records for
analysis.

Table 1: Delta relation snapshot

DELTA relation

MR FILE Add Delete Date

Oa101472pQ oaMID213 2 2 9/3/1986

Oa101472pQ oaMID213 1 1 9/3/1986

Oa101472pQ oaMID90 6 0 9/3/1986

Oa101472pQ oaMID90 0 2 9/3/1986

4.2. Data classification

Change data can be classified based on the purpose of
the change and also based on how the change was
implemented. The classification of the MRs based on the
change purpose was derived from the work done by
Mockus and Votta [3]. They classified MRs based on the
keywords in the textual abstract of the change. For
example, if keywords like ‘fix’, ‘bug’, ‘error’, and ‘fail’
were present, the change was classified as corrective. In
Table 2 we provide a summary of the change information
classified based on its purpose. The naming convention is
similar to the work done in their original paper.

However, there were numerous instances when
changes made could not be classified clearly. For
example, certain changes were classified as ‘ICC’ since
the textual abstract had keywords that suggested changes
from inspection (I) as well as corrective changes (C).
Though this level of information provides for better
exploration and understanding, in order to maintain
simplicity, we made the following assumptions:

- Changes with multiple ‘N’ were classified as ‘N’
- Changes with multiple ‘C’ were classified as ‘C’
- Changes containing at least one ‘I’ were classified

as ‘I’

Table 2: Change Classification (purpose)

ID Change type Change purpose

B Corrective Fix defects

C Perfective
Enhance

performance

N Adaptive New development

I Inspection Following inspection

Changes which had ‘B’ and ‘N’ combinations were left

as ‘Unclassified’ since we did not want to corrupt the
data. Classification of these as either a corrective or
perfective change would have introduced validity issues in
the analysis. Based on the above rules, we were able to
classify nearly 98 percent of all the MR into corrective,
adaptive or perfective changes.

Table 3: Change classification (implementation)

ID Change Type Description

C Modify Change existing lines

I Insert Add new lines

D Delete Delete existing lines

IC Insert/Modify Inserts and modifies lines

ID Insert/Delete Inserts and deletes lines

DC Delete/Modify Deletes and modifies lines

DIC All of the above Inserts, deletes and modifies

lines

Another way to classify changes is on the basis of the
implementation method into insertion, deletion, or
modification. But the SCCS system maintains records of
only the number of lines inserted or deleted for the change
and not the type of change. Modifications to the existing
lines are tracked as old lines being replaced by new lines
(insert and delete). However, for every changed file SCCS
maintains an SCCS file that relates the MR to the
insertions and deletions made to the actual module.
Scripts were used to parse these files and categorize the
changes made by the MR into inserts, deletes or
modifications. Table 3 lists different types of changes
based on their implementation method.

4.3 Identifying file dependencies

Our primary concern was in isolating those changes
that resulted in errors. To do so, we identified those
changes that were dependencies – changes to lines of code
that were changed by an earlier MR. If the latter change
was a bug fix our assumption was that the original change
was in error. The one argument against the validity of this
assumption would be that the latter change might have
fixed a defect that was introduced before the original
change was made. However, in the absence of prima facie
evidence to support either case, and since preliminary
analysis of some sample data did not support the

challenging argument, we ruled out this possibility. In this
report, we will refer to those files in which changes were
made to those lines that were changed earlier by another
MR as dependent files.

The dependency, as we have defined earlier, may have
existed due to bug fixes (corrective), enhancements
(perfective), changes from inspection, or new
development (adaptive). 2530 files in the OA subsystem
were found to have undergone dependent change. That is
nearly 55 percent of all files in the subsystem and nearly
60 percent of all changed files. So, in nearly 60 percent of
cases, lines that are changed were changed again. This
kind of information can be very useful to the
understanding of the maintenance phase of a software
project. We had 51478 dependent change records and this
data was the core of our analysis.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

New/Dependent
change

classification

Corrective
(B)

Perfective (C) Adaptive (N) Inspection (I)

Original change classification

Inspection (I)

Adaptive (N)

Perfective (C)

Corrective (B)

Figure 2: Distribution of change classification on
dependent files

In Figure 2, we show the distribution of change
classifications of the dependent files across the original
files. The horizontal axis shows the types of changes made
to the dependent files originally. In the vertical axis, we
distribute the new changes based on their classification
based on the implementation type. From the distribution it
can be noted that most bug fixes were made to code that
was already changed by an earlier MR to fix bugs. At this
point of time, we can conclude that roughly 40 percent of
all changes made to fix bugs introduced more bugs.

It is also interesting to note that nearly 40 percent of
all the dependent changes were of the adaptive type and
most perfective changes were made to lines that were
previously changed for the same reason, i.e., enhancing
performance or removing inefficiencies.

5. Results and Analysis

The analysis of the data proceeds in several steps. We
begin with an investigation of the software project based
on the change size.

5.1. Change size

Change size is an effective way to estimate the change
effort in a software development project. From our
analysis, we were able to derive meaningful information
that gives a measure of the number of lines that are
changed as part of an MR. Figure 3 shows the distribution
of the changed files based on the number of lines that
were changed. The vertical axis shows the percentage of
changed files that changed the number of lines specified
on the horizontal axis.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of lines changed

Percentage of
changed files

Regression line

Figure 3: Distribution of small changes

From Figure 3, we can see that nearly 10 percent of

changes involved changing only a single line of code.
Since the data fluctuated slightly, we did a second degree
polynomial regression analysis of the data as shown by the
regression line in the figure. From the regression line
obtained, we can see that percentage of effected files
reduces as the size of the change increases. Nearly 50
percent of all changes involved changing less than 10
lines of code.

So, though the effort for changing one-line of code is
generally smaller, the magnitude of these changes is very
large in the software evolution process. However, it has
been found that developers tend to give less priority to
smaller changes and especially one-line changes. To
illustrate further, Figure 4 shows the distribution of all the
changed files in the subsystem under study across their
change sizes. From this figure, we note that nearly 95% of
all changes were those that changed less than 50 lines of
code.

0

5000

10000

15000

20000

25000

Number of files

0<
=C

<5

5<
=C

<1
0

10
<=C

<20

20
<=C

<30

30
<=C

<50

50
<=C

<10
0

10
0<

=C
<20

0

20
0<

=C
<50

0

50
0<

=C
<10

00

10
00

<=
C<20

00

>2
00

0

Number of lines changed

Figure 4: Change size distribution across files

5.2. Erroneous changes

We next analyze those changes that resulted in errors.
In Figure 5, we present the data for erroneous changes that
affected less than 10 lines of code. The vertical axis gives
the percentage of changes that resulted in error out of the
total changes that affected the number of lines specified in
the horizontal axis. The data was derived from the change
file dependencies that we had defined in an earlier section
of this paper. This analysis also answers a very important
question: What percentage of one-line changes result in
error? Less than 4 percent of one-line changes result in
error.

It may also be noted that the changes tend to be more
erroneous as the number of lines changed increases. One
possible explanation to this behavior can be that as the
number of lines that are changed increases, it provides
more avenues for the developer are provided to make
mistakes. These increased opportunities to introduce
errors are likely due to an increase in the number of
possible interactions.

We mentioned earlier the classification of changes
based on their type into changes by insertion, deletion,
and modification. We thought it would be a useful metric
to analyze the distribution of erroneous changes based on
the type of change. Figure 6 shows the results of this
analysis. Changes made by deletion of lines have been
excluded since our analysis did not produce any credible
evidence that deletion of less than 10 lines of code
resulted in errors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Change
classification

Modify (C) Insert (I) Delete (D) Combination
(B)

Type of change

Unclassified

Inspection (I)

Adaptive (N)

Perfective (C)

Corrective (B)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11

Number of lines changed

Percentage of
changed lines that
resulted in error

(%)

Figure 5: Errors introduced by change

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11

Number of lines changed

P
e
rc

e
n

ta
g

e
 o

f
c
h

a
n

g
e
s
 t

h
a
t

re
s
u

lt
e
d

 i
n

 e
rr

o
r

(%
)

Inserted lines

Modified lines

Figure 6: Erroneous changes classified by type of
change

From Figure 6, we note that while the probability that

an insertion of a single line might introduce an error is 2
percent, there is nearly a 5 percent chance that a one-line
modification will cause an error. It can also be seen that
while modified lines cause more errors when less than 5
lines are changed; inserted new lines introduce more
errors with larger change sizes.

To emphasize this behavior, in Figure 7, we have
shown the distribution of the probability of error
introduced by change over a wider range of change sizes.
It may be noted that there is nearly 50 percent chance of at
least one error being introduced if more than 500 lines of
code are changed. The trend of the lines for change
implemented by lines inserted and modified clearly shows
that insertion of new lines generates a lot more errors
when the change size is higher. One plausible explanation
for this may be that developers tend to be more cautious
when existing code has to be modified than when new
development is done.

0

10

20

30

40

50

60

70

80

0<
=C

<5

5<
=C

<1
0

10
<=

C<2
0

20
<=

C<3
0

30
<=

C<5
0

50
<=

C<1
00

10
0<

=C
<2

00

20
0<

=C
<5

00
>5

00

Number of lines changed

P
e
rc

en
ta

g
e

o
f

c
h

an
g

e
s

th
a
t

re
su

lt
e
d

 i
n

 e
rr

o
r

(%
)

Inserted

Modified

Figure 7: Erroneous changes versus change size

5.3. Change Process Metrics

How are the types of change related to change
classifications? In Figure 8, the vertical axis categorizes
changes based on their purpose and the horizontal axis
classifies changes based on how the change was
implemented. As expected, the largest number of lines
was inserted for adaptive changes since new development
involves addition of new lines of code. Modifications
were made to existing lines of code equally for both
adaptive and corrective changes.

Figure 8: Relation between change classification

and change type

We can see that the Figure 8 holds no surprises except

maybe that deletion of lines occurred pretty much
uniformly for adaptive, corrective and perfective changes.
Note, however, that there are more deleted lines than
modified, inserted and combined in perfective evolution.

Figure 9 continues this discussion but restricts the
change data to only one-line changes. The similarity of the
data distribution in the two figures show that the behavior

of one-line changes at least in regard to their distribution
among the change types is representative of the behavior
of changes irrespective of the size of the change. The only
notable difference between the data in Figure 8 and Figure
9 is in the case when new single lines are inserted – less
than 2.5 percent of one-line insertions were for perfective
changes compared to nearly 10 percent of insertions
towards perfective changes when all change sizes were
considered.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Change
classification

Modify (C) Insert (I) Delete (D)

Type of one-line changes

Unclassified

Inspection (I)

Adaptive (N)

Perfective (C)

Corrective (B)

Figure 9: Relation between various change types for

one-line changes

In the figures 10 and 11, we show the distribution of
the OA subsystem change data across the different change
classifications that were defined earlier. We can see that
the maximum number of changes was made for adaptive
purposes and most changes were made by inserting new
lines of code.

28%

40%

3%

29%
Change (C)

Insert (I)

Delete (D)

Combination (B)

Figure 10: Distribution of changes based on type

5.4. Validity and Replicability

There are three types of validity that must be considered
in this observational and relational study: construct,
internal, and external validity. Our constructs are well
understood and agreed upon in the general context in

which this research has been done. Furthermore, the
observable measures presented here represent the intended
constructs.

The straightforward presentation of the data with a
minimum of manipulation supports our claim for good
internal validity for the study.

It is in the case of external validity that we cannot make
claims as strongly as we would like. The subsystem used
for this study is representative of the various subsystems
of 5ESS and thus can be used a surrogate for the entire
system. (cf [6]. [16]). The weakness in our claim for
external validity lies in the fact that while it is a
representative system for large, real-time systems and is
built with a commonly used programming language and
development environment, it is not clear how well it
represents smaller systems and systems of different
domains and applications. Given the size and complexity
of the system, we can certainly argue that the problems
found here are at least as severe as any found in smaller
systems or systems in other domains. Thus while it is not
as generalizable as we might like, it is an important fist
step in understanding one line changes and makes a
significant contribution to our understanding of evolution.

Given that modern SCM systems now include change
management facilities in addition to the historical version
management facilities, we argue that our study should be
easily replicable using systems of differing sizes and
domains.

33%

8%48%

9% 2%
Corrective (B)

Perfective (C)

Adaptive (N)

Inspection (I)

Unclassified

Figure 11: Distribution of changes based on purpose

6. Conclusions and Next Steps

We have found that the probability that a one-line
change would introduce at least one error is less than 4
percent. This result supports the typical risk strategy for
one line changes and puts a bound on our search for
catastrophic changes.

Interestingly, this result is very surprising considering
that the intial claim: “one-line changes are erroneous 50
percent of the time”. This large deviation may be
attributed to the structured programming practices and
development and evolution processes involving code
inspections and walkthroughs that were practiced for the
development of the project under study. Earlier research
[9] shows that without proper code inspection procedures
in place, there is a very high possibility that one-line
changes could result in error.

We have also provided key insights that can be very
useful for better understanding the software development
and evolution process. In summary, some of the more
interesting observations that we made during our analysis
include:

- Nearly 95 percent of all files in the software project
were maintained at one time or another. If the
common header and constants files are excluded
from the project scope, we can conclude that nearly
100 percent of files were modified at some point of
time after the initial release of the software product.

- Nearly 40 percent of the changes that were made to
fix bugs introduced one or more other bugs in the
software.

- Roughly 50 percent of the changes involve changing
less than 10 lines of code. 95 percent of changes
change less than 50 lines of code.

- Nearly 10% of all the changes made were one line
changes.

To fully understand these effects of one line changes in
particular, and changes in general, this study should be
replicated across systems in different domains and of
different sizes.

7. Future Work

Very few studies have been done to understand the
software development process by the analysis of changed
lines. While the software project we analyzed had
modules varying in sizes from 50 lines of code to 50,000
lines of code, we did not consider the individual module
sizes separately. Is there a relationship between the size of
the module and the probability of error due to change?
Our intuition is that changes (irrespective of change size)
made to larger files will introduce more errors since the
developer is less likely to have an understanding of the
larger modules.

In this analysis, we have only considered those defects
that were introduced in the lines affected by the change.
However, making a change to a part of the code could
affect another part of the same module, either very close
to the changed lines or in other parts of the program. In
the future we intend to extend this research to study
localization effects of making changes.

Finally, to understand fully the small set of changes
that result in faults, some of them catastrophic, we need to
investigate the context of those changes. Are there
common characteristics in the code that is changed? For
example, is it in abnormal rather than normal code –
studies in interface faults by one of the authors showed
that a significant number of faults occurred in error
handling code [19][20]. Are there common characteristics
in the changes themselves? Are there domain specific
aspects to this set of changes or are they uniform across
domains? Etc.

8. Acknowledgements

We wish to thank Harvey Siy, Bell Laboratories,
Lucent Technologies, for sharing his knowledge of the
5ESS change management process. We would also like to
thank Audrus Mockus, Avaya Research Labs, and Tom
Ball, Microsoft Research, for their contributions and
suggestions.

9. References

[1] Fred Brooks, “The Mythical Man-Month”, Addison-Wesley,

1975

[2] Dieter Stoll, Marek Leszak, Thomas Heck, “Measuring
Process and Product Characteristics of Software
Components – a Case study”

[3] Audris Mockus, Lawrence G. Votta, “Identifying Reasons
for Software Changes using Historic Databases”, In
International Conference on Software Maintenance, San
Jose, California, October 14, 2000, Pages 120-130

[4] Todd L Graves, Audris Mockus, “Inferring Change Effort
from Configuration Management Databases”, Proceedings
of the Fifth International Symposium on Software Metrics,
IEEE, 1998, Pages 267-273

[5] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron,
Audris Mockus, “Does Code Decay? Assessing the
Evidence from Change Management Data”, IEEE
Transactions on Software Engineering, Vol. 27, No. 1,
January 2001

[6] Dewayne E. Perry, Harvey P. Siy, “Challenges in Evolving a
Large Scale Software Product”, Proceedings of the
International Workshop on Principles of Software
Evolution, 1998 International Software Engineering
Conference, Kyoto, Japan, April 1998

[7] Audris Mockus, David M. Weiss, “Predicting Risk of
Software Changes”, Bell Labs Technical Journal, April-
June 2000, Pages 169-180

[8] Rodney Rogers, “Deterring the High Cost of Software
Defects”, Technical paper, Upspring Software, Inc.

[9] G. M. Weinberg, “Kill That Code!”, Infosystems, August
1983, Pages 48-49

[10] David M. Weiss, Victor R. Basili, “Evaluating Software
Development by Analysis of Changes: Some Data from
the Software Engineering Laboratory”, IEEE Transactions
on Software Engineering, Vol. SE-11, No. 2, February
1985, Pages 157-168

[11] Myron Lipow, “Prediction of Software Failures”, The
Journal of Systems and Software, 1979, Pages 71-75

[12] Swanson. E. B., “The Dimensions of Maintenance”,
Procedures of the Second International Conference on
Software Engineering, San Francisco, California, October
1976, Pages 492-497

[13] Todd L. Graves, Alan F. Karr, J.S. Marron, Harvey Siy,
“Predicting Fault Incidence Using Software Change
History”, IEEE Transactions on Software Engineering,
Vol. 26, No. 7, July 2000, Pg 653-661

[14] H.E. Dunsmore, J.D. Gannon, “Analysis of the Effects of
Programming Factors on Programming Effort”, The
Journal of Systems and Software, 1980, Pages 141-153

[15] Ie-Hong Lin, David A. Gustafson, “Classifying Software
Maintenance”, 1988 IEEE, Pages 241-247

[16] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta,
“Parallel Changes in Large Scale Software Development:
An Observational Case Study”, ACM Transactions on
Software Engineering and Methodology 10:3 (July 2001),
pp 308-337.

[17] Les Hatton, Programming Research Ltd, “Reexamining the
Fault Density – Component Size Connection”, IEEE
Software, March/April 1997, Vol. 14, No. 2, Pages 89-97

[18] Victor R. Basili, Barry T. Perricone, “Software Errors and
Complexity: An Empirical Investigation”,
Communications of the ACM, January 1984, Vol 27,
Number 1, Pages 42-52

[19] Dewayne E. Perry and W. Michael Evangelist. ``An
Empirical Study of Software Interface Errors'',
Proceedings of the International Symposium on New
Directions in Computing, IEEE Computer Society, August
1985, Trondheim, Norway, pages 32-38

[20] Dewayne E. Perry and W. Michael Evangelist. ``An
Empirical Study of Software Interface Faults --- An
Update'', Proceedings of the Twentieth Annual Hawaii
International Conference on Systems Sciences, January
1987, Volume II, pages 113-126.

