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Background Von Neumann Architecture

Von Neumann's Preliminary Discussion [Burks et al., 1946]
�Inasmuch as the completed device will be a general-purpose
computing machine it should contain certain main organs relating
to arithmetic, memory-storage, control and connection with the
human operator. It is intended that the machine be fully
automatic in character, i.e. independent of the human operator
after the computation starts.�

Interface Control
Processor

Arithmetic
Processor

Memory

Figure: four main organs of computation
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Von Neumann Architecture and Languages

Backus's �Bottleneck� [Backus, 1978]

CPU Memory
Von Neumann

Bottleneck

Von Neumann (Imperative) Languages

1 int sum = 0;

2 for(int i=0;i<COL_SIZE;i++)

3 sum = sum + col[i];
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Background Von Neumann Architecture

Von Neumann Architecture and Languages

Backus's �Bottleneck� [Backus, 1978]

CPU Memory
etc . . .

Von Neumann (Imperative) Languages

1 int sum = 0;

2 for(int i=0;i<COL_SIZE;i++)

3 sum = sum + col[i];



Background Backus calls for Non Von Neumann Computation

Can programming be liberated from the Von Neumann style
[Backus, 1978]

Architectures

new organizations of Processor and Memory

eliminate �Von Neumann Bottleneck�

Languages

declarative � static and non-repetitive

point free � no named variables

polymorphic � applicable to multiple type

amenable to mathematical analysis

I functions built from a set of primitive functions through the application
of higher order functional forms

I All functions are ⊥ preserving, ∀f , f : ⊥ = ⊥



Background Backus calls for Non Von Neumann Computation

Can programming be liberated from the Von Neumann style
[Backus, 1978]

leads to much excitement, and a �urry of activity

new work in functional programming languages

new work in non Von Neumann architectures

this work was mostly doomed



Background Moores Law

Moores Law

The number of transistors which can placed on a chip doubles roughly
every two years.

Limits to Moore's Law

In terms of size [of transistors] you can see that we're
approaching the size of atoms which is a fundamental barrier, but
it'll be two or three generations before we get that far but that's
as far out as we've ever been able to see. We have another 10 to
20 years before we reach a fundamental limit. By then they'll be
able to make bigger chips and have transistor budgets in the
billions. � Gordon Moore.



Background Moores Law

Transistor 6= Speed

clockspeed ceiling at 3
Ghz

energy dissipation

non processor
bottlenecks

majority of chip space
devoted to cache

Figure: Intel CPU Trends [Sutter, 2005]
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Non Von Neumann Architectures, Past and Present Reduction Machines

Cellular Tree Architecture [Treleaven and Mole, 1980]

massively parallel

Used to execute FFP (described in detail later) and λ-calculus



Non Von Neumann Architectures, Past and Present Reduction Machines

Reduceron [Naylor and Runciman, 2007]
Graph reduction implemented on an FPGA
TI � Template Instantiation

memories � can all be accessed in parallel

Haskell → YHC → TI (λ-calculus)

FPGA Reduceron



Non Von Neumann Architectures, Past and Present Message Passing

�Jelly Bean� Machine [Spertus et al., 1993]

messaging between many CPUs

memory is �on chip�

�processors are cheap�

�memory is expensive�

ran a version of smalltalk



Non Von Neumann Architectures, Past and Present Message Passing

Erlang [Armstrong, 2007]

originally created by Ericsson for telephony applications, later open
sourced

concurrent programming language and runtime system

functional language with message passing primitives for IPC

currently gaining popularity, used in both Facebook and Amazon

Figure: Erlang logo



Non Von Neumann Architectures, Past and Present Data-Flow / Stream-Processing

Stream Processor [Dally et al., 2004]

Actually used in modern systems, esp. for high computation/watt ratio

Merrimac stream processing super-computer under development at
Stanford [?]



Non Von Neumann Architectures, Past and Present Data-Flow / Stream-Processing

Propagators [Sussman and Radul, 2009]

components

propagators functions which
connect input cells
to output cells, the
execution of which
is triggered when
the value of an
input cell is altered

cells local data stores the
contents of which
are get and set by
propagators

example propagator program (
√
x)

xheron

guess done? done

1 (defun heron [x done guess]

2 (if done

3 guess

4 (/ (+ guess

5 (/ x guess)) 2.0)))

6

7 (defun done? [x guess] [done]

8 (if (< (abs

9 (- (* guess guess) x))

10 0.001)

11 true

12 false))



Non Von Neumann Architectures, Past and Present Functional Programming Languages

Backus's FP/FFP [Backus, 1978]

FP

1 a set O of Objects � an atom x or a sequence of atoms < x1, x2, . . . >

2 a set F of functions, f : O → O

3 function application

4 a set F of functional forms

5 a set D of de�nitions

FFP

In FFP systems objects are used to �represent� functions in a
systematic way. Otherwise FFP systems mirror FP systems closely.

Representation µ of an expression returns the Object which is its meaning,
and ρ of an Object returns the function which is represents.

Cells allow for state in FFP systems, for the storing of both de�ned
functions and objects.



Non Von Neumann Architectures, Past and Present Functional Programming Languages

APL � �A Programming Language�
[Falko� and Iverson, 1973]

Array processing language, with Exotic syntax and Concise
(Obfuscated) Programs

Manipulates entire arrays atomically

Still in active use today

Combined with FP to create the J language



Non Von Neumann Architectures, Past and Present Functional Programming Languages

Clojure [Halloway, 2009]

dialect of lisp

run on the Java Virtual Machine (JVM)

functional language

concurrent language

I all data is immutable, unless wrapped in synchronization constructs
I software transactional memory system
I agent system

Figure: Clojure logo



Non Von Neumann Architectures, Past and Present Functional Programming Languages

Haskell [Hudak et al., 2007]

Figure: Haskell Popularity
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Conclusion Conclusion

Conclusion

Given that;

the speed of serial processors are no longer increasing

nearly all new processors are multi-core

VN-bottleneck has become the limiting factor of computer
performance, and leading cause of energy consumption

computer programmers and system architects are turning to non Von
Neumann models of computation running on

Traditional Von Neumann machines

Networked Von Neumann machines

Virtual Machines

non-Von Neumann hardware
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