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ABSTRACT

A new model of fitness landscapes suitable for the consideration of evolution-
ary and other search algorithms is developed and its consequences are investigated.
Answers to the questions “What is a landscape?” “Are landscapes useful?” and
“What makes a landscape difficult to search?” are provided. The model makes it
possible to construct landscapes for algorithms that employ multiple operators, in-
cluding operators that act on or produce multiple individuals. It also incorporates
operator transition probabilities. The consequences of adopting the model include a
“one operator, one landscape” view of algorithms that search with multiple operators.

An investigation into crossover landscapes and hillclimbing algorithms on them
illustrates the dual role played by crossover in genetic algorithms. This leads to the
“headless chicken” test for the usefulness of crossover to a given genetic algorithm
and to serious questions about the usefulness of maintaining a population. A “reverse
hillclimbing” algorithm is presented that allows the determination of details of the
basin of attraction of points on a landscape. These details can be used to directly
compare members of a class of hillclimbing algorithms and to accurately predict how
long a particular hillclimber will take to discover a given point.

A connection between evolutionary algorithms and the heuristic search algo-
rithms of Artificial Intelligence and Operations Research is established. One aspect
of this correspondence is investigated in detail: the relationship between fitness func-
tions and heuristic functions. By considering how closely fitness functions approxi-
mate the ideal for heuristic functions, a measure of search difficulty is obtained. This
measure, fitness distance correlation, is a remarkably reliable indicator of problem dif-
ficulty for a genetic algorithm on many problems taken from the genetic algorithms
literature, even though the measure incorporates no knowledge of the operation of a
genetic algorithm. This leads to one answer to the question “What makes a problem
hard (or easy) for a genetic algorithm?” The answer is perfectly in keeping with what

has been well known in Artificial Intelligence for over thirty years.
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CHAPTER 1

Introduction

The natural world exhibits startling complexity and richness at all scales. Examples
include complex social systems, immune and nervous systems, and the intricate inter-
relationships between species. These are but a few of the wonders that have become
more apparent as we have increased our ability to examine ourselves and the world
around us. Science is an ever-changing system of beliefs that attempts to account for
what we observe, and it has adjusted itself dramatically to accommodate incoming
data. It is remarkable that so much of what we see has come to be explained by a
single theory: the theory of evolution through variation and selection.

Evolution through natural selection has profoundly affected our view of the world.
The society into which Charles Darwin delivered what has become known as The
Origin of Species in 1859 was primed for this change [1]. At that time, theories of
the mutability of species were rumbling through all levels of English society. Such
suggestions were in direct confrontation with the teachings of the church and were
therefore an intolerable affront to the position of God in the universe. In 1844, Vestiges
of the Natural History of Creation [2], published anonymously, had scandalized the
church and academia, and fanned the flames of unrest in the lower classes. In those
times, science and morality were tightly coupled. Many fields of scientific enquiry
currently enjoy freedom of thought in an atmosphere that owes much to the revolution
wrought by the theory of evolution. It is impossible to fully appreciate the importance
and magnitude of these changes without an understanding of the social context in
which this theory developed.

Darwin, like others who promoted evolution through natural selection, was by
no means infallible. For example, he was unable to demonstrate a mechanism of
inheritance in which variation was maintained. His eventual hypothesis on the sub-
ject, the theory of pangenesis proved incorrect. It was fifty years before the details
of hereditary began to fall into place, and another thirty before the “evolutionary
synthesis” solidified the link between the theory of evolution and the relatively young



field of genetics [3, 4]. Nevertheless, Darwin had identified the central mechanism of
evolution: selection in the presence of variation, or “descent with modification” as he
called it. In many cases, the specifics of evolution through variation and selection are
still being brought to light. However, the basic mechanisms have sufficed to explain,
to the satisfaction of many, an incredibly wide range of behaviors and phenomena
observed in the natural world.

It is no wonder then that computer scientists have looked to evolution for inspira-
tion. The possibility that a computational system, endowed with simple mechanisms
of variation and selection, might be persuaded to exhibit an analog of the power
of evolution found in natural systems is an idea with great appeal. This hope has
motivated the development of a number of computational systems modeled on the
principles of natural selection. Some history of these efforts is described by Goldberg
[5] and Fogel [6].

A difficulty with the hope that we might build computational systems based on
the principles of natural selection, and put these systems to practical use, is that
natural systems are undirected, whereas virtually all our activity is highly directed.
We use the computer as a tool for solving specific problems we construct, and we
place a lot of emphasis on doing so as quickly as possible and with as little waste as
possible. Natural systems have no such aims or constraints. Survival is not directed
toward some fixed target. Instead, it is a matter of keeping a step ahead, in any
accessible direction. It is a gross generalization, but I believe efforts to date can be

grouped into two broad categories:

o Useful systems that are modeled loosely on biological principles. These have
been successfully used for tasks such as function optimization, can easily be
described in non-biological language, and are often outperformed by algorithms

whose motivation is not taken from biology.

e Systems that are biologically more realistic but which have not proved particu-
larly useful. These are more faithful to biological systems and are less directed
(or not directed at all). They exhibit complex and interesting behaviors but

have yet to be put to much practical use.

Of course, in practice we cannot partition things so neatly. These categories are
merely two poles, between which lie many different computational systems. Closer
to the first pole are the evolutionary algorithms, such as Evolutionary Programming,
Genetic Algorithms and Evolution Strategies. Closer to the second pole are systems
that may be classified as Artificial Life approaches [7]. Both poles are interesting in



their own right, and T have spent time exploring aspects of each. I have nothing against
evolutionary algorithms that are used to optimize functions or against artificial life
systems that are difficult to put to practical use. Yet it seems to me that we are still
rather far from tapping the best of both worlds and the hope of being a part of that
research, when and if it happens, is the ultimate motivation for the current work.
This dissertation is primarily concerned with evolutionary algorithms. A non-
biological perspective on these algorithms is developed and several consequences of
that position are investigated. It is important to remember that this is simply one
perspective on these algorithms. They would not exist without the original biological
motivation, and that ideal has prompted this investigation. I believe that it is im-
portant to maintain the ideal and simultaneously keep careful track of whether real
progress has been made. Evolutionary algorithms are examined through the study of

their relationship to two things:
1. The biological notion of a fitness landscape.

2. Other search algorithms, particularly various hillclimbers and heuristic state

space search algorithms found in artificial intelligence and operations research.

The first of these relationships, the connection between evolutionary algorithms
and fitness landscapes, has achieved almost folkloric recognition in the evolutionary
computation community. Practically every researcher in that community is familiar
with the landscape metaphor and does not express discomfort or concern when the
descriptions of the workings of these algorithms employ it extensively, using words

such as “peaks,”

valleys” and “ridges.” Surprisingly however, it is rare, within the
field of evolutionary algorithms, to find an actual definition of a fitness landscape.
This situation has perhaps developed because everyone grasps the imagery immedi-
ately, and the questions that would be asked of a less evocative term are not asked.
This dissertation presents a model of landscapes that is general enough to encom-
pass much of what computer scientists would call search, though the model is not
restricted to either the field or the viewpoint. Evolutionary algorithms are examined
from the perspective the model affords.

The second relationship that is addressed is the connection between evolutionary
algorithms and the search algorithms of artificial intelligence and operations research.
This relationship is not widely recognized. I believe it is a an important one. Its iden-
tification allows discussion of evolutionary algorithms in non-biological terms. This
leads to a view of evolutionary algorithms as heuristic state space search algorithms,
and this correspondence is used to throw light on the question of what makes a

problem hard (or easy) for a genetic algorithm.



The remainder of this chapter provides a brief introduction to evolutionary algo-
rithms and fitness landscapes, the model of computation, a discussion of the effects
of choice of language, an argument for simplicity, a brief outline of related work, and

a description of the structure of the dissertation.

1.1. Evolutionary Algorithms

There is no strict definition of the class of algorithms known as “evolutionary algo-
rithms.” It is not hard to argue that members of the class have little to do with biotic
evolution and are not strictly algorithms. Nevertheless, the term exists, and I will
attempt to make clear what is usually meant by it. In rough order of appearance,
members of the class generally fall into one of the following three categories: Fvolu-
tionary Programming [8], Genetic Algorithms [9] and Evolution Strategies [10, 11].
The collective set of approaches has become known as Evolutionary Computation
(see [6, 12] for overviews).

Many variants of these methods have emerged. Two of the best known are
Messy Genetic Algorithms [13] and Genetic Programming [14, 15], both of which
are descendants of genetic algorithms. In describing evolutionary computation, some
would fling the net even more widely, and include neural networks, simulated anneal-
ing, and many models from Artificial Life. I will not consider these extensions in the
following description, but many of the results of this dissertation bear on those fields,
and the connections will be detailed in later chapters. The following description of
an algorithm could be applied to any of the above evolutionary algorithms or their

variants:

The algorithm maintains a collection of potential solutions to a problem.
Some of these possible solutions are used to create new potential solutions
through the use of operators. Operators act on and produce collections of
potential solutions. The potential solutions that an operator acts on are
selected on the basis of their quality as solutions to the problem at hand.
The algorithm uses this process repeatedly to generate new collections of

potential solutions until some stopping criterion is met.

The above description is couched in a deliberately neutral language. In practice,
these algorithms are often described in biological terms. The algorithms maintain
not a collection of potential solutions, but a population of individuals. The problem
to be solved is given by a fitness function. Operators are genetic operators such

as mutation, recombination (or crossover) and inversion. Individuals are chosen



to reproduce on the basis of selection based on their fitness. In each case, these
algorithms were designed to mimic aspects of evolution through natural selection
with the hope that this would lead to general methods that would prove widely useful
through similar operation. Although the algorithms represent vast simplifications of

the actual evolutionary processes, they have proved widely successful.

1.2. Fitness Landscapes

Using a landscape metaphor to develop insight about the workings of a complex pro-
cess originates with the work of Sewall Wright in the mid-1920s [16]. By the time
Wright first published on the subject, Haldane [17] had begun to think along similar
lines. Wright used landscapes to provide easily accessible imagery for his theory of
speciation. Since that time, biologists have frequently used the metaphor. Land-
scapes, according to Eldredge [18] are “By all odds the most important metaphor in
macroevolutionary theory of the past fifty years.” There are two main interpretations
of landscapes in biology. In the first, each member of a population is considered a
point on a fitness landscape. This imagery has been used extensively in the develop-
ment of evolutionary thought. It is the foundation of both Wright’s Shifting Balance
and Simpson’s Quantum Fvolution models of speciation [16, 19]. In the second ap-
proach, a point on the landscape is taken to represent the average fitness of an entire
population which moves on a surface of mean fitness. Population geneticists have
used this viewpoint to prove theories about the effects of selection on average fitness
[20, 21].

To biologists, going uphill on a landscape is thought of as increasing fitness.
Physicists also find the landscape metaphor useful, but they are usually interested
in low energy states of some material (e.g., a spin glass [22, 23]), and so consider
lower points on the landscape more desirable. Computer scientists are divided. The
conflict is of course a trivial one and it vanishes if one talks exclusively of optimizing
on a landscape. 1 will defer to biology. In this dissertation, algorithms are seeking

to find high points on the landscape. Formal discussion of landscapes will begin in
Chapter 2.

1.3. Model of Computation

Establishing a formal model of computation is difficult and somewhat arbitrary at
the best of times. Even when the computation is being performed in a well-defined

manner on a well-defined computational device, there are many subtle issues whose



resolution, one way or another, may have decidedly non-subtle effects [24]. It is no
surprise then that evolutionary algorithms have not been the subject of wide attention
when it comes to models of computation.

When it is discussed, the model of computation that is often used when discussing
evolutionary algorithms is some variant of a black-bor model. See, for example,
[5, 25,26, 27, 28, 29]. In this model, one is presented with a black box whose properties
are unknown. The box accepts inputs and each input is rewarded with the value of
some mysterious function. The aim of this series of probings is also given, and might
be “Find an input which produces a large function value” or possibly “Find an input
that produces an output value greater than 100.”

Notice that the possible vagueness of the aim of this enterprise may prevent
the provider of inputs from knowing when, if ever, it has located an input (or set
of inputs) that solve the search problem. To be more specific, I will call the input
provider the “searcher” and the task to be addressed the “problem.” This is in
keeping with the subject matter of the rest of this dissertation: Search algorithms and
problems. The black-box model is more commonly phrased in terms of “functions”
and “optimization.”

Given such a model, the operation of providing an input and receiving an out-
put, often called performing a function evaluation, becomes the coin of the realm.
Algorithms may be compared on this basis—for example by comparing the number
of evaluations required, on average, to achieve a certain performance level, or by
computing statistics based on the function values achieved over time [30]. In this
dissertation, function evaluations, or, more simply, evaluations, will form the basis
for the comparison of algorithm performance. I will adopt a form of black-box model,
but before doing so, I wish to argue that without thought, it can be misleading in

two important ways:

1. Representation. The first problem with the abstract black-box model of com-
putation arises from the fact that we rarely encounter black boxes in the real
world. The model assumes that the problem to be solved is already embodied
in some mechanical device and that our only task is to play with the input
knobs of the box. In reality, we encounter problems in the world outside the
computer, and if we intend to attempt to solve them using a computer, we have
to get them into the computer. The black-box model is silent on this aspect of
computational problem-solving even though this step is an inevitable and im-
portant part of the problem solving process. The need to formulate the problem
in a fashion that is suitable for computation requires making a decision about

how to represent the input to the black box. This is a non-trivial problem. But



the black-box model obscures this requirement, by providing us with a phys-
ical object with a conveniently predefined interface. This choice needs to be
made every time we address a search problem computationally. The problem
of representation has been recognized and debated in the field of evolutionary
computation. I am trying to make two points: that the black-box model does

not draw attention to this choice and that the choice must always be made.

The choice that is made may have a dramatic impact on how easily the problem
will be solved. This adds a very human factor to our otherwise impersonal
black-box model. When faced with a search problem such as “Find two integers
whose product is 15 and whose sum is 8,” few people, presumably, will rush off
and construct an elaborate encoding of a pair of integers and write a genetic
algorithm to search for the solution. When asked to “Find an arrangement
of eight queens on a chessboard such that no queen is attacking any other”
it is not unreasonable to use as a representation an eight by eight array of
computer words, exactly eight of which are non-zero. Others would immediately
see that possible solutions could be represented via a permutation of the integers
one to eight, which leads to a far more elegant search algorithm [31]. The
same black box could be used to evaluate board configurations for feasibility,
but the difference in the choice of representation makes the second approach
far more promising than the other. John Von Neumann would perhaps not
have seen any need for representation to solve this problem. An extensive
discussion of representation and its effects on the difficulty of the “Missionaries
and Cannibals” problem is given by Amarel in [32]. Algorithms that operate
within the black-box model are often said to be performing blind search [5, 27,
28]. The above discussion illustrates that care should be taken with this term
since the degree to which the algorithm is fumbling in the dark will very much

depend on how much the designer of the algorithm could see.

. Evaluation. The second potential problem with the black-box model concerns
the output of the box and is of a similar nature. The severity of this prob-
lem depends to some extent on the nature of the original problem statement.
In many search problems, no function is given, and again one must make a
choice. A good example is the optimization formulation of the NP-Hard Trav-
eling Salesperson Problem (TSP): “Given n cities and their inter-city distances,
find a Hamiltonian circuit whose total length is minimal.” In this case, we are
not told how to recognize a solution and we are certainly not given a function

that we can interrogate in the black-box fashion.



In some cases, such as in TSP, a seemingly appropriate function will be so
obvious that it will be easy to believe that it was always there. It was not—
look at the problem statement. In evolutionary algorithms, TSP has been, at
least to my knowledge, universally approached as though a black box was given
that took a Hamiltonian circuit as input and returned the total length of that
circuit. Again I want to emphasize very strongly that this is a choice (it is often
a very good choice). To do this, consider that there is a vastly superior choice:
A function which returns the exact number of city exchanges that are required
to transform the input into the optimum. Why then do we not use this black
box instead of the path length version? After all, the problem could be solved
in polynomial time with the simplest form of hillclimbing given such a black
box. The reason, of course, is that we cannot build such a black box. It should
be apparent that the black box is constructed by the problem solver and that
we have a choice in how that is done.

A good example of a problem in which we are not given any function is Rubik’s
Cube. Though this is not a problem (to the best of my knowledge) that has
been addressed using evolutionary algorithms, it has received wide attention
in the artificial intelligence community. No-one has found a heuristic function
whose value can be used successfully by any known search algorithm. Korf [33]
presents four heuristic functions for the simplified 2 x 2 x 2 cube, none of which
has been used successfully to guide a heuristic search on this simpler problem.
To solve Rubik’s cube using a non-exhaustive search on a computer, we have
to make a choice about how we will assess the worth of the cube configurations
we encounter. The reason the puzzle is so hard is that it is not clear how to do

this. A similar difficulty was identified for 26 transistor placement heuristics by

Shiple et al. [34].

Putting these points together, to use an algorithm that operates via interrogating
a black box, we find that we must first construct the black box itself. To make
an unqualified claim that an algorithm is worthwhile because of its general-purpose
nature and that it can be used in a black-box situation is to ignore two important
aspects of problem solving. Instead of stubbing our toe on a black box while strolling
casually through a field armed only with a blind algorithm, we build a black box,
half-bury it in a field and then, as if by chance, stumble across it and whip out our
general-purpose, robust, blind search algorithm and use it to extract the secrets of the
black box, after which we proclaim the great and general usefulness of our weapon.

In summary, both these arguments claim that something the black-box model



appears to provide actually has to be constructed by the problem solver. These are
the form of the input, and the output function. In other words, the entire black box.
A naive consideration of the black-box model would take those two as given, whereas
I believe that both of them must always be constructed. This leaves us in a curious
position. The model of computation we had intended to use has seemingly vanished.
There is no black box until the problem solver creates it. The black box model is not
independent of the problem to be solved in the way the comparison-based model of
traditional analysis of algorithms is [24]. The comparison based model is useful for
this reason. It is only fair to compare algorithms based on the number of evaluations
they perform if they are using the same input representation and evaluation function.

A graphic illustration of the impact of these choices is provided by comparing
exhaustive search on the alternate representations of the eight queens problem men-
tioned above. One representation has a search space of size 4,426,165,368 while the
other is of size 40,320. Even comparing the same algorithm under a different repre-
sentation leads to a difference in expected performance of five orders of magnitude. If
we were to extend such comparisons to different algorithms employing different rep-
resentations and fitness functions, our results could be even more wildly misleading.

Our model of computation then shall be based on evaluations, and we can use
it to compare algorithms, provided that the choices of representation and evaluation
function have been made and are the same for the algorithms in question. We will
acknowledge the very important human component present in the construction of a
black box. The process of choosing representation and choosing an evaluation function
requires inferencing and insight into the problem, and may be more important than
the eventual choice of algorithm to interpret the black box. This encourages caution
when making claims about the virtues of general-purpose, weak methods. These
claims tend to ignore the fact that much of problem solving lies in choices that are

not made by these weak methods.

1.4. Simplicity

Evolutionary algorithms, though often simple to describe and implement, have proved
difficult to understand. Analysis of algorithms (a phrase which, incidentally, has many
wonderful anagrams) typically involves the choice of a model of computation, proofs
of upper bounds on worst and possibly average-case behavior and proofs of lower
bounds on problem difficulty. With luck, better lower bounds will be proved and
better algorithms designed until these bounds meet, to within a constant factor, and

the problem is considered solved. There are many examples of this process and many
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of the most basic algorithms in computer science have interesting histories.

The analysis of an evolutionary algorithm is a quite different matter. To begin
with, as mentioned above, it is not even clear that they should be regarded as algo-
rithms in the strict sense. Perhaps the biggest reason why analysis cannot proceed as
above is that although the algorithm is given in advance, the details of the problem
to be solved are not. In the traditional analysis of algorithms, the algorithm being
analyzed is an algorithm for a specific problem. In many cases the input to the algo-
rithm is not prespecified, but it is still almost always possible to perform worst-case
analysis of the algorithm’s behavior. However, worst-case analysis of algorithms that
make choices based on pseudo-random numbers is typically not terribly enlightening,
and this is certainly also the case with evolutionary algorithms. By considering all
possible inputs to an algorithm, average-case behavior can sometimes also be deter-
mined (though this is typically a far more demanding task). The same analysis cannot
be done for an evolutionary algorithm, because the statement of the algorithm gives
no hint as to the identity of a specific problem that is to be solved. This does not
preclude analysis completely, it just makes it more difficult and often quite unlike
that seen in more traditional analysis.

A second major difficulty that confronts the would-be analyst is the degree to
which the evolutionary algorithms are stochastic. In traditional analysis of algo-
rithms, the algorithm always behaves in almost exactly the same way given the same
input.! In evolutionary algorithms, if this ever happened (on a problem of even
modest size), it would be considered so improbable that the implementation would
immediately be checked for bugs. This massive degree of stochasticity does not lead
to algorithms that are straightforward to understand or predict. Intuition is often not
a particularly reliable guide to the behavior of a system whose outcome is the result
of the composition of thousands or millions of small-scale chance events. A fine illus-
tration of these difficulties is given in work on the so-called Royal Road functions by
Mitchell et al. in which a seemingly simple investigation with a predictable outcome
produced completely unexpected results [36].

That example had a great effect on me, and marked the beginning of what
has become a very pronounced preference towards asking simple questions about
these complex algorithms. Simple questions have a reasonable probability of being
answerable and have at least the potential for having simple answers. If we ask a

simple question of a system and receive a completely unexpected result, it seems

!Quicksort is a well-known example with varying behavior, but the amount of stochasticity in
that algorithm is not great enough to make detailed analysis impossible [35].
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logical that we should seriously question our understanding of the system, and that
we should continue to ask simple questions.

This dissertation is a collection of very simple questions and my attempts to
answer them. It may appear to some that these simple questions, and the methods
that are used to address them, have little to do with evolutionary algorithms. T would
argue strongly that this is not the case, and that these questions and the methods
used to address them have everything to do with the more complicated algorithms.
For example, it is important to study the operators of these algorithms in isolation
and it is important to study the effect of a population-based search by comparing it
with algorithms that have no population.

Amusingly, my taste for asking simple questions is the result of time spent in
an environment in which the most complex problems are being addressed. It is not
a contradiction to attempt the study of entire complex systems by a form of reduc-
tionism that proceeds by asking a lot of simple questions. I regard the development
of this taste for simple questions to be (finally) a sign of increased maturity. It is the
most important lesson that I will take away from three wonderful years at the Santa
Fe Institute.

1.5. Related Work

A discussion of related work would make little sense at this point, and could not be
related to the model that will be developed. Related work will be discussed in detail
in Chapter 6. That chapter describes how this work relates to (1) Other models of
landscapes that have been used in biology, chemistry, computer science and physics,
and (2) Other search algorithms, particularly heuristic state space search. A full
treatment of these relationships is not possible until the model of this dissertation
has been presented and some of its uses have been demonstrated. The body of the
dissertation contains many references to and hints at these relationships, though

discussion is usually deferred.

1.6. Dissertation Outline

The following chapters can be roughly divided into three sections: formalism (Chap-
ter 2), applications (Chapters 3 and 4 and the second half of Chapter 5) and con-
nection with other search techniques (Chapter 5). Chapter 2 presents the landscape
model, and discusses its consequences, advantages, limitations and relevance. Chap-

ter 3 develops the crossover hillelimbing algorithm and examines the role of crossover,
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macromutations and populations in genetic algorithms. Chapter 4 demonstrates one
approach to quantifying the behavior of algorithms on landscapes through the use of
a reverse hillelimbing algorithm that can be used to compute the exact probabilities
that a number of hillclimbing algorithms will reach a point on a landscape. Chap-
ter 5 looks at the connection between evolutionary algorithms and heuristic search,
and shows the extent to which evolutionary algorithms can be regarded as heuristic
state space search algorithms. One aspect of the correspondence is treated in detail
and results in a new answer to the question “what makes a problem hard (or easy)
for a genetic algorithm?” Chapter 6 examines something of the history of the use of
the landscape metaphor in biology and evolutionary algorithms, other related work
on landscapes and heuristic search. Finally, Chapter 7 presents a summary of the

results of this dissertation.

1.7. Abbreviations

The remainder of this dissertation uses many abbreviations for common phrases and
algorithm names. I hope that these will not prove too intimidating to those not
already familiar with the various evolutionary algorithms. A complete list of the

abbreviations begins on page xxiv.



CHAPTER 2

A Model of Landscapes

This chapter presents the landscape model that will be used as a framework for the
remainder of the dissertation. It is assumed that one’s aim is to address a search
problem. It is possible to adopt more neutral language, to the point that the model
seems completely abstract. However, adopting the language of search does not restrict
applicability too severely. One argument for neutrality is that since the model is
applicable to situations that some people would not consider search, it should be
described in a general way that will permit its easy application to these fields. A
counter argument holds that most of what we do, especially with computers, can be
phrased in terms of search. If the landscape model presented here is useful in some
field of endeavor, then it is probably possible to describe that endeavor as a search.
As will be seen, choosing to view a wide range of situations from a search perspective

is not without precedent.

2.1. Motivation

Given the aim of this chapter, to present a model of landscapes, there are many
preliminary questions that should be addressed before the model is presented. Three

of these are particularly important.

e What is a landscape?
A landscape is one way to view some aspects of a complex process. As such,
it is a tool that we hope to use to increase understanding of the process, to
suggest explanations and ideas, and to provide an intuitive feeling for those
aspects of the process. This description is vague because landscapes may be
used in a wide variety of situations. Wright employed the metaphor to provide
a simplified and intuitive picture of his work on the mathematics of gene flow in

a population [37]. We will use landscapes to produce a simplified view of some
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aspects of search. The metaphor has been used in this way for some time to
describe evolutionary algorithms, though rather informally. As a result, I think
the current use of the metaphor does not always produce beneficial results.

Support for this opinion will be presented shortly.

It is important to understand what I believe a landscape is and how that will
affect the presentation of the model in this chapter. In particular, a landscape
is neither a search algorithm nor a search problem. As a result, to formally
describe a landscape, it is not necessary to formally describe all aspects of all
search algorithms or all aspects of all search problems. For this reason, we
will examine search algorithms and problems of a certain kinds and will omit
many details of algorithms and problems. The landscape model will be widely

applicable to search, but it is far from a complete picture of search.

A landscape is a structure that results from some of the choices (by no means
all) that are made when we use a computer to search. It presents only a sim-
plified view of aspects of the search process. A landscape is a tool and it is a
convenience. The model of landscapes presented in this chapter aims to formal-
ize the notion of a landscape and to make the result as general and useful as

possible for thinking about computational search.

Why the interest in landscapes?

My interest in the landscape metaphor stems from an interest in evolutionary
algorithms. In the community of researchers working on these algorithms, the
word “landscape” is frequently encountered—both informally, in conversations
and presentations, and formally, in conference and journal papers. It is natu-
ral therefore that one should seek to understand what is meant by the word.
Remarkably, it proved difficult to find out exactly what people meant by the
word, and when that could be discovered, the definitions did not concur. In
my opinion, the landscape metaphor is a powerful one and because its meaning
is appears intuitively clear, people are inclined to employ it rather casually.
Questions that would be asked of a less familiar and less evocative word simply
do not get asked. After all, everyone knows what a landscape is. Or do they?
If the term was only used in an informal sense or for the purposes of rough il-
lustration, the situation would be more tolerable. Instead, properties of fitness
landscapes are used as the basis for explanations of algorithm behavior and this
is often done in a careless fashion that is detrimental to our understanding.
Thus, the motivation for trying to establish just what is (or should be) meant

by a landscape comes from (1) the fact that the word is in widespread use, (2)
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the belief that it is usually not well-defined, and (3) the belief that this lack
of definition has important consequences. I will take the first of these as given

and argue below that the two beliefs are justified.

What is wrong with the current definitions of landscapes?

The following are some of the current problems with the use of the landscape
metaphor in the field of evolutionary computation. The use of landscapes in
other fields will be discussed in Chapter 6. Some of the terminology used, (e.g.,

operator), will not be defined until later in the chapter.

1. In many cases, landscapes are not defined at all. This is very common
informally, but also happens quite frequently in formal settings. It is also
common for papers to reference an earlier paper that contains no definition

or a poor one. This practice has decreased in the last year.

2. Another common problem is vague definitions of the word. For example,
one encounters statements such as “the combination of a search space S
and a fitness function f : .5 — R is a fitness landscape.” Apart from the
fact that what has been defined here is simply a function, it might not be
immediately clear what is wrong with such a definition. The problem is
that virtually every term we would like to use in describing a landscape
depends on being able to define neighborhood but the above definition tells
us nothing about neighborhood. For example, perhaps the most frequently
used landscape-related term is “peak.” But what is a peak? A simple
definition is: A point whose neighbors are all less high than it is. It is
not possible to sensibly define the word “peak” without defining what
constitutes neighborhood. The need to be specific about neighborhood
is not widely attended to. As a result, in many cases, it is not clear
what is meant by the word landscape. The expressions “fitness function”
and “fitness landscape” are often used interchangeably, both formally and
informally. A fitness function is a function: a mapping from one set of
objects to another. There is no notion of neighborhood, and one is not

needed. A fitness landscape requires a notion of neighborhood.

3. Even when neighborhood is defined, it is often done so incorrectly. Infor-
mally, people will staunchly defend the binary hypercube as the landscape
when an algorithm processes bit strings, even if the algorithm never em-
ploys an operator that always flips exactly one bit chosen uniformly at
random in an individual. Certainly this hypercube may have vertices that

fit the above definition of a peak, but the relevance of these points to such
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an algorithm is far from clear. Even when mutation is employed in a GA,
the mutation operator does not induce a hypercube graph. The mutation
operator used in a GA does not always alter a single bit in an individual
and hence the mutation landscape graph is not a hypercube. For binary
strings of length n, the graph is the complete graph Ky» augmented with
a loop from each vertex to itself. With a per-bit mutation probability of
p, the bidirectional edge between two vertices, v; and vy with Hamming
distance d has a transition probability of p?(1 — p)"~?. This is the proba-
bility that a single application of the mutation operator transforms vy into

vy (or vice-versa). Figure 3 on page 33 illustrates such a graph.

. Even though neighborhood is sometimes specified, and specified correctly,
a single landscape is very often used as the framework for considering the
operation of an algorithm that uses multiple operators. The best example
is the use of a hypercube graph landscape as a basis for consideration of
both mutation and crossover in a GA. Apart from the fact that the hyper-
cube is not induced by either operator, this position leads to statements
such as “crossover is making large jumps on the landscape.” Crossover is
viewed here in terms of the landscape structure that mutation is popularly
thought to create. Mutation takes single steps, but crossover causes large
jumps. Why is this? Even when the mutation probability in a GA is set
to zero, people will insist on talking about local maxima from the point
of view of mutation, despite the fact that these clearly have no relevance
whatsoever to the algorithm. The model presented in this chapter claims
that each operator is taking single steps on its own landscape graph. It is
possible to consider the effect of crossover in terms of the mutation graph,
but it is equally possible to consider mutation in terms of the crossover
graph. The model insists that we explicitly acknowledge this, rather than,
as is now common, comparing one operator in terms of the structure de-

fined by another.
. In the study of GAs, there is a tremendous bias towards thinking purely in

terms of a mutation landscape. This bias can be difficult to detect in one-
self. A good illustration comes again from the consideration of the word
“peak.” As discussed above, for something to be a peak, it must have
neighbors. If we define neighborhood in terms of the operators we employ,
it should seem strange that we can use the word peak for one operator but
not for another. Why is there no notion of a peak under crossover? Why

is the term reserved solely for mutation? A GA creates new individuals
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through crossover and through mutation. In some instances, the number
of individuals created via crossover will be greater than the number cre-
ated through mutation. In these cases, shouldn’t we be more concerned
about peaks (local optima) with respect to crossover than with respect to
mutation? In fact, if the domain of a fitness function has a point whose
fitness is higher than that of all others, the mutation landscape will al-
ways have a single global optimum and no local optima, as any point can
be reached from any other via one application of the mutation operator.
By this reasoning, we should not be concerned with local optima from
mutation’s point of view, since they do not exist! The current notions
of landscape pay no heed to operator transition probabilities, and this is
clearly important. The model of landscapes presented in this chapter in-
corporates these probabilities and removes the mutation landscape bias,

giving each operator its own landscape, complete with peaks.

. The current models of landscape cannot be simply extended to consider

other search algorithms. It is not even possible to use them consistently
across algorithms within evolutionary computation. Current models typ-
ically require fixed dimensionality and a distance metric. This makes it
difficult to describe, for instance, the landscape that genetic programming
(GP) is operating on. The proposed model makes it simple to view GP
as occurring on landscapes, as well as making connections to many search
algorithms in other fields, such as those in Artificial Intelligence [38, 39].

Preliminary Definitions

This section defines multisets and gives a very brief introduction to relations, orders

and the theory of directed graphs.

2.2.1.

Multisets

A multiset is

¢

‘...a mathematical entity that is like a set, but it is allowed to contain

repeated elements; an object may be an element of a multiset several

times, and its multiplicity of occurrences is relevant.”

Knuth [40, page 454].

For example, {1,1,4,5,5} and {4,1,5,5,1} are equivalent multisets. In contrast,

{1,1,2} and {1,2} are equivalent as sets, but not as multisets. Of course, any set is
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also a multiset. Binary operations U, & and N between multisets that obey commu-
tative, associative, distributive and other laws can be simply defined [40, page 636],
though we will have no use for them in this dissertation. Knuth mentions a number of
situations in which multisets arise naturally in mathematics. Kanerva makes exten-
sive use of multisets in his analysis of Sparse Distributed Memory [41]. Given a set S,
[ will use M(S) to denote the infinite set of all multisets whose elements are drawn
from S. Thus the multiset above is an element of M({1,4,5}), as are the multisets
{1}, {4,4,4,4}, {4,4} and {1,4,5} itself. 1 will use |S| to represent the number of
elements in the multiset S. Hence, [{1,5,5}| = 3. Finally, define

M, (5) = {s € M(5) : [s] = 4},

as the set of multisets of S with cardinality ¢.

2.2.2. Relations, Orders and Digraphs

A relation, R, between two sets A and B is a subset of A x B. That is, R C {(a,b) |
a € Aand b € B}. The notation aRb is used to indicate that (a,b) € R. When
A = B, R is said to be reflezive if aRa Va € A; symmetric if aRb = bRa Ya,b € A;
transitive if aRb,bRc = aRc Ya,b,c € A and complete if, given a # b, at least
one of aRb or bRa is true. A relation that is not complete is said to be partial.
Different combinations of the above four properties impose different “orders” on A.
If R is irreflexive, asymmetric, transitive and complete, it is called a total order or
complete order. 1f it is irreflexive, asymmetric and transitive, but not complete, R is a
partial order. The relation “greater than” is a total order on the set of real numbers.
The relation “is an ancestor of” is a partial order on the set of all people. In this
dissertation we will commonly be concerned with partial orders that are used to rank
potential solutions to search problems. A relation that is reflexive, symmetric and
transitive is called an equivalence relation. An equivalence relation creates equivalence
classes: If R is an equivalence relation and a Rb then a and b are members of the same
equivalence class.

A relation R on a set A can also be thought of as a directed graph or digraph. The
vertices of the digraph are the elements of A and there is a directed edge from vertex
a to vertex b if a Rb. Tt is traditional to exclude the possibility of edges from a vertex
to itself in a digraph. This is mainly a matter of convention, and we shall allow such
edges or loops. If R is both symmetric and complete, the digraph contains all possible
edges and is denoted K, when the digraph has n vertices. A symmetric digraph can

also be regarded as an undirected graph. In this case, the two directed edges between
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a pair of vertices can be drawn as a single undirected edge. In this dissertation, we
shall simply use the word “graph” to mean a directed graph. We will commonly
discuss digraphs that correspond to symmetric relations and the distinction will be
unimportant.

Finally, a pair of vertices v and w are connected if there is an undirected path
between them. That is, w can be reached by traversing edges (irrespective of the
directions on the edges) from v. If v is connected to w, w is therefore connected to v.
The difficulty with edge directions disappears if the underlying relation is symmetric.!
If every vertex is considered connected to itself, the relation “is connected to” is an
equivalence relation on the set of vertices and thus induces equivalence classes. Each
of these equivalence classes, together with the edges incident on the vertices in the
class, defines a connected component of the graph. If a graph has a single connected
component, it will be said to be fully connected or simply connected. Otherwise, the
digraph is a forest of connected components and is said to be disconnected. For a much
fuller discussion of connectedness in digraphs, see Harary, Norman and Cartwright
[42], which also provides a good introduction to the discussion of graphs in this

dissertation.

2.3. Search Problems and Search Algorithms

As mentioned in the introduction to this chapter, it will be assumed that we are
interested in solving a search problem. This position has been adopted by others
and, given a general interpretation of search, is not terribly restrictive. The following

quotes lend support to this claim:

“In 1ts broadest sense, problem solving encompasses all of computer

science because any computational task can be regarded as a problem to
be solved.” Nilsson [43, page 2].

“Fvery problem-solving activity can be regarded as the task of finding
or constructing an object with given characteristics.”

Pearl [31, page 15].

If we accept these statements, and consider the problem of “finding or constructing

an object” a search problem, then we should not be surprised if very many situations

IThis is a simplistic definition of connectedness in a digraph. However, it is sufficient for our
purposes. A better treatment of this issue can be found in Harary, Norman and Cartwright [42].



20

can be thought of as posing search problems. As a final link in this chain of reasoning,
Rich claims that

“Fvery search process can be viewed as a traversal of a directed graph
in which each node represents a problem state and each arc represents a
relationship between the states represented by the nodes it connects.”

Rich [44, page 55].

If we take these three excerpts seriously, search is not only ubiquitous, but it can be
described in terms of a process on a graph structure. On setting out to develop a
model of fitness landscapes, I soon arrived at the conclusion that a landscape could
be conveniently viewed as a graph. Some time later, it became apparent that this was
a common view of search in other fields and I took pains to ensure that the model
was general enough to be appropriate for discussions of these algorithms also. Given
such a broad target, it is necessary to develop the model in a very general way. [ am
particularly concerned that this be done in a mathematically precise way that will
allow formal definitions and discussion when that is needed. This is similar to the
aims expressed by Banerji [45].

In setting out to present a model of computational search, there are several
fundamental issues that need to be initially addressed. 1 assume, in line with the
quotation due to Pearl above, that a search problem takes the form “Find an object

” Then search is conducted amongst a (possibly

with the following properties. ...
infinite) set of objects (potential solutions). As was emphasized in §1.3(5), the first
step in solving a search problem involves making a choice about the contents of this
set. 1 will call this set of objects the object space, and it will be denoted by O. This
choice will often be a simple one and in many cases a good candidate for O will be
provided in the problem statement itself. This decision is typically made before a
computer is introduced as an aid to search. Example object spaces include the set
of n-tuples of real numbers, the set of binary strings of length n, the set of LISP
S-expressions, the set of permutations of the integers one to ten, the set of legal chess
positions, the set of spin configurations in a spin glass and the set of RNA sequences.

A second step that is common when searching is to decide on some representation
of the objects in O. The representation determines a set, R, the representation space,
that can be manipulated more conveniently than O by the searcher. The model of
search of this chapter does not require that R # O, but this will be true throughout
this dissertation. In situations where R = O, (i.e., no representation is employed),

one can substitute O for R in the model. When performing search via a computer, R
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will very commonly be the result of a choice of data structure, D.T In this dissertation,
this will always be the case. The possible ways of assigning values to the bits that
comprise the memory corresponding to an instance of D determines R. Elements of
R will be used to represent elements of 0. Representation via instances of a data
structure is not the only possible choice in computational search, it is merely the most
common. Forms of search involving analog computation may have representations
involving resistors (for example), in which case the representation space may have
nothing to do with data structures [46].

Unlike the object space, the representation space is necessarily finite. Computers
have finite limits and therefore, in general, it is not possible to represent the whole of O
with R, at any given point in time. Such a situation is very common in evolutionary
algorithms. For this reason, only a finite subset O’ C O will be represented at
any given time. The mapping between elements of O and R will be called the

2 The representation is the link between the objects we choose to

representation.
examine as potential solutions to the search problem and the objects we choose to
manipulate to effect the search. When the search is finished, we invert this mapping
to produce the solution.

A relation, I', (“is represented by”) between the sets O and R implements this
representation. For o € O and r € R, we will write oI'r to indicate that o is
represented by r. The inverse relation I'"' (“represents”) between the sets R and
O is defined as '™ = {(r,0) | (o,r) € T'}. We will write r ™! 0 to indicate that r
represents o. The (possibly empty) subset of R representing o € O will be denoted
by I'(0) and the (possibly empty) subset of O that is represented by r € R will be
denoted by T'™'(r). If T(0) # 0, we will say that o is represented. If T=*(r) = () we
will say that r is illegal. R' = {r € R | IT=(r) # 0} will be used to denote the set
of elements of R that are not illegal. Consideration of how an algorithm restricts its
attention to R’ or manages excursions into R — R’ are discussed in §2.12(41). There
is nothing to stop an algorithm from adopting a new O, O’, R, R’, or I' at any point,
for example see [48, 49, 50, 51].

At this point, we have almost enough to talk about search. We need to be slightly
more specific about the nature of the search problems in which we are interested. As
mentioned above, we do not need to be too specific about the details of the search
problems if those details do not influence the landscapes that we will construct. In

this dissertation I will be concerned with two types of search problems, which I call

tThis does not restrict us to data structures of fixed size.

Liepins and Vose have termed this the embedding [47).
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simply Type 1 and Type 2:

1. A Type 1 search problem requires the location of an object (or objects) possess-
ing a set P of properties. The search is only satisfied when such an object is
located. The statement of the search problem includes no notion of “closeness”
to a solution. Either a solution has been found and the search is successful, or
one has not been found and it is unsuccessful. It is convenient to imagine the
statement of the search problem as providing a function g : O — {0, 1} defined
as follows:

1 if o possesses all properties in P.
g(o) =
0 otherwise.
which can be used to determine if an object satisfies the requirements of the

search problem.

2. In a Type 2 search problem, the searcher is required to find as good an object
as possible (presumably within some limits on time and computation). Once
again, it is convenient to imagine that the statement of the search problem
provides a function ¢ : O — G, for some set G, and a partial order >, on G such
that for 01,00 € O, if g(01) >g g(02) then oy is considered a better answer to
the search problem than o,. Notice that in a Type 2 problem, a searcher that
does not exhaust the whole of R cannot know whether an optimal object has
been located (given that choice of R), and hence has no reason to stop searching

based on the quality of the objects it has located.

Our search algorithms represent potential solutions to the problem using in-
stances of the data structure D. At point ¢ in time, the algorithm will have memory
allocated for a finite set of these, and the values they contain will form a multiset,
C: € M(R). When we are not concerned with time, we will drop the subscript and
simply use C to denote the current multiset of R. In the discussion of landscapes to
come, we will be concerned with C and with the methods used by the algorithm to
change it. The algorithms employ operators to modify C. In this dissertation, lower
case Greek symbols will be used exclusively to refer to operators. In particular, ¢
(and less frequently ), will be reserved to indicate generic operators.

An operator is a function ¢ : M(R) x M(R) — [0..1]. The value of ¢(v,w)=p
for v,w € M(R) indicates that with probability p, v is transformed into w by a single
application of the stochastic procedure represented by the operator ¢. Thus, for any
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operator ¢ and v € M(R),
Z o(v,w) = 1.
wEM(R)
For convenience, I will talk of the “action” of an operator and mean the action of
the computational procedure that the operator represents. Any modification made
to C by the algorithm shall be considered to be the result of the application of a
procedure associated with some operator. The series of applications of operators by

an algorithm can be illustrated by
Co 0 B0y 2

The details of the workings of an operator have deliberately not been specified.
As a result, operators are so broad in scope, that we may regard every method an
algorithm uses to affect C as taking place through the action of an operator. Thus
there are operators that (1) increase the size of C through the allocation of memory
to serve as instances of D, (2) reduce the size of C through freeing allocated memory,
and (3) alter the contents of existing members of C. Some operators may combine
any of these three actions. Designating some action of the algorithm as being the
result of an operator can be done quite arbitrarily. For instance, if we examine C; and
later examine C;y5, we can imagine that the algorithm has employed some operator
that transformed C; into Cyys that took ¢ time units to complete. Depending on the
value of §, we may be talking of the effect of a single microcoded instruction in the
CPU or of the action of the entire algorithm.

Clearly, some operators will have more effect on the result of the search than
others. Though crucial for the algorithm’s operation, an operator that increases the
size of C by one (through memory allocation) will typically be uninteresting, as few
algorithms deliberately make use of uninitialized memory. An initialization operator
that sets the bits of an element of C may be somewhat more interesting. What we
choose to consider an operator will depend on what we are interested in studying.
In this dissertation, we will be concerned with operators such as mutation, crossover
and selection in evolutionary algorithms. These represent one natural perspective on
the working of these algorithms and reflect an interest in the importance of these
operators. These operators are natural, in an informal sense, since they are typically
implemented as separate procedures in the programs that implement the algorithms.
Another natural perspective is to consider a generation of an evolutionary algorithm
to be an operator. Such an operator usually includes some combination of the three
finer-grained operators just mentioned. This is the perspective that has (so far) been

adopted by researchers interested in understanding aspects of the genetic algorithm
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through viewing it as a Markov chain (see [52] for example). The set of operators of
interest in an algorithm will typically be only a part of the algorithm. The algorithm
must also make important decisions about which operators to apply and when, decide
what elements of C should be acted on by operators, and decide when the search
should be terminated.

Given an operator ¢, the ¢-neighborhood of v € M(R), which we will denote
by Ng(v), is the set of elements of M(R) accessible from v via a single use of the
operator. That is, Ny(v) = {w € M(R) | ¢(v,w) > 0}. If w € Ny(v) we will say
that w is a ¢-neighbor of v. When the operator in question is understood, the terms
“neighborhood” and “neighbor” will sometimes be used. However, it is important
to keep in mind that this is an abbreviation. Two points that are neighbors under
one operator may not be under another. Given P C M(R), we will use Ng(P) to
represent the set of elements of M(R) — P that neighbor an element of P. That is,

Ny(P)={we M(R)—P | ¢(v,w)>0and v € P}.

A situation that we will often encounter arises when an operator ¢ replaces an
element v € C by choosing one of a subset of Ny(v). That is, the job of ¢ is to
replace v with one member of the neighbors of v as defined by a second operator .
An example will make this clearer. Suppose we have a hillclimbing algorithm; that
R is the set of all binary strings of length n; and that v € R is the current location
of the hillclimbing search. Operator ¢ flips a randomly chosen bit in a binary string.
Operator ¢ uses ¢ some number of times to generate a subset of N,(v). These are
placed by ¢ into temporary locations in C. When some number of neighbors of v
under ¢ have been generated, or when one is found that is suitable, ¢ replaces v with
the selected neighbor. Another example of this sort of operator is that which effects
a move in a simulated annealing algorithm [53]. It employs a mutation operator to
generate neighbors of the current point until it finds an acceptable one and sets the
memory corresponding to the current point to the value of the selected neighbor.

This brings us to the final aspect of search algorithms that we will consider
before describing landscapes. When an algorithm makes a decision about the relative
worth of a set of multisets of R (such as the neighbors generated in the example
above), it must have some basis for this decision. Although the decision can be taken
by simple use of a pseudo-random number generator, it is more common that the
algorithm will have some way of computing the worth of an element of M(R). We
will suppose the search algorithm has a function f: M(R) — F, for some set F, and
a partial order >, over F. If v,w € M(R) and f(v) >, f(w) then the multiset v

will be considered in some sense better for the purposes of continuing the search than
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the multiset w. Examples of such decision-making include the use of selection in an
evolutionary algorithms to produce one population from another, pruning methods
in dynamic programming and the acceptance test in simulated annealing. In the first
two of these examples, the algorithm is effectively making choices about multiple
elements of R, rather than about a single element of R. This is the reason that the
domain of f is M(R). We will call F the fitness space.

In all cases, the function f must be chosen by the searcher, it is not part of the
problem. It might appear that when solving a Type 2 search problem that when
evaluating multisets of size one, the searcher would always choose f = g, F = G
and >,=>,. While this might be a very natural choice, it is still a choice. Suppose,
for example, that the problem is to find a Hamiltonian circuit through a given graph
whose edges are labeled with distances. A Type 2 instance of this problem may specify
that a circuit ¢; can be considered better than a circuit ¢y if the sum of the distances
on the edges of ¢; is less than the sum on the edges of ¢;. However, the searcher might
believe that the search might be best approached by looking for circuits that form
simple closed curves, and therefore aim to minimize the number of times a circuit
crosses itself. Or the number of crossings may be combined with other information,
such as the length of the circuit, to form another function that is used for search. Of
course, the answer that the algorithm eventually produces will be evaluated only in
terms of the function ¢, but that does not mean that the search has to be conducted
using it. In simulated annealing and genetic algorithms, it is common to search using
an f that incorporates g and some other function that gives penalizes illegal objects
(see, for example, [54, 55]). On a Type I search problem, it is more apparent that
the searcher needs to devise some measure of worth, since no information is given at
all. In this case, the function that is chosen has been called an heuristic function in
Artificial Intelligence.

2.4. Landscapes

A landscape is dependent on five of the components of search and algorithms discussed

in the previous section. We may write a landscape as
[’ = (R7¢7f7f7>}")'

The components are, respectively, the representation space, an operator, the function
[+ M(R) — F, for some set F, and a partial order >, over F. As emphasized

in earlier sections, a landscape is a metaphor by which we hope to imagine some
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aspect of the behavior of an algorithm. That can be done by viewing the 5-tuple
as defining a directed, labeled, graph G, = (V| F) where V.C M(R), E CV x V
and (v,w) € F < ¢(v,w) > 0. A vertex v € V will be labeled with f(v). An
edge (v,w) will be labeled with ¢(v,w), the probability that the action associated
with the operator ¢ produces w from v. Though a landscape is formally defined by a
5-tuple, we will also talk of a landscape as though it were the graph that arises from
the 5-tuple.

The label f(v) attached to a vertex v can be thought of as giving the “height” of
that vertex. This is in keeping with the imagery we usually associate with landscapes.
This value will often be referred to as the fitness of the multiset of R represented
by v. The partial order, >, is used to determine relative fitness (height). In many
cases, >, will actually be a total order. The out-degree of a vertex in a landscape
graph will be the same as the size of the neighborhood of the corresponding multiset.
When ¢(v,w) = ¢(w,v) for all v,w € V, we will consider the landscape graph as
undirected and draw a single edge between v and w with the understanding that the
edge is bidirected. It should be remembered that the vertices of the landscape graph
correspond to multisets of elements from R, not to single elements of R. This is
important, because it allows us to define landscape graphs for arbitrary operators,
not just those that act on and produce a single element of R (e.g., mutation in a
genetic algorithm). Landscapes in this model are well-defined no matter how many
elements of R the operator acts on or produces, even zero. It will also be important to
remember that each operator employed by a search algorithm helps create a landscape
graph. Thus if an algorithm employs three operators, it can be thought of as traversing
edges on three graphs.

2.5. Definitions and Special Cases

This section provides definitions for some of the terms that are commonly encountered
in discussions of landscapes. In all of the following definitions, we assume that a
landscape £ = (R, ¢, f,F,> ) is given. Some of the following terminology is most
useful when >, is a total order. For example, if >, is not complete, given v and
w € Ng(v), it may be that neither v > w nor w >» v is true. In this case, we cannot

decide if either vertex is a peak.
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2.5.1. ¢-neighborhood and ¢-neighbor

These important terms have already been introduced as they were necessary for the
presentation of the model. They are defined in §2.3(24).

2.5.2. ¢-maximum or ¢-peak

A p-maximum or ¢-peak is a vertex
vEV | Yw € Ny(v), f(v) >r flw).

In words, a vertex is a ¢-peak if its fitness value is greater than the fitness values of all
its neighbors under the operator ¢. When we are not concerned with any operator in
particular, we will simply talk of peaks. Notice that a peak is a vertex in a landscape,
not a point in R or O. In some cases, e.g., with mutation operators, the vertex will
correspond to a single element of R, but in others, e.g., with crossover operators, it
will not. This definition allows every operator to have peaks, instead of reserving
the notion for a single-change (see §2.6.1(31)) or mutation operator. Consequently, a
vertex that is a peak from the point of view of one operator is not necessarily a peak
from the point of view of another. This is the reason for calling it a ¢-peak instead
of merely a peak. This terminology is more awkward, but the point is an important

one.

2.5.3. global-maximum

A global-maximum or global-optimum of a landscape is a vertex
veVIVweV, flv) > flw).

That is, a vertex is a global-maximum if it is at least as fit as every other vertex. If
a vertex has maximal fitness, then it will be a global maximum no matter who its
neighbors are. For this reason, we can call a vertex a “global maximum” without an
operator prefix. If a vertex is a global maximum under one operator, then it will also

be under all other operators.

2.5.4. ¢-local-maximum

A ¢-local-mazimum or ¢-local-optimum is a ¢-peak that is not a ¢-global-maximum.

In this case, unlike with global maxima, the ¢ prefix is important. A vertex v that
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is a ¢-local-maximum will usually not be a i-local-maximum as, in general, Ny(v) #

N¢(U).

2.5.5. ¢-plateau

A ¢-plateau is a set of vertices

M C V7|M| > 1 :VU07vn € M7 EIUl,...7Un_1 with
f(vi) = f(vig1) and vy € Ny(v;) V0 <7 <n.

This is a connected set of at least two vertices that all have the same fitness. It is
possible to move using ¢ between any two vertices visiting only vertices with equal
fitness. Our usual three-dimensional image of a plateau involves a flat area in which,
for the most part, a step in any direction will not result in a drop in altitude. This
is not the case in the above definition, and it is important to keep this in mind. For
example, a ¢-plateau may surround areas of exceptionally low fitness, as does the rim
of a volcano. In such cases, there may be no points on the plateau that have the same
fitness as all their neighbors. Defining a plateau to better fit our intuitions is difficult
and besides, what we will most often be dealing with, at least in the chapters that

follow, will be a ¢-plateau as defined here.

2.5.6. ¢-mesa

A ¢-mesa is a ¢-plateau, P, whose points have fitness k such that
Yo € Ng(P), f(v) <» k.

That is, a ¢-mesa is a ¢-plateau with the additional property that no point on the
plateau has a neighbor of higher fitness. Such a set is a connected region of the
landscape in which an algorithm that only moves to vertices of equal or higher fitness
may wander indefinitely without making any improvement. A ¢-mesa of size one is

also a peak.

2.5.7. ¢-saddle-region

A saddle point is a notion that is usually associated with continuous spaces. It is not
immediately clear how to define a saddle point in a high-dimensional discrete space.

If it really is to be a point and it is a saddle in the normal sense, then one definition
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would simply require the point to have at least one uphill neighbor and at least one
downhill neighbor. As this will be true of most points, the flavor of a saddle point in
a real space is lost. The term becomes practically useless since the only points that
are not then saddle points are peaks (maximal or minimal).

A better definition is to use ¢-saddle-region to refer to a ¢-plateau that is not a
¢-mesa. This is a region rather than a point. This definition also loses an important
part of the flavor of a saddle point, but at least it is useful and the name change

highlights the loss.

2.5.8. ¢-basin-of-attraction

The ¢-basin-of-attraction of a vertex v, is the set of vertices

By(v,) ={vo € V| Juy,..., 0,1 with
Viy1 € N(b(vi) Vo<1« n}

Thus the basin of attraction of a vertex v is the set of vertices from which v may be

reached using ¢. Notice that w € By(v) & v € By(w).

2.5.9. Fixed Cardinality Operators

Given ¢ : Mi(R) x M(R) — [0..1] for a fixed k and [, then we shall say that ¢ is
a fized cardinality operator. Otherwise, ¢ will be said to be of variable cardinality.
We will use ¢p_y; to represent the set of all fixed cardinality operators with domain
Mi(R) x Mi(R). Fixed cardinality operators will be treated so commonly in what
follows, that an unqualified use of the word “operator” implies that the operator has

fixed cardinality.

2.5.10. Walkable Operators

Fixed cardinality operators that are members of ¢p_;p will be called walkable. If
an operator is walkable, the output of the action corresponding to the operator can
be used as its next input. For example, the common forms of mutation are always
walkable. Any form of crossover that takes two parents and produces two children is

walkable. Crossover that produces one child from two parents is not walkable.
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2.5.11. Symmetric Operators

An operator ¢ will be called symmetric if ¢(v,w) = P(w,v) for all vertices v,w € V.
That is, an operator is symmetric if the probability of it producing v from w is the
same as the probability of it producing w from v. Notice that if this condition is true,

then so are the implications:
w € Ny(v) = v € Ny(w) and w € By(v) = v € By(w).

Hence a symmetric operator is necessarily walkable. Most common operators in
evolutionary algorithms are symmetric. As mentioned in §2.4(25), if an operator is
symmetric it will be convenient to consider (G as undirected, in which case edges

may be considered bidirectional and will not be drawn with arrowheads.

2.5.12. ¢-connected-components

If an operator is symmetric, we will often talk about the ¢-connected-components of
a landscape graph. Two vertices v,w € V are ¢-connected in GG if there is at least
one path between them (irrespective of edge directions). Following the definitions of
connectedness in §2.2.2(18) leads naturally to ¢-connected landscapes. The operator
associated with a connected landscape is necessarily walkable, but the converse is not

true, as will be demonstrated in Chapter 3. If
d(v,w) = ¢(v,x) Yo €V and Yw,z € Ny(v)

we will usually not label the edges of Gz with the transition probabilities. Figure 1

illustrates a situation where transition probabilities are not equal.

2.5.13. Natural Landscapes

The landscape induced by a fixed cardinality operator will be called natural if the
operator is symmetric and an element of ¢;_;. Most mutation operators generate
natural landscapes. The name is chosen as this is what people usually refer to as a

landscape.

2.6. Four Operator Classes and Their Landscapes

This section presents four familiar operators, single-change, mutation, crossover and

selection, and briefly describes some properties of the landscapes they generate. These
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0000,1011
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1000,0011 0001,1010
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1001,0010

Figure 1. A fragment of the one—point crossover landscape for binary strings of
length 4, showing unequal transition probabilities. The operator 1s symmetric, so the
edges of the graph should be considered bidirectional.

operators will be treated so commonly in the remainder of this dissertation that we
will give them special names. Three of the four classes of operators most commonly
encountered in evolutionary algorithms rely on the objects in R being composed of
some (not necessarily fixed) number of components. For example, a bit string has
some number of bits, an n-tuple of real numbers consists of n individual reals and the
parse tree representing a LISP S-expression consists of some number of internal nodes
and leaves. These components can typically be modified individually or in subsets,

possibly according to some constraints.

2.6.1. Single-change Operators

The simplest class of operators I will consider, a subset of ¢_.1, act on and produce
a single element of R. These operators randomly choose a single component of their
input and modify it in some way. The simplest example of this sort of operator is the
operator that flips a bit chosen uniformly at random in a bit string, which we will
denote by 3. Note that the outcome of this operator always differs in exactly one
component from the input. If the elements of R have n binary components, 3 induces
a graph that is a hypercube of dimension n. Each edge in the graph has a transition
probability of 1/n. Figure 2 shows the landscape generated by this operator on binary
strings of length three.
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100 101

110 111

Figure 2. The landscape for the bit-flipping operator (/5) on binary strings of length
three. Edges are bidirectional and each has probability one-third.

2.6.2. Mutational Operators

The mutational operators, also a subset of ¢;_;, modify each component of their
input with a given, typically small, probability. Thus a mutational operator’s output
is a modification of its input according to some probability distribution. The outcome
may be identical to the input, it may contain minor changes or may even be different
from the input in every component. We will denote a generic mutational operator
by p. If we again consider binary strings of length n and assume that each bit is
flipped with a fixed probability p, then the graph induced is the complete graph
Kon, augmented with a loop at each vertex. An edge in the graph between vertices
that represent binary strings whose Hamming distance is d will be labeled with a
probability p?¢"~?, where ¢ = 1 — p. Notice that the structure induced by this
operator is quite different from the one generated by the conceptually similar bit-
flipping operator. Figure 3 shows the mutation landscape for binary strings of length
three. The operators in both of these classes are walkable. The hypercube induced by
[ operator will, of course, be a subgraph of the graph generated by p. If a mutation
operator induces a complete graph (possibly augmented with loops), then this graph
will always contain exactly one mesa, whose points will have maximal fitness. If no
two points in the space have the same fitness, this mesa will be of size one and hence

a peak.
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Figure 3. The mutation landscape for binary strings of length three. The mutation
probability 1s p, and ¢ = 1 — p. Some edge probabilities are omitted. Edges are

bidirectional.
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2.6.3. Crossover Operators

The third class, the crossover operators, typically act on an element of R?. Crossover
operators combine the components from their inputs to produce their output. As an
example, in one form of crossover in an evolution strategy, the operator receives two
n-tuples of real numbers as input and produces a single n-tuple whose elements are
the averages of the corresponding components of the inputs [56]. In GAs, the original
form of crossover, as described by Holland [9], was single-point crossover, which has
become more frequently known as one-point crossover. There are many forms of
crossover for representation spaces such as S-expressions [14, 57, 15], n-tuples of reals
[56], permutations of integers [58, 59] and fixed length strings over some alphabet
[5]. Figure 4 shows the landscape generated by one-point crossover on binary strings
of length three. A generic crossover operator will be denoted by X. To indicate
that a crossover operator acts on k elements of R and produces [ elements of R, a
superscript will be added: X**'. A subscript will be used to indicate the common
types of crossover: 1 for one-point, 2 for two-point etc., and u for uniform crossover.
Thus X?7% is the crossover operator that produces two offspring from two parents

using one-point crossover.

2.6.4. Selection Operators

The fourth class is the selection operators. A selection operator acts on a population
of individuals (i.e., an element of M(R)) and produces a population. In GAs and
their derivatives, selection produces a population whose size is the same as the size
of the input population. In some ESs, selection produces a smaller population. For
example, in a (u+A)—ES, the selection operator is a member of ¢,41-,. The selection
operators exercise two generalities of the model that have not yet been shown to
correspond to anything. First, if we regard selection as being an operator that acts
on a population of any size, then it is a variable cardinality operator. The second is
that selection operators produce landscapes that are not symmetric. Typically, the
higher ¢(v, w) is, the lower ¢(w, v) will be, since selection, almost by definition, tends
to increase the number of copies of the fittest individuals and decrease the numbers
of the less fit. As a result, the above probabilities would very likely only be equal for

populations with highly uniform fitness distributions.
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Figure 4. The one-point crossover landscape for binary strings of length three. The
crossover operator, X372 produces two offspring from two parents. Edges are bidi-

rectional.
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2.7. Consequences of the Model

The model presented above has a number of consequences that are not found in other
landscape models. Two of these may seem particularly strange. First, as described
above, a landscape may not be walkable. As mentioned in §2.5(26), an example is the
landscape induced by any form of crossover that produces one child from two parents.
Such an operator cannot be used to conduct a walk on the landscape as the output
of the operator cannot be used as the next input.

Second, landscapes may not be connected. A simple example is the landscape
induced by a (non-GP) crossover operator that produces two children from two par-
ents. Consider a vertex of the landscape that corresponds to two points of R that
are identical. The vertex will be connected to itself (with probability 1), and nothing
else. A more specific and less trivial example of a landscape that is not connected is
seen by considering the vertex (011,010) of V where R = {0,1}?. Clearly no form
of crossover can transform this input to a pair of points either of which begins with
a one, e.g., (100,000). Equally clearly, no composition of crossovers can accomplish
this either. Thus (011,010) is not connected to any vertex in the landscape which
contains a member of R that starts with a 1 (in fact, this vertex is also connected
only to itself). Several complete crossover landscapes are presented in Chapter 3.

The possibility that landscapes may not be connected means that on these land-
scapes there is no general notion of distance between landscape vertices. This does
not mean that a metric cannot be defined, just that there may be no natural one (such
as the length of the shortest path between the vertices concerned). The model does
not require a distance metric to exist, though the absence of one might make certain
statistics meaningless or impossible to compute. Within a connected component of
a landscape, one can always use the length of the shortest path between two vertices
as a distance metric. The subject of distance metrics and dimensionality is addressed
in §2.9(39).

Because a landscape may not be walkable, general statistics describing properties
of landscapes may be restricted to using the information gained from repeated single
applications of the operator that generated the landscape. This sort of statistic was
employed by Manderick et al., even though they were considering a walkable landscape
[60].



37

2.8. Implications for Genetic Algorithms

An important consequence of this model of landscapes is that every operator used by
an algorithm defines its own landscape. For this reason, genetic algorithms can be
seen as operating on several landscapes; a mutation landscape, a crossover landscape
and a selection landscape. These landscapes will have different characteristics for
different problems, and can be studied independently. I will refer to this as the “one
operator, one landscape” view.

When one hears people talk of “the landscape,” the object of reference is usually
the mutation landscape or, more commonly, the hypercube landscape that  induces.
Despite the fact that crossover may be employed more frequently than mutation in
a GA, it has been assigned a supporting role in the landscape structure defined by
mutation. To say that crossover is making large jumps on the landscape (the mutation
landscape is implied), is to examine crossover outside its own context. What if the
algorithm involved does not even use mutation? What relevance does the mutation
landscape have then for the algorithm or for crossover? It makes as much sense to
say that mutation is making large jumps on the crossover landscape. Though it is
obviously important to consider the effect of using multiple operators in an algorithm,
it is also important that when we assess an operator in isolation that we do it in light
of the landscape structure it defines.

As was mentioned in §2.1(13), the notion of a peak cannot be divorced from the
notion of neighborhood. A vertex in G; can be a peak under one operator and not
under another. The mutation landscape has peaks, the crossover landscape has peaks
and the selection landscape has peaks. To regard peaks as something defined only in
terms of mutation is simply biased.

Another popular notion is that GAs are somehow making a walk on a landscape.
I would argue that it is only rarely that such a claim can be supported. A GA
that employs crossover that produces one child from two parents and no mutation
whatsoever could hardly be said to be walking. This example illustrates the fact that
a GA does not require its operators to generate walkable landscapes. It does not
follow that when they do, the GA is walking on them. My view of the basic cycle
of a GA is of a process that is making moves on three landscapes. Each member
of the population corresponds to a vertex in the mutation graph. Some of these are
moved, depending on the mutation probability. Then the population members are
somehow paired, which defines a set of vertices on a crossover landscape. Many of
these vertices make a move on this landscape, depending on the crossover probability.

Finally, the entire population corresponds to a point on the selection landscape and
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a step is taken there before the cycle repeats. This process is depicted in Figure 5.
Under this view, the GA is taking single steps on the various landscapes but cannot
be said to be walking on any of them. In some cases, obviously, a point may survive
many such cycles and take several steps on the mutation landscape. In other cases
the population might be highly converged, in which case crossover and mutation will
be producing little change and it could be argued that some or even most of the
population is walking on the mutation landscape or that the entire population is
walking on the selection landscape. But these cases are the exception rather than the

nori.

Mutation Landscape

Population of

individuals.
Selection Landscape

Some move
under mutation.

Entire population moves
under selection.

Individuals
paired for
crossover.

o o Some pairs move
under crossover.

Crossover Landscape

Figure 5. A simplified view of a GA operating on three landscapes. The landscape
graphs are idealizations of far larger structures, and self-loops in the graph, created
when an operator’s input and output are identical, have been omitted. The GA
is seen as taking some steps on the mutation landscape, then pairing individuals
(probably according to fitness) thereby forming vertices on the crossover landscape
upon which moves are made before the entire population is gathered into a vertex on
the selection landscape where a step is taken. Finally, the population is decomposed
into individuals which again correspond to vertices on the mutation landscape.
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2.9. Advantages of the Model

Apart from fact that the model makes it possible to use the landscape metaphor in

an unambiguous way, there are several other advantages that deserve mention:

e The model establishes a point of contact with the search algorithms of AT and
OR. In all cases the underlying structures being searched are graphs. This
relationship is explored more fully in Chapter 5.

e The model does not make the assumptions that prevent other notions of land-
scape from being more widely used. For example, the landscape does not need
some fixed dimensionality, nor does it need a distance metric between the ob-
jects that compose the landscape. For these reasons, it is possible to view many
AT problems as being problems on landscapes of this type. For instance, one
could conceive of a landscape for chess or Rubik’s cube. The navigational task
on these landscapes may differ, or the operators may be complex, but the un-
derlying structures are the same. The model is also useful within the field of
evolutionary computing. It applies as well to GP as to GAs. Statistics that can
be calculated for a landscape in one paradigm can be calculated in exactly the

same way for another. The model also provides a framework for thinking about

HC, SA, ESs and EP.

e The model invites a point of view that seems uncommon in the field of evolu-
tionary computation, though not in AI. This is a view of search as navigation
and structure. Once we view search in this way and identify the various compo-
nents present in a GA, it is natural to ask questions about them. This division

and the recombination it makes possible are examined in detail in Chapter 3.

e The “one operator, one landscape” view reveals the very different landscapes
that are constructed by various operators. This invites statistical analysis of
the landscapes, as will be seen in Chapter 5 and as has been done in [60, 61, 62,
63, 64]. Such analysis has the advantage of being independent of any particular
navigation strategy. For this reason, it may be possible to demonstrate that a
particular operator creates difficult (in some sense) landscapes for some problem
types. Such results might go a long way towards resolving debates on the virtues
of certain operators. Statistics such as these would be very useful as indicators

of potential difficulty (or ease) of a problem for an operator.
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2.10. Limitations of the Model

It can be argued that the model is not particularly useful in situations where the
nature of the operators changes in the course of search. For example, the change
of mutation vector for an individual in ES and EP, the change of edge probabilities
when the temperature falls in simulated annealing or after inversion in a GA, or where
the mapping between objects and representation space is changed, e.g., in dynamic
parameter encoding [49], delta coding and delta folding [48]. There is some truth
to this argument. However, if one ceases to regard a search structure as something
necessarily fixed for all time, the model is still potentially useful. For example, a
statistic, say correlation length, might be computed for the landscapes generated by
a range of different temperature settings in a simulated annealing problem. This
might provide useful information about when the search could be expected to make
good progress (thus guiding the choice of cooling schedule) and it might prompt a
comparison with a hill climber or other algorithm on one of the landscapes. These
situations make the landscape something of a moving target, but the targets can be
studied individually.

More generally, an algorithm might change many aspects of its behavior, for
example the fitness function or the representation space, mid-run, and thereby shift its
attention to new landscapes. This might be done very frequently. In these cases, the
landscapes model of this dissertation holds that each such change produces potentially
new landscape structures and that these can and should be studied independently.
This is not a claim that the family of landscapes used by an algorithm should not be
studied as a whole, just that it is possible to study the components in isolation, that
this will be a simpler task and that it is worthwhile.

The fact that the model does not require a distance metric is not a limitation.
There is nothing in the model that prevents the definition of a distance metric on R
or V', and if this proves useful, it should be taken advantage of. In cases where the
landscape is fully connected, there is always a natural definition of distance, and this
can be used to compute such things as correlation lengths [65]. In other cases there
may be no useful definition of distance. That the model does not provide one is not
a shortcoming. It cannot be denied that the algorithm is making moves on the graph
defined by the operator. A landscape model that provides a concrete, well-defined
graph which can be studied, is far better than nothing.
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2.11. Operators and Representation

The aim of this section is to make it clear that representation and operators are not
independent and to illustrate how they interact. The choice of one constrains the
possible choices of the other. To some this will be obvious, but others (I was one)
may not have realized how tightly bound the two are. A choice of D is also a choice
to use operators which act on that data structure.

There is an important tradeoff in these choices. Typically, the more intuition that
has gone into the choice of O, the more difficult it will be to design operators that
act on and produce members of O. This is related to the problems with maintaining
legal objects which are addressed in §2.12(41). Here I am more concerned with the
tradeoff between the recognition of important classes of objects and the construction
of operators to move between them.

An example that will be relevant to experiments of this dissertation concerns
the representation of Turing machines. A simple representation will ignore the fact
that there are many symmetries amongst Turing machines that, if removed, would
result in far smaller search spaces. The simple solution is to ignore these symme-
tries, which allows the use of simple operators. Once the symmetries are noted, they
can be excluded from consideration by adopting some canonical Turing machine rep-
resentation, but it may be difficult to construct operators that produce canonical
machines from other canonical machines. This particular example is dealt with in
greater detail in §3.8.5.1(61). Unfortunately, reducing the size of the space that is
being searched does not necessarily make the search problem simpler (see, for exam-
ple, [66, 67]). The tradeoff between representations and operators will be encountered

again in §5.3.1(124).

2.12. Objects and Representation

There is much that can be said about the choices of O and R and the relation, I’
between them. As mentioned in §2.3(20) a choice of representation is a choice of data
structure and this choice leads immediately to a set R whose members correspond
to the various ways the bits in a data structure representing an object can be filled.
Note that this does not restrict attention to fixed length data structures.

The problem of course is that there may be many ways of filling a data structure
that do not result in the representation of an object in O. A similar problem exists
when the problem statement involves constraints on the form of the solution. The

representation space that is chosen may include elements that correspond to objects
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that violate constraints. These situations are very common in evolutionary algo-
rithms, and a number of ways of dealing with them have been adopted. They arise in
even the simplest GA applications (for example, using 2 bits to represent 3 objects),
in algorithms that manipulate permutations (where crossover can easily produce a
non-permutation), and with floating point representations. There have been several

approaches to dealing with these problems:

e Probably the most common solution is to build special operators that produce
legal representations from other legal representations. This is a common ap-
proach when manipulating permutations of integers. Operators for this include
Cycle Crossover [58], Order Crossover [58], Partially Matched Crossover [68],
Edge Recombination [59, 69, 70], the crossover of Gorges-Schleuter [71], Maxi-
mal Preservative Crossover [72], Strategic Edge Recombination [73], and Gener-
alized N-point Crossover [67]. Michalewicz describes special-purpose operators

designed to stay within a feasible region of R" given by linear constraints [74].

e Another solution is to allow these illegal representations but to penalize them
somehow to encourage the algorithm to avoid these regions of the space, possibly
with increasing probability over time [5, 54, 75, 76, 77, 78, 79].

e Davis and Steenstrup [80] suggest that the problem can be dealt with by “decod-
ing” illegal individuals before evaluating them. They do not give an example,

but claim the procedure is often computationally intensive.

e Another approach is to allow the operators to construct illegal representations
but to repair the result [81, 82], a procedure called “forcing” by Nakano et al.
[83].

o If the size of the subset of R that is legal is not too small, a solution is to

generate individuals repeatedly until a legal one is found.

o A recent elegant solution, proposed by Bean, adopts a new representation of a

permutation that allows traditional operators to be used [84].

This dissertation does not attempt to treat representational issues such as the

above, though this aspect of search is as important as any other (see §2.13(42)).

2.13. Origins and Choices

This section discusses the origins of some of the components of search algorithms and

landscapes. The importance of the choice of O, the objects that are being considered
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as possible solutions to the search, was illustrated in §1.3(5) with the eight queens
problem. This is by no means an isolated example. This choice might not seem part
of the search algorithm, but it is simple to view it as such. Perhaps the reason why
this aspect of search is not so considered is that we typically have no idea how such a
choice could be performed by a machine. The choice requires experience, insight and
creativity. It is possible for an algorithm to make this choice and to explore various
answers during the course of a search, but currently we do not know how the process
works well enough to design an algorithm to perform it. If this component of search
eventually falls into the domain of the computation, artificial intelligence will have
taken a significant step.

The choice of the representation space, R, has similar importance and is also
typically made by the programmer, not the program. An important issue is that of
what I call over-representation and under-representation. Over-representation occurs
when many elements of R are interpreted (according to I'"!) as corresponding to the
same element of 0. From a problem solving point of view, such a choice is strictly
redundant, but it may have advantages that we do not yet fully appreciate [66, 67].
The mapping between RNA primary and secondary structure is highly redundant in
this sense. GP has a similar flavor; every S-expression is a member of an infinitely
large class of S-expressions that are all functionally equivalent.

Under-representation is very common in problem solving. A dramatic and elegant
example is Kanerva’s Sparse Distributed Memory in which an extremely large address
space (e.g., of 2'%% locations) is represented in a conventional-sized memory [41].
As mentioned earlier, an object space that involves an infinite set must be under-
represented at any one point in time. Genetic algorithms have traditionally under-
represented real intervals via a discretization of the interval indexed by the binary
value of a bit string. Using a floating point representation also under-represents the
reals, but in a far less drastic manner. Work on issues of representation, particularly
changing representation, can be found in [47, 48, 49, 50, 51, 85].

A representational choice that is common in Al and OR has the elements of R
represent partial objects from O. A partial object can also be viewed as representing
the class of objects that in some sense contain the partial object. For example, a
sub-tour in a graph can be thought of as a partial tour, but also as a representative
of all those complete tours that include the sub-tour. This form of representation
is the basis of the “split-and-prune” [31] paradigm of OR and it underlies all of the
many variants of the branch-and-bound algorithm. A schema in a GA is also repre-

sentative of a class of objects (in this case binary strings), though the GA does not
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manipulate schemata explicitly,® though each binary string of length n is an instance
of 3" schemata and thus operations on individuals can be thought of as operations on
samples from many schemata. This was described as intrinsic parallelism by Holland
in [9] but has become more widely known as implicit parallelism.

The final choice I want to mention is that of operators. Every instance of every
search problem has a perfect operator. If the operator could be found (which of course
it cannot), very little else would matter. A random walk search strategy would locate
a global optimum in at most two evaluations. This operator would build a graph

similar to that shown in Figure 6. Paradoxically, an operator that would be even
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Figure 6. The landscape generated by a perfect operator. Every point in the space,
except the global optimum is connected directly to the global optimum. Vertices
are labeled with fitness values. Any search strategy using this operator will find the
global optimum quite rapidly.

harder to construct would result in a difficult problem. This operator connects each
vertex directly to the vertex that has the next highest fitness. This is essentially
the landscape that was produced by Horn et al. in [86], though that landscape was
produced by combining a very specific fitness function with an ordinary operator
and this is produced by combining a very specific operator with an ordinary fitness
function. An example is shown in Figure 7. The importance of the choice of fitness

function is discussed at length in the second half of Chapter 5.

3This is not strictly true if a binary string with no don’t care symbols is regarded as a schema,
which it is sensible to do. A more accurate statement would assert that schemata of order greater
than zero are not explicitly manipulated by the GA.
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Figure 7. The landscape generated by a not-so-perfect operator. Every point in the
space, except the global optimum is connected directly to point with next highest
fitness. Vertices are labeled with possible fitness values. Any search strategy that
starts at a randomly chosen vertex and thereafter uses this operator alone to generate
new possible solutions will explore an average of half the space on each successful
search.

The point of these remarks and illustrations is simply to emphasize that in all
cases these choices have to be made and that the choices that are made may have a
tremendous impact on the difficulty of a problem. I am not suggesting that, given a
search problem, we should search for the perfect operator or fitness function. In every
case, the choices that are made determine a landscape as described by the current
model. This suggests instead that we should try to develop techniques to study these
structures, and attempt to apply what we learn to the problem of deciding whether
one choice in their construction appears better than another. The landscape model
that underlies these structures is in all cases a graph, so a technique developed to

study an aspect of one landscape can be automatically applied to many others.

2.14. The Usefulness of the Landscape Metaphor

The term “landscape” has something powerfully seductive about it. The imagery
it evokes is so appealing, that further thought can be completely suspended. An
important question to ask is why we would want to use such a term. The answer

is presumably that we hope to use the imagery (e.g., peaks, ridges, valleys etc.) to
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enhance our understanding of some process, to develop new ideas for exploring spaces
and to stimulate questions about processes operating on these structures. All of this
tends to rely rather heavily on the simple properties that we see in physical three
dimensional landscapes. It is not clear just how many of the ideas scale up to land-
scapes with tens or thousands of dimensions. It is quite possible that the simplicity
and beauty of the metaphor is actually damaging in some instances, for example by
diverting attention from the actual process or by suggesting appealing, simple and
incorrect explanations. Many of these potential problems are summarized by Provine
[87, pp. 307-317], which should be required reading for people interested in employing
the metaphor. Wright’s response to Provine’s criticism is that his landscape diagrams
were intended as a convenient, but simplistic, representation of a complex process in
a high-dimensional space [37], and were never intended for mathematical use.

As outlined in §2.1, similar problems exist in evolutionary computation. Given
this, it is worth asking whether it is better to abandon the term or to use it and try
to be more precise about what is actually meant. There is something to be said for
abandoning it. After all, in virtually every formulation, a landscape can be regarded
as a graph. On the other hand, it seems unlikely that the term will just go away. In
addition, the metaphor, however distant it may sometimes be from reality, has given
rise to new ideas and intuitions. I have chosen to adopt the term, with the hope that

it will lessen, rather than increase, the vagueness with which it is applied.

2.15. Conclusion

This chapter presented a general model of landscapes and an overview of its conse-
quences, advantages, limitations and relevance to evolutionary algorithms. The model
views a landscape as a directed graph whose edges and vertices are labeled. It was
argued that the operators in evolutionary algorithms each generate a landscape, that
these landscapes have differing qualities, and that each can and should be studied
in its own right. Thus most evolutionary algorithms are seen as operating on mul-
tiple landscapes. Defining a landscape as a graph establishes a contact with search
algorithms from artificial intelligence and operations research, many of which are ex-
plicitly designed to search labeled graphs. The model advocates a view of search as
composed of navigation and structure, with the structure provided by landscapes. It
is argued that the statistical properties of landscapes can be studied independently
of navigation strategies. The relationship between this model and other work on
landscapes is dealt with in detail in Chapter 6. Most of the issues touched on in this

chapter will be encountered in the chapters that follow.



CHAPTER 3

Crossover, Macromutation, and
Population-based Search

3.1. Introduction

The features of a GA that distinguish it most from other search methods are its use
of a population and a crossover operator. In a GA, crossover is the major mechanism
of communication between individuals in a population. The usefulness of crossover,
and therefore, to some extent, of maintaining a population, has been a contentious
issue in research on GAs (see, for example, [29, 88, 89, 90, 91, 92]). The standard
method of determining whether crossover is useful to a GA involves comparing a GA
with crossover to a GA without crossover. If the GA with crossover outperforms the
GA without crossover, this is taken as evidence that crossover is useful (i.e., that it
is facilitating the exchange of building blocks between individuals). Therefore, the
maintenance of a population and the use of crossover seem justified because these
are clearly an aid to the algorithm. This chapter argues that this conclusion is not
justified and gives an alternate method for assessing the utility of crossover.

A distinction is made between the idea of crossover and the mechanics by which
crossover operators attempt to implement this idea. It is shown that even in the
absence of the idea, the mechanics alone can be effectively used for search. A GA
with no crossover has neither the idea nor the mechanics of crossover, and if it is
outperformed by a normal GA, it does not follow that the idea of crossover is therefore
useful to the normal GA. An algorithm is presented that illustrates the power of
the mechanics of crossover. This suggests a simple new comparison for determining
whether crossover and a population are providing some additional benefit to the GA
over simpler algorithms that do not use crossover or maintain a population. This
comparison is between a normal GA and a GA that uses random crossover. Using

this, it possible to see what advantage the GA is gaining from the idea and the
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mechanics of crossover over and above what it could be gaining from the mechanics
alone. In some cases, when well-defined building blocks are not present, the GA
may actually perform worse with normal crossover than a GA with random crossover
because of its use of a population. This test gives an indication of the existence of

building blocks that are exploitable by a GA with a given crossover operator.

3.2. Search as Navigation and Structure

The model of landscapes presented in Chapter 2 maintains that every operator used
in a GA creates its own landscape, and advocates a view of search as a process of
navigation upon these landscapes. This division into structure and navigation invites
the construction of new algorithms. A potentially new search algorithm may be
constructed from two existing search algorithms by combining the navigation strategy
of one algorithm with the landscape structure(s) from the other. This observation
prompted consideration of combinations involving the representation used in genetic
programming and navigation strategies of hillclimbing and simulated annealing by
O’Reilly and Oppacher [93].

This process is possible because navigation strategies are designed to search
graphs and landscapes are graphs. This implies that the pieces will be interchange-
able provided the graph satisfies any assumptions made by the navigation strategy
(e.g., that it is a tree). The resulting search algorithm may be interesting in its own
right (for instance because it performs better than one or both of the originals in
some circumstances) or it may be interesting because it throws light on one or both
of the original algorithms. In this chapter the combination of the navigation strategy
of a simple hillclimber with the landscape structure of crossover is examined in detail.
The resulting crossover hillelimbing (CH) algorithm is interesting for both of these
reasons—it outperforms both the GA and the hillclimber, and, an investigation into
the power of the algorithm leads to a clearer understanding of the dual role of the
crossover operator in a GA. This combination of navigation strategy and operator
has also been investigated, in the context of genetic programming, by O’Reilly and
Oppacher [94].

Navigation strategy has deliberately not been well defined. This allows us to
apply the spirit of this division (into navigation strategy and structure) to a very
wide range of algorithms, without requiring a specific definition of what a naviga-
tion strategy actually is. Landscape graphs on which the algorithms make moves are
well defined in §2.4(25). We will define navigation strategy as any part of a search

algorithm that is not a landscape. For example, consider a simple hillclimbing algo-
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rithm that operates on binary strings using the bit-flipping operator, 3, described in
§2.6.1(31). Each of the vertices in the landscape graph of 3 corresponds to a binary
string, and each has an associated fitness. If we suppose that the algorithm starts
operation at a randomly chosen vertex, v, to which vertex of Nz(v) does it move next?
This decision is made by the navigation strategy. Notice that we have assumed the
algorithm has made the choice to use the operator to generate a new binary string.
This choice is part of the navigation strategy, though in such a simple algorithm there
is not a lot of choice about what to do next if the navigation strategy does not halt the
search. The choice of the next vertex to move to is made by the navigation strategy,
so is the number of elements of Nz(v) to examine before making the move. Having
examined a number of next possibilities, the navigation strategy selects one, usually
on the basis of the fitnesses observed.

The particular solutions to the choices above are usually responsible for the name
given to the algorithm. For example, if all the neighbors are examined and one of
those with maximal fitness is chosen to move to, the hillclimbing algorithm is called
Steepest Ascent. If the navigation strategy examines neighbors until one with better
fitness is found and then moves to it, we shall call the hillclimbing algorithm Any
Ascent. Other aspects of algorithms that will be considered part of the navigation
strategy include such things as: Deciding when to stop, deciding which operators to
use and when, deciding how and when to change the algorithm’s temperature variable
(should one exist), deciding to adjust the representation or the mapping I' between
the object space (O) and representation space (R) to focus on a specific area of O,
deciding on population size (if the algorithm maintains a population), and deciding

on a balance between exploration and exploitation.

3.3. Crossover Landscapes

In order to understand the workings of the crossover hillclimbing algorithm, it is
necessary to have an idea of the structure of crossover landscapes. As was briefly
mentioned in Chapter 2, crossover landscapes are not simple connected graphs. This
dissertation does not attempt a full study of the structural properties of crossover
landscapes, however, several crossover landscapes are shown in Figures 8 to 11. In
each of these, R is the space of binary strings of length two or three. Figure 8 is
identical to Figure 4 on page 35 and is reproduced here so as to have these figures
close to each other for easy comparison. It shows the landscape generated by the one-
point crossover operator that produces two children from two parents (X77?). Figure 9

shows the landscape generated by two-point crossover that produces two children from
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two parents (X37?), Figure 10 shows the landscape generated by uniform crossover
that produces two children from two parents (X>72), and Figure 11 is the landscape
generated by one-point crossover that produces one child from two parents (X77'). A
more general figure for parameterized uniform crossover [95] would have probabilities

on the edges, similar to those in Figure 3 on page 33.

3.4. Experiment Overview

The crossover hillclimbing algorithm was constructed to study the performance of
crossover in relative isolation. One problem with assessing the importance of the
operator is that it is difficult to dissociate the operator and its effects from the rest
of the machinery of the GA. Naturally, the power of the operator, if any, might arise
from its actions in concert with other operators and this needs to be kept in mind.
However, the crossover hillclimber allows a reasonably simple view of crossover and
the results obtained with the algorithm throw light on the GA itself.

The CH algorithm is compared on a number of functions to three algorithms:
Two simple GAs (one with and one without elitism) and a simple mutational hill-
climber. This collection of algorithms is interesting as the two hillclimbing algorithms
use a single (different) operator and these two operators are both employed by the
GAs. Otherwise, the two hillclimbers have very similar navigation strategies. The
GAs of course have a much more sophisticated navigation strategy. The algorithms
are compared exclusively on the basis of the expected number of evaluations they
require to reach certain levels of performance.! It should be emphasized that the
purpose of this experiment was not to do an exhaustive comparison of the four al-
gorithms. This would be an extremely large undertaking as there are many variants
of the GAs and many parameters that could be adjusted. Instead, a fairly standard
collection of parameter settings for these algorithms was chosen and held fixed across
all experiments.

On several occasions I performed some initial testing to see whether a particular
parameter setting appeared to increase an algorithm’s overall performance. In each
case I chose the option that resulted in the higher performance. Virtually all this

parameter testing was for the GAs, though it was necessary to change the mutational

!This is a practical yardstick, and is motivated by the belief that when choosing an algorithm
to solve a problem, one is chiefly motivated by the amount of time that will be spent awaiting a
solution. If the number of function evaluations performed by an algorithm is proportional to its run
time, then concentrating on the expected number of evaluations is appropriate.
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Figure 8. The one-point crossover landscape for binary strings of length three. The
crossover operator, X372 produces two offspring from two parents. Edges are bidi-

rectional.
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Figure 9. The two-point crossover landscape for binary strings of length three. The
crossover operator, X372, produces two offspring from two parents. Edges are bidi-
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Figure 10. The uniform crossover landscape for binary strings of length three. Bits
are chosen from parents with probability 1/2. The crossover operator, X272 produces

two offspring from two parents. Edges are bidirectional.
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Figure 11. The one-point crossover landscape for binary strings of length two. The
crossover operator, X3! produces one offspring from two parents (and is conse-
quently not walkable). This is done by generating both offspring (as in X?7?) and
then selecting one uniformly at random to retain. Other offspring selection methods
would alter edge probabilities.

hillclimbing algorithm (from the description given by Forrest et al. [96]) to increase its
performance. This is described in §3.6(55). The crossover hillclimber was surprising in
its robustness. The parameter settings used were chosen after a few very preliminary
experiments and not altered until the reasons for the success of the algorithm were
later sought.

3.5. The Simple Genetic Algorithm

The following parameter settings were used in the GAs. These can all be defended
as fairly standard. Population size was 500 (initial experiments with smaller sizes
resulted in a marked decrease in the GA’s performance). The maximum number of
generations was 100. This many generations were run unless the population became
too converged or a point with maximal fitness was encountered. The maximum

amount of convergence permitted in a population was 0-85 at every locus. If every
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locus in the population converges to at least this frequency, the run is terminated.
The per-locus mutation probability was 0-01. The probability that crossover was
applied to a pair before they were added to the next generation was 0-75. To avoid
complications with selection, binary tournament selection [97] was used as it is rank-
based, avoiding any need to scale population fitness or otherwise consider the fitness
function, even across experiments. The winner of the tournament was given a 0-75
chance of being selected. See [98, 99] for discussion on the advantages of rank-based
selection schemes.

A major omission from this list of parameters is some form of elitism [30], either
an explicit copying of the best individual or a generation gap less than one to decrease
the probability of discarding the best structure found so far. There has been recent
discussion on the use of GAs as function optimizers [100, 101], perhaps stemming from
Holland’s reminder that the original intent of the GA was more one of improvement
than one of optimization [102]. It is not clear whether a standard GA should include
some form of elitism or not [5, 9, 30, 103]. Grefenstette’s standard GA [103], which
takes its lead from De Jong [30] recommends some form of elitism. De Jong refers to
a “canonical” GA (which does not use elitism) and mentions elitism as a method of
improving GA performance when a GA is used as a function optimizer [100].

It is perhaps unfair to compare the GA against two algorithms that use a very
elitist hillclimbing strategy, but then again, they are different algorithms. The obvious
solution is to examine both possibilities. A summary of the result of this is that
elitism never resulted in worse performance (usually the GA with elitism would attain
difficult performance levels in five to ten times fewer function evaluations than the
GA without elitism), but that the change never resulted in a significant change in the
positional ranking of the GA with respect to the other two algorithms. For example,
if the performance on a problem of a GA without elitism was between the other
algorithms, then the GA with elitism would perform better than the GA without
elitism, but still between the other algorithms. In what follows, the standard and
elitist versions of the GA are denoted by GA-S and GA-E. Abbreviations for all the
algorithms of this chapter can be found in Table 1.

3.6. The Bit-flipping Hillclimbing Algorithm

The bit-flipping hillclimbing algorithm (BH) is essentially identical to the “random
mutation hillclimbing” (RMHC) algorithm suggested to Forrest et al. [96] by Richard
Palmer. The algorithm chooses a random starting vertex and thereafter proceeds to

any (-neighbor with equal or higher fitness as soon as one can be located. On the
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Table 1. Algorithm abbreviations and brief descriptions. The last column gives the
page on which a fuller description of each algorithm can be found.

Abbreviation | Description Page
GA-S Standard GA. 54
GA-E Elitist GA. 54
BH Random Mutation Hillelimbing. 55
CH(a,s,j) Crossover Hillclimbing, a attempts, s steps, 7 jumps. | 57
CH CH(10,3,1000). 57
CH-1S CH(10,1,3000) One step per hypercube. 74
CH-NJ CH(10,3000,0) No jumps between hypercubes. 74
GA-RC GA with random crossover. 78
GA-RCE Elitist GA with random crossover. 78
BH-MM Hillclimbing with macromutations. 81
BH-DMM Hillclimbing with distributed macromutations. 81

royal road functions examined by Mitchell, Forrest and Holland [36, 96], the algorithm
has the important property of moving indefinitely on a -plateau. The royal road
functions have many such sets, which are not -mesas and so are eventually escaped by
this algorithm. This accounts for its success on these problems over other hillclimbers
that use 8 but do not make moves to points of equal fitness.

In general, the operators and representation chosen to attack a search problem
may create many plateaus that are mesas. When BH encounters a (-mesa it will
wander on it indefinitely. For this reason, the algorithm has a parameter that limits
the number of steps that may be taken without a fitness increase. This parameter is
the only difference between BH and RMHC. If this number (which was set to 10,000)
is exceeded, the search is terminated. Without such a limit, BH encounters chronic
problems on the busy beaver problem (described below) as a result of the choice of

representation for that problem. The maximum number of random mutations to try
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before deciding that a point has no equal or higher neighbor and terminating the

search was set to twice the number of neighbors.

3.7. The Crossover Hillclimbing Algorithm

The CH algorithm has a navigation strategy that is very similar to that of the BH
algorithm just described. However, the operator used here is two-point crossover (in
which two offspring are produced from two children).

The two-point crossover landscape on binary strings described in §3.3(49) is a
family of hypercubes, each of whose vertices corresponds to a pair of individuals
from R. To conduct a hillclimb within a hypercube, randomly choose a starting pair
(Ao, Bo) and perform crossover on them repeatedly until some limit (maa-attempts)
is reached or a pair (A1, By) is found with max(f(Ay), f(B1)) > max(f(Ao), f(Bo)).
If no such pair is found, halt the hillclimb. Otherwise, continue, performing a similar
search from (A, By). This process carries out a single climb within a hypercube
of the landscape.? Once max-attempts crossovers have been tried and a new vertex
containing a better individual has not been found, there is no need to discard both A;
and B; to continue the search. Instead, the CH algorithm discards the less fit of A; and
B; (ties are broken arbitrarily) and replaces it with a randomly chosen element of R.
This has the effect of (probably) transferring the search into another hypercube, from
which the hillclimb may continue in identical fashion. Figure 12 shows a fragment
of such a climb. A second parameter, maz-jumps limits the number of times the
jumping between hypercubes may occur. A third, maz-steps can be used to limit the
number of steps that may be taken consecutively within a hypercube before a jump
is forced. This is equivalent to saying that the number of pairs in the sequence of
steps (Ao, Bo), (A1, B1), - - - within a hypercube is limited to maxz — steps+1. A triple
representing the value of these three parameters, maz-attempts, maz-steps and maz-
Jumps can be used to describe a particular CH algorithm. For example, CH(10,3,1000)
represents the CH algorithm that examines up to 10 neighbors (under crossover),
limits the number of steps that may be consecutively taken within a hypercube to
three, and makes at most 1000 jumps via discarding the worst individual of the current
pair when no acceptable crossover is found or when three steps have been taken within

a hypercube. In the initial experiments of this chapter, we will be concerned only

*Naturally, there is a chance (typically high) that the global optimum (assuming there is only
one) cannot be discovered from a randomly chosen starting pair. With binary strings of length [,
this probability is 1 — (3/4)".
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with CH(10,3,1000) and will use CH to mean this algorithm.

(@”, b™)
(@”, b”)
(@, c) \
(@, ¢c) (a:”’, c”) (2, b)

Figure 12. A fragment of a hillclimb under crossover. Three uphill steps are taken
(using crossover) within the right hypercube, from (a,b) to (a,4"’). At that point
b is discarded and replaced with the randomly generated ¢. Two more steps are
then taken on the left hypercube. The jump into the left hypercube is either the
result of a limit on the number of steps in a hypercube (max-steps) or a limit on the
number of attempts to find an improving crossover (max-attempts).

3.8. Test Problems

This section describes the set of six problems that were studied. Each of these prob-
lems has a fixed length string representation. Three instances of each of the six

problems were studied, resulting in eighteen separate problems in six classes.

3.8.1. One Max
This problem was studied using a GA (and other algorithms) by Ackley in [26]. The

task is simply to locate a binary string which consists of as many ones as possible.
The fitness of a string is the number of ones it contains (Ackley used ten times this).
Problems in which the fitness of an individual is a function of the number of ones in
the string have been termed functions of unitation by Goldberg and have received a

considerable amount of attention, particularly in the study of deception [104]. While
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the problem clearly has a single global maximum and no [-local-optima, there are
local optima for other operators, as demonstrated by Culberson [29], who shows that

the problem contains X¥7*-local-optima. The three instances of the problem that

were studied had lengths 30, 60 and 120.

3.8.2. Fully Easy

This problem requires the solution of a number of fully easy subproblems. Each
subproblem is a six bit function of unitation. The function values for the different
unitation values are arranged in such a way that all low-order schema effectively point
the way to the global optimum. This function was designed by Deb and Goldberg
[105]. The function values according to unitation (number of ones present in the

string) are shown in Table 2.

Table 2. A fully easy 6-bit problem. Unitation is the number of bits in the binary
string that are set to one. The maximum fitness point is the string 000000 with zero
ones.

Unitation 0 1 2 3 4 ) 6

Fitness 1010810609105 |07109

Fully easy problems were designed with GAs in mind, and their name reflects
reasoning that they should be easy for GAs to solve. This does not imply that they
will be easy for other forms of search—by observation, the problem contains 3-local-
maxima. For instance, a steepest ascent hillclimber using § would reach a local
maximum if it started to climb from any string with more than a single one bit. The
global optimum, the string with six zeroes, has a basin of attraction that includes
only seven of the sixty-four possible strings. Fach six bit problem has (g) + (g) =
21 (B-local-maxima, which is almost a third of the entire space. A discussion of
the problem’s difficulty for BH can be found below. Each problem instance was
constructed by concatenating some number of these 6-bit problems together. The

three experiments used 5, 10 and 15 such subproblems, resulting in problem sizes of

30, 60 and 90 bits.
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3.8.3. Fully Deceptive

The fully deceptive problems are also representative of a class of problems that have
received wide attention in the study of GAs. The particular problem addressed here is
from the same source as the fully easy problem, [105], and the problem instances also
have 5, 10 and 15 subproblems each of six bits. These problems get their name from
reasoning that indicates that they should be difficult for GAs. The low-order schema
all lead the GA away from the single global maximum. The subproblem appears in

Table 3.

Table 3. A fully deceptive 6-bit problem. Unitation is the number of bits in the
binary string that are set to one. The maximum fitness point is the string 111111
with six ones.

Unitation 0 1 2 3 4 ) 6

Fitness 0-90 | 0-45 | 0-35 | 0-30 | 0-30 | 0-25 | 1-00

The first thing to notice about this problem is that the location of the global
maximum is the string of all ones, the opposite of the fully easy problem. This
problem has one global maximum (all ones) and one -local-maximum (all zeroes).
Under steepest ascent, the global maximum can be reached from only seven points in

the space. The f-local-maximum will be reached from the rest of the space.

3.8.4. Distributed Fully Deceptive

The distributed deceptive problem contains a number of fully deceptive subproblems,
identical to those in the fully deceptive problem above. The difference is that the bits
comprising each subproblem are spread through the string. Thus if the problem con-
tains five 6 bit-subproblems, the bits for the first subproblem are located at positions
0, 5, 10, 15, 20 and 25. The bits for the second subproblem are located at positions
1,6, 11, 16, 21 and 26 and so on.

3.8.5. Busy Beavers

In Rado’s “busy beaver” problem [106], deterministic Turing Machines (TMs) with
alphabet {0, 1} and a fixed number of states k (plus a halt state) are sought that

write as many 1 symbols as possible on an initially zero-filled two-way infinite tape
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before halting. The number of 1 symbols that remain on the tape is the machine’s
score. The problem is to find, for a given k, a halting TM with the highest score,
which will be denoted by Y (k). More than one machine may generate (k) ones.
The busy beaver problem is extremely difficult and has an interesting history. The
problem is solved for & < 4. There are two 5-state machines that halt and leave 4,098
ones on the tape and a 6-state machine that produces over 95 million! See Brady
[107, 108] for details of &k =4 and Marxen and Buntrock [109] for & = 5. The results
of applying a GA to the problem and the original presentation of reverse hillclimbing
(the subject of Chapter 4) can be found in [110].

3.8.5.1. Fitness and Representation

The fitness of a TM was its score, or —1 if the machine did not halt. The general
halting problem is not an issue for k& <4 (as in our experiments), since the problem
is solved for machines with up to 4 states. In each case, the maximum number of
steps taken by a halting machine is known and can be used to terminate evaluation.

A TM with k states was represented by a character string of 6k bytes. When
the machine is in a certain state, looking at a certain symbol, it needs to know three
things: the next state, the symbol to write on the tape and the direction in which to
move. Since the machine could be scanning either a 0 or a 1, six bytes are required.
By restricting crossover to byte boundaries, only legal TM’s were generated.

This representation allows the use of simple operators. There are a number of
symmetries that other approaches have taken advantage of that are not exploited
here. For example, the direction the tape head moves when the machine enters the
halt state makes no difference to the number of ones left on the tape. Noticing this,
and including it in the representation halves the size of the search space. Similarly,
the symbol written to the tape on the transition into the halt state can be assumed to
be a 1 as this assumption cannot reduce the number of ones the machine has written.
Other symmetries include the renaming of states, and replacing left moves with right
and vice-versa.

The “representation” that has been most widely used in other work on this prob-
lem is known as Tree Normal Form. This takes advantage of all the above symmetries.
Unfortunately it is not so much a representation as an algorithm for producing and
running TMs. If such a representation were adopted, and there is no doubt that it
could be, it would also require the construction of specialized operators designed to
produce TMs of the correct form. These issues are exactly those that were discussed
in §1.3(5). Once again, intelligent observations about the nature of the problem lead

to representations that greatly reduce the size of the problem. For example, for 4



62

states TNF produces approximately 600,000 machines instead of 25,600,000,000.

3.8.5.2. Mesas

The combination of representation and operator here results in a landscape with many
mesas. The operator used by BH changes any state into any other, a left movement
into a right or a one into a zero. Fvery halting TM in the landscape is connected
by an edge to a twin that produces the same number of ones. This corresponds to
changing the direction of movement when entering the halt state. Thus every TM
with no fitter neighbors is part of a mesa of size at least 2 which, unless modified,
BH can never escape. This was the motivation for imposing a limit on the number of
non-improving steps that BH allows.

It is also interesting to note that every halting TM is connected by an edge to at
least one TM that does not halt. A halting TM can be made to not halt by modifying
the behavior when in the initial state so it remains in the state (either symbol may
be written and either direction may be taken). Thus every machine with maximal
fitness also has at least one neighbor that has lowest fitness. Similarly, each TM
with a single transition into the halt state can be made to not halt by altering this
transition. These phenomena are the result of a simplistic choice of representation

and operators.

3.8.6. Holland’s Royal Road

The Royal Road functions were introduced by Mitchell, Forrest and Holland [36].
They were designed as functions that would be simple for a genetic algorithm to op-
timize, but difficult for a hillclimber. However, a form of hillclimbing suggested by
Palmer [111], easily outperformed a genetic algorithm on what had been expected
to be the simplest Royal Road function for that algorithm. Recently, Holland [112]
presented a revised class of Royal Road functions that were designed to create insur-
mountable difficulties for a wider class of hillclimbers, and yet still be admissible to
optimization by a genetic algorithm. There is no easily understandable presentation
of these functions available elsewhere. This section provides one and is somewhat
lengthy as a result.

Holland used seven variables in the description he presented to the genetic algo-
rithms community. In describing the class of functions, I will use his variable names
where reasonable, and indicate deviations. Holland suggested a default value for each
of these variables and in what follows I will use these values to provide illustration.

The following terms will be used consistently in what follows: block, complete, gap,
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and region. These are introduced below and can be relied on to always mean exactly

the same thing.

3.8.6.1. Description

The function takes a binary string as input and produces a real value which the
searcher must maximize. The string is composed of 2¥ non-overlapping contiguous
regions, each of length b4 ¢g. With Holland’s defaults, k =4, b =8, g = 7, there are
16 regions of length 15, giving an overall string length of 240. We will number the
regions, from the left, as 0,1,...,2% — 1.

Each region is divided into two non-overlapping pieces. The first, of length b,
will be called the block. The second, of length ¢, will be called the gap.® In the
fitness calculation, only the bits in the block part of each region are considered. The
bits in the gap part of each region are completely ignored during fitness calculation.
Holland’s description called the block part of each region by various names: “building

” W

blocks,” “elementary building blocks,” “schemata,” “lower level target schemata,”
and “elementary (lowest-level) building blocks (schemata).”

The fitness calculation proceeds in two steps. Firstly, there is what Holland
calls the PART calculation. Then follows the BONUS calculation. The overall fitness

assigned to the string is the sum of these two calculations.

The PART Calculation

The PART calculation considers each block individually, and each in exactly the same
fashion. Each block receives some fitness score, and these are added to produce the
total PART contribution to the overall fitness. The fitness of each block is based

4 The idea is to reward 1’s up to a

entirely on the number of 1 bits it contains.
certain point. Every 1 up to (and including) a limit of m* adds to the block’s fitness
by v. Thus, with the default settings, a block with three 1’s would have fitness
3 x 0-02 = 0-06. If a block contains more than m* 1’s, but less than b 1’s, it receives
—v for each 1 over the limit. With the default settings m* = 4, and so a block with

six 1’s is assigned a fitness of (6 —4) x —0-02 = —0-04.

3Holland did not give a name for this part of the regions, or give a variable name for its length.
These gaps have been called “introns” (borrowing from biology) and have been used with varying
degrees of success [96, 113] to alter the effects of crossover in genetic algorithms.

4Holland used m(7) to denote the number of 1’s in block i. T will not use a variable.
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Finally, if a block consists entirely of 1’s (i.e., it has b 1’s), it receives nothing
from the PART calculation. Such a block will be rewarded in the BONUS calculation.
If a block consists entirely of 1 bits, it will be said to be complete. From the above,
we can construct a table of fitness values based on the number of ones in a block.

Table 4 gives the values for the default settings.

Table 4. PART fitness values for Holland’s default settings. Unitation is the number
of bits in the binary string that are set to one. Although the (i) strings with unitation
4 have the highest PART fitness, these strings are not optimal in the complete function
as the BONUSs calculation assigns a fitness of 1.0 to the string 11111111.

Unitation 0 1 2 3 4 5 6 7 8

Block fitness | 0-00 | 0-02 | 0-04 | 0-06 | 0-08 | —0-02 | —0-04 | —0-06 | 0-00

The BoNUSs Calculation

The idea of the BONUS calculation is to reward completed blocks and some combina-
tions of completed blocks. Holland gives rewards for attaining what he calls “levels.”
At the lowest level, zero, rewards are given for complete blocks (i.e., blocks that con-
sist entirely of 1’s).” If such a block exists, it receives u* as its fitness. Any additional
complete blocks receive a fitness of u. Thus, with the default settings, a string that
contained three complete blocks would receive a BONUS fitness of 104 (2 x0-3) = 1-6
for level 0.

But that is not the end of the BONUS story. At the next level, pairs of blocks are
rewarded. Suppose we label the blocks from left to right as By, By, ..., Bax_y. The
function then rewards any completed pair (Ba;, Baiy1) for 0 <i < 2k=1 The rewards
are calculated in the same way as they were done at level 0. The first completed pair
of blocks receives u*, and additional completed pairs receive u. Notice that not all
pairs of completed blocks are so rewarded. Only those contiguous pairs whose indices
are of the form (21,2: + 1).

We can now calculate rewards for the next level, that of quadruplets of completed
blocks, and this is done in the same fashion. In general, there are k 4 1 levels, and at

level 0 < [ < k, we are looking for contiguous sets of 2! complete blocks, whose first

5Holland numbered his lowest level 1 not 0.
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block is labeled B,y with 0 < i < 2*~I. At all levels, the first such set of complete
blocks receives fitness u*, and additional sets of completed blocks receive fitness wu.
The total fitness for the level is the sum of these fitnesses.

To make this more concrete, consider the function with Holland’s default val-
ues. With & = 4 we have 16 regions and each contains a block of length b =
8. The BONUS fitness calculation rewards completed single blocks (this is level
0), and rewards the completion of the sets {Bo, By}, { B2, Bs}, {Bs, Bs}, {Bs, Br},
{Bs, Bo}, {Bio, Bi1}, {Bi2, Bis}, {Bi4, Bis}, (level 1) {Bo,..., Bs}, {Ba,..., Br},
{Bs,..., B}, {Bi2,..., Bis} (level 2) {By,..., Bz}, {Bs,..., Bis} (level 3) and fi-
nally {Bo, ..., Bis} (level 4) of completed blocks. The total BONUS contribution to
the fitness is computed by adding the fitness at each of the k + 1 levels.

3.8.6.2. Experiments

The experiments on Holland’s royal road in this chapter only varied k&, which deter-
mines the number of level zero blocks and hence the number of levels. The three

values used were 2, 4 and 6, giving problems with 60, 240 and 960 bits.

3.9. Results

The results of twelve of the eighteen experiments are shown in Figures 13 to 24.
Results for the smallest instance of each problem are not shown. Performance on
the smallest instances of each problem qualitatively matched performance on the
larger instances. In all these graphs, the X axis (mean number of evaluations) has
a log scale. Each of the algorithms was run at least 2000 times on each instance of
each problem and in most cases at least 10,000. Each time an algorithm achieves a
performance level (for instance, completing a fully deceptive subproblem), the number
of evaluations is recorded. From this, the mean number of evaluations taken to
achieve performance levels is plotted for each algorithm on each problem. The line
representing an algorithm is terminated at the highest level that was achieved at least
ten times. Standard errors for the following graphs are presented in Tables 40 to 69
in Appendix C.

3.9.1. Overall Trends

A quick perusal of the result graphs shows that the CH algorithm has performed
remarkably well. On these experiments it is certainly the most consistent algorithm—

in no experiment does it have the worst performance. The hillclimber is clearly the
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worst algorithm on four of the functions (fully deceptive, distributed fully deceptive,
fully easy and Holland’s royal road), and the two GA variants are clearly the worst
algorithms on the remaining two (busy beavers and one max). On three of the
functions (fully deceptive, fully easy and Holland’s royal road), the CH algorithm is
the best performer and it can easily be argued that it is the best on a fourth (busy
beavers). Only on one problem of the six, one max, is it significantly beaten (by BH,
which is hardly surprising).

It is interesting to note how much consistency there is in the graphs for each
experiment. Fach of the six experiments has three graphs and within each set of three
there is remarkable consistency. The shapes of the lines representing each algorithm
are well preserved over the graphs, as are the relative orderings of the algorithms and
the ways that the orderings change, and when they change, as higher performance
levels are achieved.

The addition of elitism to the GA resulted in improvement in every case (though
some were very minimal). However, in no case was the improvement great enough to
significantly alter the relative ranking of the GA without elitism. For example, if the
order of the three algorithms CH, GA-S and BH was, say, BH, GA-S, CH from best
to worst, then the performance of GA-E would fall between that of BH and GA-S.

Table 5 gives a rough overview of the performance of the algorithms. Fach

Table 5. Overall trends in the crossover hillclimbing experiment. Algorithms are
roughly ranked according to performance on the six problems. 1 = best, 3 = worst.
The standard and elitist versions of the GA are represented as a single column.

BH | CH | GA
Busy beavers 1 2 3
One max 1 2 3
Fully deceptive 3 1 2

Distributed deceptive | 3 1 1

Fully easy 3 1 2

Holland’s royal road 3 1 2

algorithm is ranked for each problem, with a rank of 1 being the best. When it was
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not clear which algorithm was better from looking at the three experiments for a
problem, preference was given to the algorithm that performed best on the largest
instance of the problem and algorithms received equal rank if there was still no clear
difference. The two versions of the GA have been coalesced since they virtually always
rank next to each other. This allows a clearer view of the overall pattern. It should
be clear that CH is never the worst, the GA is never clearly the best and BH is either

best or worst.

3.9.2. One Max

Figures 13 and 14 show the results of the four algorithms on the one max problem
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Figure 13. Mean evaluations to solve a 60- Figure 14. Mean evaluations to solve a 120-
bit one max problem using crossover hillclimb- bit one max problem using crossover hillclimb-
ing (CH), a standard GA (GA-S), an elitist ing (CH), a standard GA (GA-S), an elitist
GA (GA-E) and random mutation hillclimbing GA (GA-E) and random mutation hillclimbing
(BH). (BH).

described in §3.8.1(58). These are consistent with what we might expect from pre-
vious work by Ackley [26] and Culberson [29]. Ackley’s results show two versions of
a hillclimber clearly outperforming two versions of a GA. Culberson demonstrated
the existence of X?7%local-maxima in the component of the one-point crossover land-
scape that corresponds to complementary binary strings for the one max function.
There are X37%-mesas in components of the two-point crossover landscape for non-
complementary strings. A trivial example is any pair (a, a) where « is not the global
maximum. In general, if f(a,b) = max{g(a),g(b)} and g(v) is the number of ones
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in the string v, then (a,b) will be a X-local-maximum if b has a 0 everywhere a does
and a is not the global maximum (or vice-versa). For example, (1101101,1001001)
is a X-local-maximum since no crossover (of any standard type) can produce a pair
containing a member with more than five 1s.

Thus the crossover landscape contains X37*-mesas and X3**-local-optima, and
these will naturally degrade the performance of a simplistic hillclimbing navigation
strategy that uses X37?. By choosing a new partner for the best string of the current
pair, these can be escaped, but this is only performed a fixed number of times. As the
algorithm comes closer to locating the global maximum, the probability of jumping
to a X37?-local-maximum by choosing a new partner increases. Of course, a vertex
may not be a X27*local-maximum but because the navigation strategy of CH only
examines a small number of neighbors (10), it may not find the crossover that would
produce the fitness increase.

The BH algorithm has a very similar navigation strategy but the landscape it
is operating on has no (3-local-maxima and so it can never fail to find the global
maxima if it is run sufficiently long. Also, this algorithm examines as many as twice
the number of neighbors while looking for an uphill direction, so it is unlikely to miss

an opportunity to increase fitness when this is possible.

3.9.3. Fully Easy

Figures 15 and 16 show the results of the four algorithms on the fully easy problem
described in §3.8.2(59). The most striking feature of these graphs is the vastly superior
performance of the CH algorithm on the largest of these problems (15 fully easy
subproblems of length 6). Not only does the CH algorithm maximize all 15 blocks,
it does so using less evaluations on average than (GA-S uses to maximize 11 of them
(the highest level GA-S achieves). The CH algorithm achieves that level (11 blocks),
using an average of almost 1000 times fewer evaluations than GA-S. GA-E does
better, but CH is still using two orders of magnitude fewer evaluations at the highest
level achieved by GA-E.

The performance of BH on this function is particularly poor. As discussed in
§3.8.2(59), each subproblem can only be solved by steepest ascent hillclimbing (using
3) from 7 of the 64 possible starting points. The situation is not much better for the
BH algorithm. In addition to those seven starting points (from which it will find the
maximum with probability 1 if left to run long enough), there are (g) = 15 strings
(with 2 ones) from which the BH will find the global maximum with probability

one-third. Thus BH can be expected to solve each fully easy subproblem with a
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Figure 15. Mean evaluations to solve 10 fully Figure 16. Mean evaluations to solve 15 fully
easy 6-bit problems using crossover hillclimb- easy-6 bit problems using crossover hillclimb-
ing (CH), a standard GA (GA-S), an elitist ing (CH), a standard GA (GA-S), an elitist
GA (GA-E) and random mutation hillclimbing GA (GA-E) and random mutation hillclimbing
(BH). (BH).

probability of only 12/64.

Even if the landscapes generated by mutation and crossover were equal in terms
of numbers of peaks and the sizes of their basins of attractions (from the point of view
of the hillclimbing algorithms involved), CH would have an advantage over BH. This
stems from the navigation strategy it employs. The CH algorithm operates on a pair
of points, and thus it is not necessary to consider a hillclimb finished just because the
current pair is not making progress. The worse of the two is discarded and replaced
with a random new partner which may take the search to another component of the
crossover landscape and perhaps away from a X-local-maximum. It would perhaps be
fairer to allow the BH algorithm to do approximately the same thing and randomly
set some fraction of its bits when what appears to be a [-peak is reached. This
algorithm was used by Palmer and Pond, who found that replacing approximately a

quarter of the bits in the current individual worked best on their problems [114].

3.9.4. Fully Deceptive

Figures 17 and 18 show the results of the four algorithms on the fully deceptive
problem described in §3.8.3(60). The results are very similar to the results for the fully
easy problem of §3.9.3(68), though with less disparity between the CH algorithm and

the GA. Once again, CH performs very well, requiring approximately ten times fewer



70

104 - m CH 124 = m CH
®GA-s ®GA-S
9+ L} [ ] GA-E 11 - o GA-E
BH 10 L BH
8 .o

2 9 94 =@

3 7 " 5 8 ~e

(= (=

g 6- .9 g 74 .

o o

< 5 =3 < 6 "9

- -

2 4 = g 57 "o

/M = 4 =3

3 =
3 e
24 o= 2 - G
1 ® = 14 e =
1EO 1E1 1E2 1E3 1E4 1ES5 1E6 1E7 1ES8 1EO 1E1 1E2 1E3 1E4 1E5 1E6 1E7
Mean Evaluations Mean Evaluations

Figure 17. Mean evaluations to solve 10 fully Figure 18. Mean evaluations to solve 15 fully
deceptive 6-bit problems with crossover hill- deceptive 6-bit problems with crossover hill-
climbing (CH), a standard GA (GA-S), an eli- climbing (CH), a standard GA (GA-S), an eli-
tist GA (GA-E) and random mutation hill- tist GA (GA-E) and random mutation hill-
climbing (BH). climbing (BH).

evaluations than GA-S to achieve the highest performance levels. The performance
of GA-E was quite close to that of the CH algorithm on the largest of the problems.
No algorithm managed to optimize all 15 deceptive blocks in the hardest experiment.

BH performed very poorly.

3.9.5. Distributed Fully Deceptive

Figures 19 and 20 show the results of the four algorithms on the distributed fully
deceptive problem described in §3.8.4(60). CH and the GA-E perform the best on
this function. Because their performances are so close, they are both given a 1 ranking
in Table 5 on page 66. It is interesting to note that the crossover-based algorithms do
better than the bit-flipping based BH, despite the representation being very poor for
crossover. The performance of BH is virtually identical to that of the fully deceptive
problems, which is as it should be since the distributed representation will not affect

this algorithm.

3.9.6. Busy Beavers

Figures 21 and 22 show the results of the four algorithms on the busy beaver prob-
lem described in §3.8.5(60). In previous work (with G. Rawlins) I compared the
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Figure 19. Mean evaluations to solve 10 dis- Figure 20. Mean evaluations to solve 15 dis-
tributed fully deceptive 6-bit problems using tributed fully deceptive 6-bit problems using
crossover hillclimbing (CH), a standard GA crossover hillclimbing (CH), a standard GA
(GA-S), an elitist GA (GA-E) and random mu- (GA-S), an elitist GA (GA-E) and random mu-
tation hillclimbing (BH). tation hillclimbing (BH).

performance of a GA with that of a hillclimber on this problem [110]. The results
obtained there were for a slightly different hillclimbing algorithm (steepest ascent),
but qualitatively are in agreement with the relationship between the GA and BH
found here.

The BH algorithm performs better than the GA or the CH algorithm for the 2-
and 3- state problems. The 4-state problem is considerably more difficult than either
of these and here the CH found an optimal TM (producing 13 ones) several times
whereas none of the other algorithms did. To find a machine producing 12 ones, BH
took on average approximately 7 million evaluations while the CH algorithm took
approximately 8 million. GA-S took approximately 45 million and GA-E 14 million.
In all cases, the GA performed worse than either of the other algorithms, though the
addition of elitism reduced the gap considerably. The performance of BH and CH

was very close on the two larger experiments.

3.9.7. Holland’s Royal Road

Figures 23 and 24 show the results of the four algorithms on Holland’s royal road
function that was described in §3.8.6(62). The CH algorithm is a clear winner for
the & = 2 and & = 4 experiments (with 60 bits and 240 bits respectively). On
the final experiment, the performance of the two GAs and the CH algorithm are
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Figure 21. Mean evaluations to find 3-state Figure 22. Mean evaluations to find 4-state
Turing machines for the busy beaver problem Turing machines for the busy beaver problem
using crossover hillclimbing (CH), a standard using crossover hillclimbing (CH), a standard
GA (GA-S), an elitist GA (GA-E) and random GA (GA-S), an elitist GA (GA-E) and random
mutation hillclimbing (BH). mutation hillclimbing (BH).

virtually indistinguishable, with the GAs coming out slightly ahead. In all cases,
the BH algorithm does very poorly, which is hardly surprising as one of Holland’s
design goals was to create a function that would be very difficult to optimize via
mutation-based hillclimbing.

The closeness in the results for the GAs and the CH algorithm may be due to
the comparatively large size of the problem (960 bits). It is worth noting that the
algorithms actually climb fewer levels (only 3) in this problem than in the simpler
k = 4 problem (where they climb 4). The harder problem has 7 levels that could
have been climbed whereas the easier problem only has 5. Increasing the parameters

on the GAs and CH to allow them to search longer may have revealed a difference.

3.10. Why Does CH Perform so Well?

It is clear that the CH algorithm performs very well on the problems considered.
Rather than examine the relative performance of the four algorithms in detail, we
will concentrate on the CH algorithm and attempt to discover why it performs so
well.

A first impression of the above results might be that the CH algorithm isolates

crossover and that it provides a clear demonstration that crossover is a powerful
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Figure 23. Mean evaluations to climb levels in Figure 24. Mean evaluations to climb levels in
Holland’s royal road with k& = 4 using crossover Holland’s royal road with k& = 6 using crossover
hillclimbing (CH), a standard GA (GA-S), an hillclimbing (CH), a standard GA (GA-S), an
elitist GA (GA-E) and random mutation hill- elitist GA (GA-E) and random mutation hill-
climbing (BH). climbing (BH).

operator, at times more powerful than mutation. The algorithm was designed to
examine crossover in a simple context. To a certain extent this has been achieved,
but one loose end remains to be considered. CH is creating new individuals in two
ways: through the use of crossover and at random. Initially, two random individuals
are created and thereafter a random individual is created each time the algorithm
jumps to a new hypercube. How important are these random individuals, and what
role do they play in aiding the search? It is simple to examine the number of times
a random individual is fitter than any individual seen so far. When this is done, the
results are unsurprising. Random creation produces very few highly fit individuals.
For example, Table 6 shows the number of times a randomly created individual was
responsible for an increase in best fitness over 1000 runs of CH on the 4-state busy
beaver problem. In this example, a Turing machine that left seven ones on the tape
before halting was discovered on 990 of the 1000 runs, but on only 1 of these was the
first such discovery a result of random creation.

To get an idea of the importance of the random individuals as a source of material
for crossover to exploit, the CH algorithm used above, CH(10,3,1000), was compared
to two variant crossover hillclimbing algorithms, CH(10,3000,0) and CH(10,1,3000).
The two new algorithms represent extremes of the spectrum with respect to the

random creation of new individuals. CH(10,3000,0) never jumps to a new hypercube
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Table 6. The frequency of fitness increases due to random discovery in 1000 runs of
the CH algorithm on the 4-state busy beaver problem. The new individual must be
the best found so far to gain mention here. The number of times each fitness level
was discovered 1s shown for comparison.

Fitness Random Overall ||[Fitness Random Overall
level discovery discovery|| level discovery discovery
0 45 1000 7 1 990
1 133 1000 8 0 786
2 191 1000 9 0 307
3 69 1000 10 0 60
4 24 1000 11 0 13
5 5 1000 12 0 4
6 0 1000 13 0 2

when no acceptable crossover can be found from the current pair. Each search will
therefore take place entirely within the hypercube determined by the initial choice
of random individuals. When an improving (or equaling) crossover cannot be found
from the current pair, the search is concluded. This algorithm will be denoted by
CH-NJ (NJ = No Jumps). At the other extreme, CH(10,1,3000) allows at most 1
step to be taken by a pair within a hypercube before a jump to another hypercube is
forced. This algorithm will be denoted by CH-1S, (1S = 1 Step). These parameter
settings limit all three of these algorithms to 3000 steps via crossover.

Figures 25 to 30 show the results on the largest instance of each of the problems
(with the exception of Holland’s royal road, which shows the default problem). It
is clear that CH-1S is the best of the three algorithms on these instances of these
problems. Experiments with other settings of the three parameters of the crossover
hillclimbing algorithm (not shown) have provided further evidence that the algorithm
performs better the more often it jumps between hypercubes. CH-1S is extreme in
this respect, as it jumps after every single crossover. This is remarkable as the first

crossover performed after a jump always involves a random individual (the jump is
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Figure 25. Mean evaluations to solve a 120-bit
one max problem using crossover hillclimbing
(CH), crossover hillclimbing with no jumps be-
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no jumps between hypercubes (CH-NJ) and
crossover hillclimbing with at most one step
per hypercube (CH-1S).
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Figure 26. Mean evaluations to complete 15
6-bit fully easy subproblems using crossover
hillclimbing (CH), crossover hillclimbing with
no jumps between hypercubes (CH-NJ) and
crossover hillclimbing with at most one step
per hypercube (CH-1S).
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Figure 28. Mean evaluations to complete 15 6-
bit distributed fully deceptive subproblems us-
ing crossover hillclimbing (CH), crossover hill-
climbing with no jumps between hypercubes
(CH-NJ) and crossover hillclimbing with at
most one step per hypercube (CH-1S).
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Figure 30. Mean evaluations to achieve lev-
els on Holland’s royal road with & = 4 us-
ing crossover hillclimbing (CH), crossover hill-
climbing with no jumps between hypercubes
(CH-NJ) and crossover hillclimbing with at
most one step per hypercube (CH-1S).

performed by replacing one of the current pair by a random individual). As will
be seen, crossover involving an individual v and a random individual can be seen
as a macromutation of v. For this reason, the CH-1S algorithm is simply perform-
ing macromutations that are distributed on the genome in the fashion of two-point

crossover.

3.11. Crossover: The Idea and The Mechanics

It is important to consider crossover as playing two roles. These can be called the idea
and the mechanics of crossover. The idea of crossover is that there is some reason to
believe that each of the parents has a better than average chance of bestowing better
than average genetic material upon its offspring. In a GA, the initial population is
simply a collection of random individuals, but soon after this, under the influence of
selection, the population is made up of individuals whose performance is better than
random. The main point of keeping a population and using crossover is to take better
individuals and combine them to potentially form even better individuals. The idea
of crossover is clearly present in Holland’s early work [102, pages 140, 167 and 180].

The mechanics of crossover is the process by which an attempt is made to implement
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the idea, for instance via one-point, two-point, uniform or one of the many forms
of crossover used for representations other than fixed-length strings. All forms of
crossover share a similar idea, but the mechanics vary considerably.

The experiments with various forms of crossover hillclimbing show that crossover
may be very useful even in the absence of the idea of crossover. That is, even when
there is no reason to believe that both parents have an above average chance of con-
tributing above average material to the offspring, crossover may still be useful simply
through performing macromutation via its mechanics. When considering whether
crossover is useful to a GA, we should attempt to distinguish the gains the algorithm
is making using the idea of crossover from those made simply through the mechanics.
If there is no additional gain due to the idea of crossover, it may be the case that we
would do as well if we discarded the population (and thus the GA) and instead used

an algorithm that employed macromutation.

3.12. The Headless Chicken Test

This section presents a simple experiment designed to test whether a GA is making
progress via the idea of crossover over that which could be made by simply performing
macromutations. To do this, compare the GA with an identical GA that uses random
crossover. The random crossover operator produces two children, Cy and C5, from
two parents, Py and FP,. To do this it generates two random individuals, R; and
R5. The operator then performs a crossover between P; and R; and keeps one of the
children (selected at random), C';. Then (5 is produced in an identical fashion, using
P, and R, as parents. The two children are then returned to the GA. This is the only
difference between the two algorithms. The random crossover operator is illustrated
in Figure 31.

In the algorithm with random crossover, there is no communication between
population members since there is no crossover between population members unless,
by chance, a randomly generated parent also happens to be present in the population.
When one of the individuals involved in a crossover is randomly chosen, the operation
is purely mechanical and has nothing of the idea, or spirit, of crossover. In this case,
despite the identical mechanical rearrangement, the operation is not crossover. That
is, without the idea of crossover, you do not have crossover. To call this operation
crossover is similar to calling a headless chicken running around the yard a chicken.
Certainly it has many characteristics of a chicken, but an important piece is missing.
A further argument that this operation is not really crossover is that two parents

are not required. For example, for two-point crossover on strings, simply choose the
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Figure 31. The random crossover operator used in the headless chicken test. When
the GA with random crossover passes two parents to the operator, instead of recom-
bining them as a normal crossover would do, two random individuals are created and
these are crossed with the parents. One offspring is kept from each of these crosses
and these are handed back to the GA. The crossover method used (one-point, two-
point, uniform, etc.), is the same as that used in the version of the GA that is being
compared to the GA with random crossover.

crossover points and set all the loci between the points to randomly chosen alleles.
This is an identical operation and is clearly just a macromutation.

This comparison was performed (1) between GA-S and an identical GA with
random crossover (GA-RC) and (2) between GA-E and an elitist GA with random
crossover (GA-RCE). Figures 32 to 37 show the result of this experiment on the
problem instances used to compare the CH variants. The results of the comparison
between GA-E and GA-RCE are not shown (these exhibit identical qualitative results
to those of GA-S versus GA-RC). On all instances of all problems, GA-S is a clear
winner over GA-RC when the problem contains well-defined building blocks. This
is the case with the fully deceptive, fully easy, Holland’s royal road and one max
problems. On these problems, the idea of crossover is aiding the search, as we would
hope.

More interesting is the comparison on the problems where well-defined building
blocks do not exist: the busy beaver and distributed fully deceptive problems. On the
busy beaver problems, the performance of the GA and GA-RC is hard to distinguish.
On the distributed fully deceptive problem, GA-RC actually outperforms the GA.
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Figure 32. Mean evaluations to solve a 120-bit
one max problem using a standard GA (GA-S)
and a GA with random crossover (GA-RC).
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Figure 34. Mean evaluations to complete 15
6-bit fully deceptive subproblems using a stan-
dard GA (GA-S) and a GA with random
crossover (GA-RC).
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Figure 33. Mean evaluations to complete 15
6-bit fully easy subproblems using a standard
GA (GA-S) and a GA with random crossover
(GA-RC).
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Figure 35. Mean evaluations to complete 15
6-bit distributed fully deceptive subproblems
using a standard GA (GA-S) and a GA with
random crossover (GA-RC).
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Figure 36. Mean evaluations to find 4-state Figure 37. Mean evaluations to achieve levels
busy beaver TMs using a standard GA (GA-S) on Holland’s royal road with & = 4 using a
and a GA with random crossover (GA-RC). standard GA (GA-S) and a GA with random

crossover (GA-RC).

In this case, the GA is not only using an operator (two-point crossover) that, in an
informal sense, has a bias that is orthogonal to the structure of the encoding, but it
is also drawing its samples from a population. GA-RC is using the same operator
but has the advantage of being able to explore more widely. When GA-RC is as good
or better than the normal GA on a problem, it suggests that the idea of crossover is
doing nothing significant for the normal GA. In such cases it seems safe to conclude
that the chosen combination of representation, fitness function and crossover operator
does not result in a problem that contains building blocks that the GA is managing to
exploit using the idea of crossover. De Jong, Spears and Gordon have also identified
problems on which the use of crossover results in worse performance [115].

This does not imply that there is no other representation that would contain
exploitable building blocks, or that another crossover operator might not do better at
exploiting the building blocks that do exist (if any), or that it is not possible to modify
the GA in some way so that it does exploit the building blocks (e.g., by using a larger
population, a different fitness function, or adopting measures to maintain diversity).
This is a conclusion about a single crossover operator, a single representation and
a single algorithm, and may well not apply if any of these are altered. The test
examines a particular set of choices and nothing more. In particular, the conclusion
that a GA is not suitable for a problem, based on a failed headless chicken test, is in

no way justified. If a GA fails the headless chicken test (i.e., it does not outperform a
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GA with random crossover), the GA is not making gains from crossover above those
that could be made via explicit macromutation. If this is the case, it is not clear
why one would bother to maintain a population or, consequently, use a GA on this
combination of problem, representation and fitness function.

The experiment suggests an explanation for GAs that appear to make good use of
crossover early in a run, but not thereafter. It may be the case that the combination
of the representation and fitness function does not have building blocks that can be
exploited by the crossover operator in question. In this case, crossover may make
improvements simply through macromutations at the start of the run and then, as is
widely known, become increasingly less useful as the population converges. Crossover
appears to be useful (since disabling it results in worse performance), but in fact, its

usefulness is merely a consequence of the macromutations it is performing.

3.13. Macromutational Hillclimbing

The success of CH-1S and the observation that it is simply performing macromutation
prompted the implementation of two hillclimbers that use a macromutational operator
and the navigation strategy of BH. In the mutation operator of the first, (BH-MM),
the genome is viewed as a ring. Two distinct points on the ring are selected uniformly
at random and the loci in the smaller section are set to random alleles (including those
that are already present).

The smaller section is chosen for mutation as observation revealed that CH was
making the great majority of its improving steps when it modified less than half
the genome. The result of this mutation operator is exactly what a crossover with
a random individual would produce if the child that inherited most from the non-
random parent was retained. The operator distributes the mutations in the same way
that two-point crossover does. This hillclimber is very similar to CH(1,1,00). In the
second hillclimber, the macromutation operator decides on a number of loci to set
randomly (as in BH-MM) but then distributes these mutations at random through
the string. The behavior of BH-DMM is similar to that which would be obtained via
crossover with a random string using uniform crossover.

This operator was described in terms of strings for simplicity, but it is more
general. Any representation that can be viewed as containing a number of indepen-
dently adjustable components could have a similar operator designed for it. Such
representations are very common, and were described briefly in §2.6(30).

These two hillclimbers were compared to CH-15 and GA-E. In every case but the

busy beaver problems, one of the macromutational hillclimbers always proved the best
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algorithm. Once again, the results depended on whether well-defined building blocks
existed. When they did, BH-MM outperformed BH-DMM by orders of magnitude.
When they did not (on the distributed fully deceptive problem), BH-DMM performed
an order of magnitude better than BH-MM. On every problem, BH-MM achieved the
highest levels of performance at least one order of magnitude faster than GA-E, and
in one case (15 fully easy subproblems) it required over 3 orders of magnitude fewer
evaluations to achieve the highest level reached by GA-E. Typically, the hillclimbers
would also reach levels of performance that were never achieved by the GA. The

results for the six problems instances are shown in Figures 38 to 43.
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Figure 38. Mean evaluations to solve a 120-bit
one max problem using crossover hillclimbing
with at most one step per hypercube (CH-1S),
an elitist GA (GA-E), hillclimbing with macro-
mutations (BH-MM) and hillclimbing with dis-
tributed macromutations (BH-DMM).

3.14. Summary
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Figure 39. Mean evaluations to complete 15
6-bit fully easy subproblems using crossover
hillclimbing with at most one step per hy-
percube (CH-1S), an elitist GA (GA-E), hill-
climbing with macromutations (BH-MM) and
hillclimbing with distributed macromutations

(BH-DMM).

The traditional method used to assess whether crossover is useful to a GA is to
compare the GA with crossover to a GA without crossover. This chapter argues that
if the GA with crossover performs better, the conclusion that crossover is therefore
useful (i.e., that it is facilitating the exchange of building blocks between individuals)

is not justified. A more informative method of assessing the worth of crossover to
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Figure 40. Mean evaluations to complete 15 6-
bit fully deceptive subproblems using crossover
hillclimbing with at most one step per hy-
percube (CH-1S), an elitist GA (GA-E), hill-
climbing with macromutations (BH-MM) and
hillclimbing with distributed macromutations

(BH-DMM).
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Figure 42. Mean evaluations to find 4-state
busy beaver TMs using crossover hillclimbing
with at most one step per hypercube (CH-1S),
an elitist GA (GA-E), hillclimbing with macro-
mutations (BH-MM) and hillclimbing with dis-
tributed macromutations (BH-DMM).
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Figure 41. Mean evaluations to complete 15 6-
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ing crossover hillclimbing with at most one step
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Figure 43. Mean evaluations to achieve lev-
els on Holland’s royal road with & = 4 using
crossover hillclimbing with at most one step per
hypercube (CH-1S), an elitist GA (GA-E), hill-
climbing with macromutations (BH-MM) and
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(BH-DMM).
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a GA was presented. This compares the normal GA with a GA that uses random
crossover. Such a GA dispenses with the idea of crossover while maintaining the
mechanics. This makes it possible to see what advantage the standard GA is gaining
from the idea of crossover over and above what it could be gaining from the mechanics
alone. In some cases, when well-defined building blocks are not present, the GA may
actually perform worse with normal crossover than a GA with random crossover as
a result of its use of a population. This test gives an indication of when building
blocks (that are exploitable by a GA with a given crossover operator) exist in a
representation.

The major reason for the maintenance of a population in a GA is to allow the com-
munication of information between individuals via crossover. When testing whether
it is worth bringing a population and crossover to bear on a problem, the null hypoth-
esis should be that the GA with crossover does not outperform the GA with random
crossover, not that the GA with crossover outperforms the GA without crossover. If
this comparison indicates that the idea of crossover is not producing significant gains,
the use of a GA is probably not warranted. In these cases, there are simpler algo-
rithms that use the macromutational mechanics of crossover and do not maintain a
population, and these can easily outperform the GA. Several such algorithms, based
on crossover hillclimbing or macromutational hillclimbing were presented. This point
was also made by Fogel and Atmar [88]. On the other hand, when building blocks
do exist, these algorithms (especially those that use macromutation exclusively) still
outperformed the GA on virtually every instance of every problem addressed. These
results support Eshelman and Schaffer’s belief that the “niche” in which crossover
gives a GA a competitive advantage may be quite small [89]. Actually, the situation
may be worse than they feared, as a macromutational hillclimber easily outperforms
a GA on Holland’s royal road, which has the properties that Eshelman and Schaffer
ascribe to problems residing in crossover’s niche. The niche becomes smaller if we
insist that the idea of crossover, in addition to the mechanics, be responsible for good
performance. In the context of function optimization, it is clear that care must be

taken if one intends to make effective use of a population, crossover, and a GA.



CHAPTER 4

Reverse Hillclimbing

4.1. Introduction

There are many algorithms that can be informally described as hillclimbers. Though
simplistic, many hillclimbers prove surprisingly efficient in some settings. Slight en-
hancements can result in algorithms which are amongst the most useful (e.g., simu-
lated annealing). Despite the simplicity of hillclimbing algorithms, it is difficult to
accurately compare these algorithms to each other. To compare the performance of
two hillclimbers, the simplest method is to run them both a large number of times.
The results give a statistical indication of which algorithm is superior. This chap-
ter introduces a new technique, reverse hillclimbing, which, in some cases, allows a
much more direct comparison. This technique is used to compare four hillclimbing
algorithms on three instances of two problems.

The method also makes it possible to compute statistics regarding basins of
attraction in a landscape graph. Given a peak on a landscape, reverse hillclimbing
computes the exact size of the basin of the point under a hillclimbing algorithm and
the exact probability that the peak will be found via a single hillclimb. An attempt to
obtain similar statistics using hillclimbing to form estimates would probably consume
inordinate amounts of time. For example, a typical global optimum in the 4-state
busy beaver problem has a basin of attraction under steepest ascent hillclimbing of
size approximately 5000. The probability of locating such a peak from a randomly
started hillclimb is usually about 1 in 15 million. Thus one would expect to perform
15 million hillclimbs before stumbling on the peak even once. This would net a few
of the 5000 vertices in the basin. Obtaining a suitably reliable estimate (let alone the
exact number) of the basin’s size would require a far greater number of hillclimbs.
Reverse hillclimbing can provide exact answers to these questions, and others, in

under a minute with very limited computational requirements. To my knowledge,
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none of the information provided by reverse hillclimbing could be obtained exactly in
the past without an exhaustive enumeration of the vertices in the landscape. Perhaps
as a result, there are few results that deal with basin sizes.

Given a vertex v in the graph of a landscape £ = (R, ¢, f, F,>r), reverse hill-
climbing provides exact answers to the following questions about the basin of attrac-
tion of v, By(v):

e What are the elements of By(v)?

e By how many paths can each element of By(v) ascend to v? What are the
lengths of these paths and what is the expected number of evaluations along
each path?

o What is the probability that a single hillclimb, started from a randomly chosen
vertex, will ascend to v?

e How many elements of Bs(v) can ascend only to v?

When reverse hillclimbing is applied to a large number of peaks on a landscape,
the collection of peak fitnesses, basin sizes and ascent probabilities, allows the exam-

ination of the relationships between

e peak height and basin size,
o peak height and the probability of peak discovery, and

e basin size and probability of peak discovery.

4.2. Local Search Algorithms

Given the graph Gy = (V,E) of a landscape £ = (R, o, f,F,>), Local search
algorithms are those algorithms whose behavior is shown in Algorithm 4.1. This
defines a broad class of algorithms that can be thought of as taking a random walk
using their operator. The fitnesses encountered in such a walk will depend entirely
on the operator used. If R = {0,1}" and 3, the bit-flipping operator described in
§2.6.1(31), is used, then any point can be reached from any other. Local search
algorithms that are more useful than random search on a given class of problems will

use operators that tend to produce higher fitness points from lower.



87

choose a vertex v € V;

while (not done) {
Use ¢ to generate w € Ny(v);
v w;

Algorithm 4.1 Local search algorithm.

The initial vertex is commonly chosen by uniform random selection from the
representation space. There are many other possibilities. For example, the search
may commence from a vertex generated by another search method, or the initial
vertex may be chosen according to some belief about the nature of the landscape, or
may be a starting configuration that is given by the statement of the problem. The
second step, generating w € Ny(v) also has many variants. In the algorithms which
we will consider, ¢ will employ [ to generate N C Nj(v), one element of which, w,
will be selected. As examples, some operators will use (3 to generate N = Ny(v), the
entire S-neighborhood of v and then select the fittest. Others will use § to generate a
fixed number of #-neighbors of v, or generate -neighbors until a vertex fitter than v
is located or some limit is reached. In the final step, the algorithm either terminates
or loops for another iteration. The decision of when to terminate a search may be
according to some maximum number of evaluations, the achievement of a desired
fitness level, the detection of a local maximum, the result of running out of time for
the search, or some other method. The above description also deliberately makes no
mention of the return value of the algorithm. Typically these algorithms keep track
of the best element of R encountered during the search and return that. Algorithms
that never select a w such that f(w) <» f(v) can simply return v when they are

done.

4.2.1. TIterated Local Search Algorithms

A simple enhancement to a local search algorithm is an iterated version which repeats

the original local search algorithm some number of times. These algorithms are often
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employed on problems in which the initial vertex is chosen uniformly at random,

though there are important exceptions [116].

4.3. Hillclimbing Algorithms

The definition of local search algorithms provides a framework for the definition of
hillclimbing algorithms. A hillclimbing algorithm is a local search algorithm that
always selects a w in step 2 above such that f(w) >, f(v). Under this definition,
“hillclimbing” means that the algorithm never goes downhill. One argument for
including algorithms that sometimes select a w such that f(w) = f(v) is that every
algorithm which makes strictly increasing moves can be simply modified to also allow
moves to vertices of equal fitness. Also, this definition of a hillclimber is in accordance
with Minsky’s early description of hillclimbers as climbing hills (obviously), but also
as getting trapped at “false peaks” and as potentially wandering on “mesas” of equal
fitness [25].

Dividing local search algorithms on the basis of the relative fitnesses of v and
w leads to three classes, LSA._~, LSAs_ and LSAs, with LSAS, C LSA._ C
LSA._~. These are depicted in Figure 44. Hillclimbers are those algorithms found
in the two inner circles. This taxonomy will allow easy discussion of a number of
algorithms and delineation of the class algorithms upon which reverse hillclimbing can
be applied. This chapter explores the characteristics of four hillclimbing algorithms
from LSAs on a number of problems. These are, Any Ascent, Least Ascent, Median
Ascent and Steepest Ascent. Figures 45 to 48 shows the landscape corresponding to
each of the operators of these algorithms. In these landscape graphs, R = {0,1}", f,
F, and >, are held constant.

4.3.1. Any Ascent Hillclimbing

The any ascent hillclimbing algorithm (AA), employs an operator that uses [ to
generate B-neighbors of v until it finds a w such that f(w) >, f(v). Of course if such
a (-neighbor does not exist, the algorithm should not loop indefinitely. This can be
avoided by keeping track of the neighbors generated by /3, or by using some limit on
the number of -neighbors that can be tested. The first solution, the one used in this
chapter, also makes it possible to avoid evaluating S-neighbors multiple times. The

second solution results in an algorithm whose sibling in LS As— is the BH algorithm

of Chapter 3.
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Figure 44. A division of local search algorithms according to the types of fitness
moves they make. Hillclimbing algorithms comprise the inner two circles. The RMHC
and BH algorithms are described in Chapter 3.
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tion. Vertices are labeled with fitnesses and
edges with transition probabilities.
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4.3.2. Least Ascent Hillclimbing

The least ascent hillclimbing algorithm (LA), employs an operator which uses 3 to
generate all of N3(v) and sets w to an element of Ng(v) with least fitness subject to the
condition f(w) >x f(v). In other words, from the subset of N(v) with fitness greater
than v the least fit element is selected. This algorithm therefore takes a conservative
approach to hillclimbing, never moving uphill more than necessary. There may be
several equally fit elements of Ng(v) that could be selected. In this case, one is chosen

uniformly at random.

4.3.3. Median Ascent Hillclimbing

The median ascent hillclimbing algorithm (MA), employs an operator which uses (3 to
generate all of Nz(v) and sets w to an element of Ng(v) with median fitness amongst
those with fitness greater than f(v). This algorithm therefore takes a middle-of-the-
road approach to hillclimbing, moving to the middle of all the uphill neighbors. There
may be an even number of fitter J-neighbors. In this case, one of the two medians is

chosen uniformly at random. Vertex 011 in Figure 47 shows an example of this.

4.3.4. Steepest Ascent Hillclimbing

The steepest ascent hillclimbing algorithm (SA), employs an operator which uses (3 to
generate all of Nj(v) and sets w to an element of Ng(v) with greatest fitness. There
may be several maximally fit elements of Ng(v) that could be selected. In this case,
one is chosen uniformly at random. Vertex 011 in Figure 48 shows an example of
this.

4.4. The Reverse Hillclimbing Algorithm

This section describes the basic reverse hillclimbing algorithm, shows how it may be

enhanced to obtain more information, and discusses some implementation issues.

4.4.1. The Basic Algorithm

The reverse hillclimbing algorithm is conceptually quite simple. Algorithm 4.2 shows a
recursive function that collects the vertices in the basin of attraction of a vertex v into
a set S (initialized to the empty set) given a hillclimbing algorithm, H € LS A5, that

uses an operator ¢. When the recursion terminates, the set S will contain the basin of
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basin _size(v)

VERTEX v;

{
S=SuU{vk

for each (w|v € Ny(w) and f(w) <» f(v))

basin _size(w);

Algorithm 4.2 The basic reverse hillclimbing algorithm. S, an external variable,
is initialized to the empty set before the initial invocation of the function. S will
contain the vertices in the basin of attraction when the recursion terminates.

attraction of v for operator ¢. The above function is not an efficient implementation
for many reasons Some of these are discussed in §4.4.2 and Appendix A. There are

several points that should be noted about this algorithm:

e Given a representation, R, and fitness function, the basin of attraction of an
element of R depends on the operator in use. This can be seen by considering
the basins of attraction for the vertex 110 in Figures 45 to 48.

o Assuming the set of vertices that may have v as a neighbor can be identified
without search, reverse hillclimbing can be implemented so that it never ex-
amines a vertex in the space that is more than a single step from a vertex in
the basin of attraction. When vertices outside the basin of attraction are ex-
amined, they do not become the subject of a subsequent recursive call. This
leads immediately to an upper bound on the number of vertices examined by
the algorithm of n|By(v)| where n is the maximum in-degree in the landscape
and |Bg(v)| is the size of the basin of attraction. In practice, the number of
elements of R evaluated will be far smaller than this for two reasons: first, it
is common for several less fit neighbors of a vertex to be able to re-ascend to
that vertex (for instance in AA they all can) and second, the sets of downhill

neighbors of two vertices will often not be disjoint.
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e The function basin_size may be called more than once on the same vertex. To

see why this is true, consider Figure 49 which shows two paths to the same

vertex in a one max problem.

Figure 49. Two downhill trajectories when performing reverse hillclimbing on a one
max problem with strings of length three. The arrows illustrate how a vertex (in this
case 010) can be encountered more than once. In the basic algorithm, this vertex
would be the subject of two recursive calls to the basin_size function.

4.4.2. Augmenting the Basic Algorithm

The basic reverse hillclimbing algorithm given above only produces the vertices in
the basin of attraction of a vertex. This algorithm may be augmented to provide
the additional details of the basin and the vertices in it that were mentioned in
the introduction: ascent probabilities, number and lengths of ascending paths, and
expected evaluations to peak discovery.

Because the algorithm will typically encounter vertices in the basin on more than

one occasion, it is necessary to store partial information about vertices until they
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have been encountered for the final time, at which point they can be output or their
properties can be added to accumulating statistics about the basin. A straightforward
solution to this problem is to use a hash table to implement the set S above to
keep track of the details of vertices that have been encountered. This allows the
maintenance of details of probability of ascent, number of ways to ascend and expected
comparisons to ascend for each vertex in the basin. When the function basin_size
discovers a vertex that could ascend to the current argument, it checks the hash table
to see if this vertex has already been encountered. If so, it updates the data structure
containing the information for the vertex. If not, it creates a new data structure and

inserts it into the hash table. A rough outline of how each statistic is kept follows:

o [f a vertex vy can ascend along some path to the original vertex v with probabil-
ity p, and it is discovered that vq, a less fit neighbor of vy, can ascend to vy with
probability ¢, then pq is added to the overall probability that v, can ascend to
v. Note that the algorithm may encounter v; again (by finding another downhill
re-ascending path to it), and this will cause the probabilities associated with
both vy and vy to be incremented again. When the recursion is finished, every
downhill path will have been taken, and the probabilities associated with the

vertices in the basins will be correct.

o It is easy to keep track of the number of paths by which a vertex may ascend
to the original vertex. Simply keep a count of the number of times each vertex
in the basin is encountered during the recursion (including the first, in which
the vertex is not found in the hash table).

o [f a vertex can only ascend to a single peak under a given hillclimbing algorithm,
the vertex will be said to be owned by the peak that is reached. To calculate
how many of the vertices in the basin of attraction are owned by the peak, look

at the final ascent probabilities. Those vertices with probability one are owned.

o Calculating the expected number of vertex fitness evaluations it will take a
vertex to reach the peak is similar to the calculation of ascent probability.
Information is passed down through the basin as paths are traversed. Three of
the four hillclimbers, LA, MA and SA, use  to produce all the F-neighbors, so
their expected evaluations per uphill step is simply the number of 3-neighbors
at each step. To calculate the expected number of evaluations for an uphill step
of AA, it is necessary to determine the number of uphill S-neighbors that exist
at that vertex. If we let n be the number of F-neighbors and u be the number of
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uphill F-neighbors, then the expected number of evaluations before the vertex
is left is given by

00 il
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The second line of this derivation follows from the equation obtained by differ-
entiating the identity ﬁ =14+ 4+224+---.

This list is merely a brief overview of how further details of the basin of attraction
and its vertices may be obtained. It should provide enough information for the

algorithm to be implemented. Further discussion of implementation is provided in
Appendix A.

4.5. An Important Tradeoff

There is an important tradeoff between hillclimbing and reverse hillclimbing. These
algorithms can both be used to provide useful information about a landscape. Typ-
ically what one algorithm can do well, the other cannot. For example, on a large
landscape with a single peak whose basin of attraction is the entire landscape, it is
impractical to calculate the size of the basin using reverse hillclimbing. The basin
may have more vertices than there are atoms in the universe, in which case it would
would be far more efficient to arrive at this conclusion, with some (estimable) prob-
ability of being wrong, by undertaking a million hillclimbs from random vertices and
observing that they all arrived at the same place. If, however, a peak has been found
through some means and one wishes to calculate the probability of this occurring (for
instance to test an hypothesis that the algorithm that found the peak was merely
lucky), using hillclimbing to form an estimate of the peak’s basin size and probability
of attraction can be equally time-consuming. Reverse hillclimbing may be able to

provide the answer rapidly.
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The reverse hillclimbing algorithm has the pleasing property of becoming more
effective as the landscapes on which it is set to work become more difficult to search.
As problems get harder and bigger, it may be that reverse hillclimbing can only
practically be employed to find details of the hardest to locate areas of these hardest
problems. Naturally, the algorithm does not help to identify these areas before setting
to work on exploring them.

4.6. When can a Hillclimber be Reversed?

I have defined hillclimbers to be the algorithms in LSA<_, but this chapter deals
with four hillclimbers that are members of LS A~ , a proper subset of LSA-_. This
raises some questions:

e Can reverse hillclimbing be applied to all algorithms in LSA.?
That is, can it be applied to all hillclimbing algorithms that only take uphill
steps? I believe the answer to this question is that it can in theory. In practice,

there are three reasons why this may be difficult or impractical:

1. The neighborhood of vertices in the landscape may be too large to com-
pletely examine. In the extreme, the neighborhood of each vertex includes
every other vertex. This is the case with the mutation operators of GAs.
It is not practical to perform reverse hillclimbing on this landscape for
exactly the same reason that it is not practical to perform SA hillclimbing

on it.

2. The calculation of ascent probabilities might be difficult for some algo-
rithms.

3. The hillclimbing algorithm may be relatively difficult to reverse, as in the
case of next ascent. This does not prevent reverse hillclimbing from being

done, but will make its implementation more challenging.

e Can reverse hillclimbing be applied to algorithms in LSA._ — LSAL?
That is, can one perform reverse hillclimbing on a hillclimbing algorithm that
potentially makes moves to vertices of equal fitness? The simplest answer is that
this appears difficult, since these algorithms may spend an arbitrary amount of
time exploring a plateau. If the reverse hillclimbing algorithm was provided with
analytically derived results to deal with the expected results of this behavior,

the situation might be improved, but even that seems doubtful. The amount of
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information that would need to be provided to the reverse hillclimbing algorithm
so it could avoid infinite loops would likely be enough to solve the original
problem. These algorithms might be analyzed completely using techniques such
as Markov chains, though in practice there will be far too many states in such

a Markov process to make study of even moderate landscapes feasible.

All is not lost however, as it is still possible to determine the basin of attraction
of a peak. The hash table-based reverse hillclimbing algorithm can be modified
to include vertices of equal fitness in the basin, but not attempt to calculate

the number of ascent paths or the probabilities of these paths.

e Can reverse hillclimbing be applied to algorithmsin LSA . —LSA,_?
That is, can the method be applied to local search algorithms that potentially
take downhill steps? The answer appears to be no. As above, it may still be
possible to determine the basin of attraction (without knowing the number of
paths, their probabilities and their expected evaluations etc.), but to get the
full complement of information, it appears that other methods would need to

be used, and it is not clear what these might be.

4.7. Test Problems

This chapter demonstrates how reverse hillclimbing can be used to compare hillclimb-
ing algorithms via examination of the basins of attraction that arise from instances
of two search problems. The first is the busy beaver problem, and the second is the
problem of locating high fitness vertices on NK landscapes.

4.7.1. NK Landscapes

The NK landscapes were introduced by Kauffman [117, 118] as a simplistic model of
systems with many interacting parts, particularly the complex epistatic interactions
found in genomic systems. An NK landscape has two important parameters: N and
K. N is the number of dimensions in the landscape, each dimension having some
fixed number of possible values. Attention has been focused almost exclusively on
binary dimensions, and this is also the approach of this chapter. A vertex in an
NK landscape can therefore be represented by a binary string of length N. The N
positions are often referred to as loci.

The fitness of a vertex in an NK landscape is computed in an additive fashion.

Fach of the N loci makes a contribution to the overall fitness. These are then summed
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and divided by N to obtain the fitness of the vertex. The variable K controls the
degree to which the fitness contribution of each locus is affected by the binary values
found at other loci. K is the average number of other loci that affect the fitness
contribution of each locus. If K = 0, the fitness contribution of each locus is indepen-
dent of every other locus, and the optimal value for each locus can be determined by
simply comparing the overall fitness of two points—one with the locus set to 0 and
the other with the locus set to 1. If K’ = N — 1, every locus is affected by every other
locus and changing the value assigned to a locus also changes the fitness contribution
of every other locus.

A simplistic way to implement an NK landscape requires filling an N by 25+!
array with real numbers chosen uniformly at random from the interval [0-0,1-0]. A
simple method of choosing influencing loci is to consider the N loci to form a ring, and
let the | K'/2]| loci to the left and [K/2] loci to the right of each locus influence that
locus. An NK landscape with N =4 and K = 2 and an example fitness calculation
is shown in Figure 50. Neighborhood in an NK landscape is defined by the operator
3 defined in §2.6.1(31). In general, one cannot store N25+! random numbers and
so this simplistic method must be replaced with something more sophisticated, and
there are several ways in which this can be done. This presentation of NK landscapes
is deliberately very brief, as more detailed presentations are easily available [117, 118].

If N is fixed and the value of K is allowed to vary, the set of landscapes that
are produced will range from almost certainly unimodal (containing a single global
maximum) for K = 0, to completely random (meaning that the fitness of a vertex
is completely uncorrelated with that of any of its N one-mutant neighbors) for K =
N — 1. The NK landscapes are thus said to be tunably rugged. Because there are
aspects of some NK landscapes that are amenable to analytical investigation and
because there are other aspects of these landscapes that have been studied empirically

[117, 118], these landscapes provide a good testbed for reverse hillclimbing studies.

4.7.2. Busy Beavers

The busy beaver problem is described in §3.8.5(60).

4.8. Experiment Overview

Reverse hillclimbing makes it possible to study many things. These include details
about particular landscapes or ensembles of landscapes, properties of hillclimbing

algorithms and relationships between hillclimbing algorithms. The experiments of
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Fitness calculation for string 0110

Locus | Neighborhood Fitness
0 001 42
1 011 A7
2 110 .38
3 100 .53

Locus

0 1 2 3

A8 | .04 | 73 | 91
42 1 77 | .85 | .11
.68 | .31 | .04 | .89
o1 | A7 | 25| .70
93| 12 | .73 | .53
59 | 64 | 82 | .77
19| 94 | 38 | .21
43 | 49 | .62 | .55

Fitness = (.42 + .17 + .38 + .53) / 4

=.375

Figure 50. The components of a simple NK landscape where N = 4 and K = 2.
The table on the left shows the fitness contribution (rounded to two decimal places)
for each locus for each possible neighborhood configuration. The small diagram at
the top right shows the loci that influence each locus. An illustration of the fitness
calculation for the vertex 0110 is shown in the bottom right.
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this chapter investigate the relative performance of the various hillclimbing algorithms
on a set of peaks. In these experiments, the aim is to provide an answer to the
question: Which hillclimbing algorithm can be expected to locate a peak using the
fewest function evaluations? The experiment considers the randomly located peaks
and also sets of high-fitness peaks. On the studied instances of the busy beaver
problem, the optimal peaks are all known, and the performance of the hillclimbers
is compared given the task of locating any one of the optimal peaks. For the NK
landscapes, the best five percent of the randomly located peaks are separated, and
the hillclimbers are compared when their task is to find any one of these peaks. The
reverse hillclimbing algorithm is used to make predictions about the performance of
the four hillclimbers and experiments show these to be very accurate.

The reverse hillclimbing analysis helps to throw light on an important factor
in hillclimbing algorithms. This is the question of how much time should be spent
looking for uphill neighbors before moving. Reverse hillclimbing makes it possible to
see that, on the problems considered, hillclimbers that choose higher neighbors have
higher probabilities of reaching higher peaks. Choosing a higher neighbor incurs a
cost however. The hillclimber must examine more neighbors. Finding a good balance
between these two is important to overall performance. AA and SA represent quite
different responses to this tradeoff. AA performs few function evaluations to find
any uphill neighbor whereas SA examines all neighbors to guarantee that one with
maximal fitness is selected. Several new hillclimbers that explore this tradeoff are
examined in Appendix B.

In the experiments of this chapter, three NK landscapes were investigated. In
each of these, the value of N was 16. K took on values of 4, 8 and 12. The 2-, 3- and

4-state busy beaver problems are examined.

4.9. Results

4.9.1. NK Landscapes

For each of the three NK landscapes examined, a number of peaks were identified (via
hillclimbing). These were then subject to reverse hillclimbing using each of the four
hillclimbing algorithms. Then, for each of these landscapes, the fittest five percent of
the peaks were examined separately to see if one of the algorithms appeared better
at finding higher peaks.

Table 7 shows the result of reverse hillclimbs from 1000 peaks on an N = 16,
K = 12 landscape. The peaks were located by performing hillclimbs from randomly
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chosen starting points. The four columns of the table represent the four algorithms.
The first row of data shows the number of different basin sizes that were found. For
example, of the 1000 different peaks whose basins were explored for LA, there were
only 176 different basin sizes found. The second, third, fourth and fifth lines show
the minimum, maximum, mean and standard deviation of the basin sizes that were
found. The second last line shows the overall probability that a hillclimb started from
a randomly chosen location will reach one of the peaks from the set of 1000. The
final row is the expected number of climbs that it would take for this to occur. This

row is the reciprocal of the previous row.

Table 7. Reverse hillclimbing from 1000 random peaks in a 16,12 NK landscape.

AA LA | MA SA

# of basin sizes 962 176 413 150

Min. basin size 7268 1 1 2

Max. basin size | 35,841 541 1 1230 287

Mean basin size | 25,634 35 178 47

Basin size s.d. 4584 62 154 38
P(Discovery) 0-645 | 0-534 | 0-619 | 0-713
E(Climbs) 1-548 | 1-873 | 1-617 | 1-402

There are several things that can be noted about this table:

e AA has basins that are far greater in size than those of any other algorithm.
The smallest basin found under AA is approximately six times bigger than the
maximum basin size under any other algorithm. That basins under AA are
bigger than the basins under the other algorithms is not surprising. If one
orders the hillclimbers in terms of decreasing out-degree of landscape vertices,
the ranking would be AA first, MA second and LA and SA roughly equal last.
The same ranking can be observed in mean (and maximum) basin size. Note
that the ranking of algorithms by landscape out-degree would change if N were
odd instead of even, since in that case MA would find a single median instead

of having to make a random choice between two at every step of its climb.
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e AA also produces far more unique basin sizes, which is not surprising given the
far greater range of these numbers. Of the 1000 basins that were explored, there
were 962 different basin sizes found. What seems initially more remarkable is the
low numbers for the other algorithms, especially for LA and SA. This proves to
have an uninteresting explanation however, which is that there are many small
basins for each of these algorithms. If a hillclimber tends to have small basins,
there will tend to be fewer different basin sizes in a sample. This is confirmed
by looking at the actual basin sizes (not shown). Further evidence that this is
the cause is seen by noting the agreement between the maximum basin sizes
and the number of different basin sizes. If we rank the four algorithms by
decreasing maximum basin size, and also by decreasing number of basin sizes,

we get identical orderings.

e The 1 entries for minimum basin size under LA and MA are eye-catching. If each
of the vertices from which reverse hillclimbing is performed in this experiment
is supposed to be a peak, how can any of them have a basin size of only one
(i.e., the peak and no other vertices)? This seemed at first suspicious but has
a simple solution. These vertices are indeed peaks, which is to say that all
their neighbors are less fit than they are. But their basins also have size one,
because each of the neighbors does not ascend to the peak. This cannot happen
under AA since there is always a non-zero probability of an ascent to every
fitter neighbor. It is possible in the other three algorithms. It did not happen

with SA in this set of peaks, but that will be seen in later experiments.

These peaks are something of a curiousity, and are without a doubt the hardest
peaks to locate with these algorithms, since their basin of attraction contains
only the peaks themselves. To find such a peak with a randomly started hill-
climb, the peak itself must be chosen as the starting vertex. As a result, LA,
MA and SA cannot do better than random search when attempting to locate

such a vertex.

e The overall probability of locating a peak shows an interesting pattern. If we
ignore AA for the time being, there is a direct correspondence between how
exploitative LA, MA and SA are and how often they expect to find one of the
set of peaks. In saying that one algorithm is more exploitative than another, it
is meant that if all the fitter neighbors of a vertex were discovered and ranked
from low to high according to fitness, the more exploitative algorithm would
choose to move to one whose rank was higher. SA is more exploitative than

MA which in turn is more exploitative than LA. Correspondingly, SA has a
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higher probability of finding one of the set of peaks than MA which has a higher
probability than LA.

Since AA is on average as exploitative as MA (though with far greater variance),
it seems reasonable to expect that its probability of discovery lies between that
of SA and LA, and closer to MA than to either of the extremes. This is in fact the
case. These general patterns of discovery probabilities will persist throughout
the experiments in this chapter. At this stage, it should be remembered that
these results apply to a set of peaks that were located via randomly started
hillclimbs. We have not seen if the pattern persists when we ask what the

probabilities are of locating good peaks.

As the 1000 peaks whose basins were calculated were found via randomly started
hillclimbs, there is nothing special about them and the fact that one algorithm can
find one of them with a higher probability than another is not particularly interesting.
More interesting is to consider the best of these peaks to see if any algorithm appears
to have an advantage at finding higher peaks. There does not seem to be any a
priori reason to expect such a bias, but it is worth looking for. If this bias is not
found, it is a good indication that the performance of the hillclimbing algorithms may
be accurately estimated via observing their performance on peaks located through
random sampling.

Table 8 is identical in form to Table 7, except the figures displayed show only
the data for the best five percent (50) of the original 1000 peaks. Points of interest
in Table 8 include the following:

e The number of different basin sizes has leveled out across the algorithms. This
is to be expected, since we are now sampling the fittest peaks, and it is not
unreasonable to expect these to have bigger basins and thus, probably more

variance in their basin sizes.

o Interestingly, the 1 entries for LA and MA have persisted, when they might have
been expected to disappear as it seems reasonable to expect that they would
correspond to particularly poor peaks. This is definitely not the case. Further
investigation reveals that 9 of the top 50 peaks have basin sizes of 1 under LA.
The neighbors of a very fit vertex, v, are likely to have other neighbors that
are less fit than v, and in this case, LA will not move to v from any of its
neighbors. MA exhibits the same qualitative behavior, but its effect is greatly
reduced (only 1 of the top 50 peaks had a basin of size 1 under MA). Under
LA, 15 of the top 50 peaks had a basin of size less than 5, whereas under MA
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Table 8. Reverse hillclimbing from the best 50 of 1000 random peaks in a 16,12 NK
landscape.

AA LA | MA SA

# of basin sizes 50 30 48 43

Min. basin size | 19,242 1 1 28

Max. basin size | 35,130 385 | 1230 287

Mean basin size | 29,243 45 313 102

Basin size s.d. 3489 67 241 59
P(Discovery) 0-062 | 0-034 | 0-053 | 0-078
E(Climbs) 16-18 | 29-39 | 18-80 | 12-88

only 2 did. Tt is not hard to see that the global maximum of these function
will always be such a peak under LA and MA! Clearly, LA and MA will not be

much help in locating this vertex.

e The pattern of ascent probabilities described above has also persisted. Again,

AA comes out slightly ahead of MA.

This information allows us to answer the question of which hillclimber to bet on if
we are allowed some number of climbs. But as we are concerned with evaluations, not
runs, it would be good to answer the question: Which of the hillclimbing algorithms
appears to be the best, in terms of evaluations, at finding this set of peaks? The data
from the reverse hillclimbing is exact, but is not enough. If we consider the iterated
version of each of these algorithms, a successful search for one of the set of desired
peaks will consist of some number of unsuccessful climbs (that do not reach a peak in
the desired set) followed by a successful climb. If a problem is at all difficult, there will
be many unsuccessful climbs before a peak is found. If a reasonably accurate estimate
of the number of evaluations taken by an algorithm on a climb were available, it could
be combined with the exact reverse hillclimbing data to obtain an equally accurate

prediction of the number of evaluations needed by that algorithm to locate a peak.
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Information about the average number of evaluations used in a climb (successful
or not) is easily obtained. Table 9 shows a summary of 10,000 climbs on the N = 16,
K = 12 landscape for the four algorithms. As would be expected, AA uses signif-

Table 9. The result of 10,000 hillclimbs on the 16,12 NK landscape. The table
shows data for the number of uphill steps taken for each algorithm and the number
of evaluations performed per uphill walk.

AA LA | MA SA

Av. steps/climb | 3-455 | 9-335 | 3-836 | 1-999

Min. steps/climb 0 0 0 0

Max. steps/climb 13 33 12 8

Steps/climb s.d. | 1-878 | 5-919 | 1-857 | 1-064

Av. evals/climb | 31-22 | 166-4 | 78-37 | 48-99

Min. evals/climb 17 17 17 17

Max. evals/climb 90 | H45 | 209 | 145

Evals/climb s.d. | 10-63 | 94-70 | 29-66 | 17-02

icantly fewer evaluations per climb than the other algorithms, all of which examine
all neighbors before moving. The reason LA, MA and SA do not perform similar
numbers of evaluations is that they go uphill at different rates, as can be seen from
the mean steps per climb in the table. SA has a mean of about 2 steps before reaching
a peak, while LA takes about 9.

The most interesting question that arises is whether AA will be better than SA or
vice-versa. SA has a lower expected number of climbs to locate a peak, but takes more
evaluations to do so. The answer to this can be found by multiplying the expected
number of climbs from Table 8 by the expected number of evaluations from Table 9.
This produces Table 10.

The table compares the expected performance of each of the hillclimbers with
their observed performance. SA located more peaks in the 10,000 runs but, more
importantly, AA took fewer evaluations on average to locate a peak. Since we are

using algorithm evaluation count as our yardstick for algorithm performance, AA is
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Table 10. Expected and observed numbers of peaks and evaluations for 50 good NK
16,12 peaks.

AA| LA | MA | SA

E(Peaks found) | 617 | 340 | 532 | 777

Peaks found 620 | 348 578 | 736

E(Evals/peak) | 505 | 4889 | 1473 | 631

Evals/peak 503 | 4780 | 1355 | 665

the best algorithm for finding this particular set of peaks on this particular landscape,
assuming the sampling that gave the expected evaluations per climb data was not
wildly wrong. SA is a clear second, with MA and LA third and fourth. These results
could easily be made more accurate by increasing the number of hillclimbs done to
obtain the data on expected number of evaluations per climb. For our purposes, a
small number of hillclimbs to estimate evaluations per climb was sufficient to obtain
estimates that closely matched the actual performance of the algorithms.

Of course, the behavior of the different algorithms may simply be due to chance,
and may not apply to other NK landscapes, let alone other problems. To investigate
this, and also to examine landscapes of differing ruggedness, the same experiment
was performed on an N = 16, K = 8 and an N = 16, K = 4 NK landscape.
Tables 11 to 14 are the N = 16, K = 8 counterparts of Tables 7 to 10 for the N = 16,
K =12 landscape. Table 11 shows the result of performing reverse hillclimbing from
700 peaks in a N = 16, K = 8 landscape. Less peaks are descended from in this
experiment as the landscape contains fewer peaks. Judging from the figures for SA
in the table, the 700 peaks and their basins account for approximately 96% of the
vertices in the landscape. This follows from the fact that SA is with high probability
completely deterministic on an NK landscape (since it is very unlikely that any two
vertices will have identical fitness), so multiplying the mean basin size (90) by the
number of basins (700) gives a good estimate of the number of vertices represented by
the sample. In this case the basins represent approximately 63,000 of the 2'¢ vertices.
The 2500 or so vertices that are not represented should (if the mean basin size can be
used reliably) fall into approximately 28 basins. We would expect only one of these
to have fitness in the highest 5% of all basins, so we can be reasonably confident that
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Table 11. Reverse hillclimbing from 700 random peaks in a 16,8 NK landscape.

AA LA | MA SA

# of basin sizes 687 233 526 230

Min. basin size | 11,179 1 1 1

Max. basin size | 49,275 975 | 4399 973

Mean basin size | 34,812 88 583 90

Basin size s.d. 6613 145 659 109
P(Discovery) 0-958 | 0-945 | 0-958 | 0-966
E(Climbs) 1-044 | 1-059 | 1-044 | 1-035

the top 5% of our sample of 700 is very close to being the top 5% of peaks in the
entire landscape.

The patterns that were evident in the N = 16, K = 12 landscape can also be
seen on this landscape. Once again, SA has a higher probability of locating a peak
than MA does and it in turn has a higher probability than LA. AA has a probability
that is very close to that of MA (in the table they are identical as only two decimal
places are shown). The basin sizes also show patterns that are the same as those on
the more rugged landscape. AA has by far the biggest basins, then MA and then
SA just barely ahead of LA. Table 12 shows the reverse hillclimbing results when we
restrict attention to the top 5% (35) of the 700 peaks. Again, looking at just the best
peaks in the sample does not alter the relative algorithm performances.

Table 13 shows the result of 10,000 hillclimbs on this landscape. Once again it
is clear that one of SA and AA will prove to be the best algorithm on this landscape.
SA has a better chance of finding a peak on a given climb, but AA takes fewer
comparisons per climb. The expected and observed data for the number of peaks
discovered and the number of evaluations per discovery is presented in Table 14 and
the balance once more favors AA. SA’s dominance in probability of discovery does
not match AA’s dominance in evaluations per climb.

This story is repeated in every detail on the N = 16, K = 4 landscape. In

this case, all 180 peaks in the landscape were identified. The reverse hillclimbs from
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Table 12. Reverse hillclimbing from the best 35 of 700 random peaks in a 16,8 NK
landscape.

AA LA MA SA

# of basin sizes 34 31 35 32

Min. basin size | 35,751 1 618 73

Max. basin size | 48,486 975 | 14,399 829

Mean basin size | 43,704 191 2019 349

Basin size s.d. 3393 236 1044 145
P(Discovery) 0-159 | 0-102 | 0-156 | 0-186
E(Climbs) 6-294 | 9-809 | 6-411 | 5-372

these peaks are shown in Table 15. The best 5% (9) are examined in Table 16,
10,000 hillclimbs were done to gather expected uphill path lengths (Table 17), and
the summary results appear in Table 18.

In this case, the basins of attraction of the peaks account for all the vertices in
the landscape. As we have seen virtually identical behavior on these three landscapes,
it seems reasonable to assume that although we only considered about 70% of the
space in the N = 16, K = 12 landscape, that the results would not have been greatly

different had we examined additional peaks.

4.9.2. Busy Beavers

Table 19 shows the result of performing reverse hillclimbing on 1000 randomly located
peaks on the 4-state busy beaver landscape. As with the NK landscape experiments
above, the peaks are found via hillclimbs started from randomly chosen starting
points. With the NK landscapes, the union of the points in all the basins of attraction
of the set of randomly chosen peaks comprised a large proportion of the space. For
example, with SA, over 70% of the space was in the basin of attraction of the 1000
peaks chosen on the N = 16, K = 12 landscape (see Table 7 on page 101). This
is certainly not the case with the 1000 randomly located peaks in the 4-state busy

beaver problem. If we (generously) assume that basins do not overlap, the union of
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Table 13. The result of 10,000 hillclimbs on the 16,8 NK landscape. The table
shows data for the number of uphill steps taken for each algorithm and the number
of evaluations performed per uphill walk.

AA LA | MA SA

Av. steps/climb | 4-632 | 12-62 | 5-092 | 2-833

Min. steps/climb 0 0 0 0

Max. steps/climb 14 38 13 10

Steps/climb s.d. | 2:257 | 7-062 | 2-244 | 1-317

Av. evals/climb | 36-37 | 218-8 | 98-47 | 62-33

Min. evals/climb 17 17 17 17

Max. evals/climb | 103 | 625 | 225 | 177

Evals/climb s.d. 1250 | 1129 | 35-91 | 21.07

points in the basins of all the peaks under SA is a set of 777,000 points. In an overall
space of 25,600,000,000 points, this represents only just over 3 x 107 of the entire
space.

Table 20 shows the result of reverse hillclimbing from the 48 known optimal TMs
for the 4-state problem. The small number of different basin sizes for the algorithms
is the result of redundancies in the representation. Once again, the four algorithms
exhibit an ordering, by probability of reaching any peak on a single hillclimb, that
should by now be becoming familiar. SA is a clear winner, AA is second, followed by
MA and then LA. This pattern was also seen in the best five percent of peaks for the
three NK landscapes (see Tables 8 to 16). In all three of those cases, SA ranked first
and AA second. In two of them, MA was third and LA last and in one, LA third and
MA last. This pattern will be seen in the three busy beaver landscapes. In fact, the
pattern in the busy beaver landscapes is exactly that seen in the NK landscapes. SA
is first in all three, AA is second in all three and MA beats LA on all but the simplest
of the problems.

To examine whether the reverse hillclimbing results are accurate and to determine

which algorithm can be expected to find peaks using the fewest evaluations, it is
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Table 14. Expected and observed numbers of peaks and evaluations for 35 good NK
16,8 peaks.

AA| LA| MA| SA

E(Peaks found) | 1589 | 1019 | 1560 | 1862

Peaks found 1451 | 1042 | 1458 | 1854

E(Evals/peak) 229 | 2146 | 631 | 335

Evals/peak 251 | 2100 | 675 | 336

necessary to estimate the expected number of evaluations in a hillclimb, as was done
in the NK landscape experiments. Table 21 shows the statistics obtained from 10,000
hillclimbs for each of the algorithms. Again we see a similar pattern to that seen for
the NK problems. AA has the fewest expected evaluations and is followed by SA, MA
and LA in that order. This relationship has a simple explanation, that was presented
in §4.9.1(105). The most striking aspect of this table is the very small number of
steps that a hillclimber can expect to take on this landscape before reaching a peak.
For SA, the expectation is less than 2 steps.

Table 22 compares the actual number of peaks found and evaluations taken
with the expected numbers. Because it is very difficult to locate these peaks with
hillclimbing, each algorithm was run 20 million times to obtain a reasonable number
of successes. The expected and observed numbers of peaks are in good agreement,
as are the numbers of evaluations. In this case, the advantage that SA has over AA
in terms of its probability of finding a peak outweighs its disadvantage in terms of
expected number of evaluations per climb. This is the first time we have have seen the
tradeoff resolved in favor of SA, and the victory is a very slight one. If we assume that
the estimated number of evaluations per climb is actually correct, then the difference
in the expected number of evaluations per peak location between the two algorithms
is insignificant.

This experiment was repeated for peaks on the 3- and 2-state busy beaver prob-
lems. These results are shown in Tables 23 to 30. In both of these problems, SA
again has the highest probability of peak location given a single climb, but is beaten
by AA due to the high cost it incurs per uphill step.



Table 15.

Reverse hillclimbing from the 180 peaks in a 16,4 NK landscape.
AA | LA MA | SA

# of basin sizes 179 | 140 178 | 158

Min. basin size | 14,703 1 72 6

Max. basin size | 55,146 | 5029 | 14,207 | 2565

Mean basin size | 43,640 | 364 2761 | 364

Basin size s.d. 7944 | 588 2738 | 446

P(Discovery) 10| 1-0 -0 10

E(Climbs) 1 1 1 1

Table 16. Reverse hillclimbing from the best 9 of the 180 peaks in a 16,4 NK land-

scape.

AA LA MA SA
# of basin sizes 9 9 9 9
Min. basin size | 42,817 69 4566 644
Max. basin size | 54,927 | 5029 | 14,207 | 2485
Mean basin size | 51,768 | 1161 7637 | 1444
Basin size s.d. 3723 | 1470 3499 634
P(Discovery) 0-165 | 0-160 | 0-151 | 0-198
E(Climbs) 6-076 | 6-269 | 6-618 | 5-042
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Table 17. The result of 10,000 hillclimbs on the 16,4 NK landscape.

The table

shows data for the number of uphill steps taken for each algorithm and the number
of evaluations performed per uphill walk.

AA| LA | MA SA
Av. steps/climb | 6-:064 | 15-20 | 6-622 | 3-886
Min. steps/climb 0 0 0 0
Max. steps/climb 19 44 19 10
Steps/climb s.d. | 2-587 | 3-373 | 2:695 | 1-484
Av. evals/climb | 41-58 | 260-2 | 122-9 | 79-18
Min. evals/climb 17 17 17 17
Max. evals/climb | 126 | 721 | 321 | 177
Evals/climb s.d. | 13-57 | 117-9 | 43-12 | 23-74

Table 18. Expected and observed numbers of peaks and evaluations for 9 good NK

16,4 peaks.

AA| LA| MA| SA
E(Peaks found) | 1645 | 1595 | 1511 | 1983
Peaks found 1530 | 1592 | 1545 | 2017
E(Evals/peak) 252 [ 1631 | 813 | 399
Evals/peak 272 1634 | 795 | 393
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Table 19. Reverse hillclimbing from 1000 random 4-state busy beaver peaks.

AA LA MA SA
# of basin sizes 470 440 320 356
Min. basin size 4 4 1 2

Max. basin size 545,848 360,864 42,970 61,606

Mean basin size 4305 2585 481 777

Basin size s.d. 27,647 16,521 2628 4282

P(Discovery) 0-0000075 | 0-0000066 | 0-0000071 | 0-0000085

E(Climbs) 133,754 | 151,713 | 141,453 | 117,993

4.10. Conclusion

This chapter introduced the reverse hillclimbing algorithm. This chapter showed that
the algorithm makes it possible to determine the relative performance of two hillclimb-
ing algorithms (that only take uphill steps) on a given problem. The algorithm also
provides answers to several other questions concerning sizes of basins of attraction
and lengths of paths to discover peaks. To answer these questions without reverse
hillclimbing, it appears necessary to use statistical methods based on the occasional
discovery of peaks. These methods are both computationally infeasible and of lim-
ited accuracy. Reverse hillclimbing, when it is useful, provides answers to the above
questions very rapidly and with a high degree of precision. In many cases answers
obtained with the method are exact.

The reverse hillclimbing algorithm cannot be used to discover high peaks on
a fitness landscape. Rather, it is used as the basis for analysis once these peaks
have been found by other methods. For instance, if a certain hillclimbing method
has identified 100 peaks on a “rugged” landscape, reverse hillclimbing can be used
to calculate the probability that other hillclimbers would find these peaks. If some
other search algorithm has identified a good peak, reverse hillclimbing can produce
the exact probability that a given form of hillclimbing would have found the point.

This allows rapid and accurate comparisons without the need to run the hillclimber
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Table 20. Reverse hillclimbing from the 48 peaks in the 4-state busy beaver problem.

AA LA MA SA
# of basin sizes 6 5 24 4
Min. basin size 10,420 3349 897 1426
Max. basin size 25,714 5648 2660 5364
Mean basin size 18,072 4511 1552 3370
Basin size s.d. 7637 1133 669 1936
P(Discovery) 0-000001169 | 0-000000610 | 0-000001002 | 0-000002012
E(Climbs) 855,538 1,639,043 997,524 497,129

to form an estimate of the probability. In previous work [110], this approach was used
to assess the performance of a GA.

Reverse hillclimbing has the pleasing property of becoming more feasible as the
landscape on which it is run gets more “rugged.” That is, as basin sizes decrease
(perhaps due to increased numbers of peaks, as we saw above with NK landscapes)
reverse hillclimbing becomes increasingly competitive with sampling methods based
on hillclimbing. On extremely difficult problems, reverse hillclimbing will perform
extremely well since it never strays more than one vertex from the points in the basin
of attraction during its descent. Therefore, the smaller the basin of attraction of
a peak, the faster reverse hillclimbing will be and the more difficult it becomes to
answer questions about the basin using other methods.

Other statistics about landscapes can also be easily investigated via reverse hill-
climbing. These include the relationships between peak heights, basin sizes and prob-
ability of discovery. A trivial modification to the algorithm can be used to explore
the “basin” of points above a certain point in a landscape. This allows calculation of
statistics relating the number of uphill directions to the number of peaks that can be
reached from a given point. This information might be used to direct the behavior
of a hillclimber that expended variable effort in looking for uphill neighbors at each
stage of the climb.



Table 21. The result of 10,000 hillclimbs on the 4-state busy beaver landscape. The
table shows data for the number of uphill steps taken for each algorithm and the

number of evaluations performed per uphill walk.

AA| LA | MA SA
Av. steps/climb | 2-091 | 2-242 | 2-111 | 1-883
Min. steps/climb 0 0 0 0
Max. steps/climb 8 9 8 8
Steps/climb s.d. | 1-316 | 1-461 | 1-307 | 1-165
Av. evals/climb | 83-35 | 156-6 | 150-3 | 139-4
Min. evals/climb 49 49 49 49
Max. evals/climb | 200 | 481 | 433 | 433
Evals/climb s.d. | 25-82 | 70-14 | 62-73 | 55-92
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Finally, reverse hillclimbing has highlighted the tradeoff between moving uphill

quickly and moving in the steepest direction possible. The any ascent algorithm takes

the first uphill direction it can find and consequently expends little energy looking for

uphill directions. Steepest ascent always examines all neighbors and then chooses the

steepest of these. Although, in our experience, steepest ascent always has a higher

probability of finding a peak on a single climb (this can be shown exactly by reverse

hillclimbing for a given problem), this advantage is usually not enough to compensate

for the extra work it must do at each step. These two approaches represent extremes

of behavior. Appendix B presents preliminary results of an attempt to find more

balanced hillclimbers.



Table 22. Expected and observed numbers of peaks and evaluations for the 48 peaks
on the 4-state busy beaver problem. The observed values are taken from 20 million

hillclimbs with each of the four algorithms.

AA LA MA SA
E(Peaks found) 23 12 20 40
Peaks found 23 15 23 44
E(Evals/peak) | 71,307,723 | 256,657,743 | 149,960,575 | 69,294,214
Evals/peak 71,270,514 | 208,393,004 | 130,625,970 | 63,161,171

Table 23. Reverse hillclimbing from 1000 random 3-state busy beaver peaks.

AA LA MA SA
# of basin sizes 287 279 212 224
Min. basin size 4 4 2 2
Max. basin size | 20,219 | 13,616 7052 8142
Mean basin size 327 222 108 137
Basin size s.d. 1309 869 409 502
P(Discovery) 0-00368 | 0-00329 | 0-00364 | 0-00407
E(Climbs) 272 304 275 246
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Table 24. Reverse hillclimbing from the 40 peaks in the 3-state busy beaver problem.

AA LA MA SA
# of basin sizes 13 14 22 14
Min. basin size 5659 2522 1247 2092
Max. basin size | 20,219 | 13,616 7052 8142
Mean basin size | 10,974 6702 3249 4156
Basin size s.d. 6013 4746 2183 2426
P(Discovery) 0-00399 | 0-00337 | 0-00381 | 0-00453
E(Climbs) 251 297 262 221
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Table 25. The result of 10,000 hillclimbs on the 3-state busy beaver landscape. The
table shows data for the number of uphill steps taken for each algorithm and the
number of evaluations performed per uphill walk.

AA LA | MA SA

Av. steps/climb | 1.754 | 1-829 | 1-762 | 1-591

Min. steps/climb 0 0 0 0

Max. steps/climb 7 7 7 6

Steps/climb s.d. | 1-114 | 1-189 | 1-116 | 1-005

Av. evals/climb | 50-65 | 85-87 | 83-86 | 78-72

Min. evals/climb 31 31 31 31

Max. evals/climb | 136 | 241 | 241 | 211

Evals/climb s.d. | 15-64 | 35-68 | 33-47 | 30-14

Table 26. Expected and observed numbers of peaks and evaluations for the 48 peaks
on the 3-state busy beaver problem. The observed values are taken from 10,000
hillclimbs with each of the four algorithms.

AA LA MA SA

E(Peaks found) 40 34 38 45

Peaks found 49 29 37 48

E(Evals/peak) | 12,687 | 25,463 | 21,990 | 17,367

Evals/peak 12,662 | 29,609 | 22,665 | 16,400
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Table 27. Reverse hillclimbing from 1000 random 2-state busy beaver peaks.

AA LA | MA SA

# of basin sizes 37 35 27 27

Min. basin size 4 4 4 3

Max. basin size 372 292 200 274

Mean basin size | 14-4 12-1 11-0 11-3

Basin size s.d. 26-4 | 20-7| 14-2 19-0

P(Discovery) 0-409 | 0-393 | 0-406 | 0-425

E(Climbs) 2.448 | 2:545 | 2:460 | 2355

Table 28. Reverse hillclimbing from the 4 peaks in the 2-state busy beaver problem.

AA LA MA SA

# of basin sizes 2 2 2 2

Min. basin size 370 290 198 273

Max. basin size 372 292 200 274

Mean basin size 371 291 199 273-5

Basin size s.d. 1 1 1 0-5

P(Discovery) 0-0354 | 0-0321 | 0-0304 | 0-0390

E(Climbs) 28-27 | 3117 | 32:85 | 2564
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Table 29. The result of 10,000 hillclimbs on the 2-state busy beaver landscape. The
table shows data for the number of uphill steps taken for each algorithm and the
number of evaluations performed per uphill walk.

AA LA | MA SA

Av. steps/climb | 1-372 | 1-446 | 1-374 | 1-305

Min. steps/climb 0 0 0 0

Max. steps/climb 5 5 5 5

Steps/climb s.d. | 0-917 | 0-980 | 0-911 | 0-838

Av. evals/climb | 26-26 | 40-14 | 38-99 | 37-87

Min. evals/climb 17 17 17 17

Max. evals/climb 76 97 97 97

Evals/climb s.d. | 7-898 | 15-68 | 14-57 | 13-41

Table 30. Expected and observed numbers of peaks and evaluations for the 48 peaks
on the 2-state busy beaver problem.

AA| LA| MA| SA

E(Peaks found) | 354 | 321 | 304 | 390

Peaks found 356 | 317 | 290 364

E(Evals/peak) | 742 | 1251 | 1281 | 971

Evals/peak 737 | 1266 | 1344 | 1040




CHAPTER 5

Evolutionary Algorithms and Heuristic
Search

5.1. Introduction

Although evolutionary algorithms are often considered a technique of Al, the classi-
fication is more due to convenience than to any strong claims of connections between
the fields. This chapter establishes such a connection. In this chapter, the framework
of a correspondence between evolutionary algorithms and heuristic state space search
is presented, and one aspect of the correspondence is developed in detail.

The view of evolutionary algorithms by researchers in the more established fields
of Al is colored to a large extent by uniform use of biological language. Putting
that language aside temporarily allows the development of a perspective on these
algorithms from which they appear to be no more than slightly unusual state space
search algorithms. Much of this shift in perspective can be accomplished by simply
using slightly different language to describe these algorithms. Having accomplished
this, it is possible to put the correspondence to work by asking whether aspects of
research in one field can be usefully translated into the other. This possibility was
also raised by Tackett [119, 120] in the context of genetic programming.

Some classifications of approaches to Al made at a recent workshop will serve
to illustrate the differences in how evolutionary and state space search are typically
viewed [121]:

o As categories of approaches to Al state space search was classified as a Symbol
Processing while evolutionary algorithms, represented by genetic programming,

were classified as Biocomputational.

e In another classification (proposed by Nilsson), state space search was classified

as both “engineering (computer science, control theory,...)” and “top down,”
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whereas evolutionary algorithms were “biological science (neuroscience, ethol-

ogy, evolution,...)” and “bottom-up.”

e In a final classification (proposed by Rumelhart), state space search was both
“high-level” and “formal” whereas evolutionary algorithms were “low-level” and

“experimental.”

This chapter demonstrates that a quite different classification is possible and that it

can be used to inform the study of GAs.

5.2. Search in Artificial Intelligence

AT has long been concerned with questions of search. Search forms the trunk of
the tree from which many Al techniques have sprouted. Minsky [25] divided the
problems of Al into five areas: Search, Pattern Recognition, Learning, Planning and
Induction. Of which pattern recognition, learning, and planning are mentioned as
direct responses to the general problem of search. The most fundamental view of
search in Al is that of a search to locate an object within a space of possible objects.
This leads directly to the idea of state space search, in which objects are regarded
as states that the searcher examines in an attempt to locate a solution. General
descriptions of this sort can be found, for example, in [31, 43, 45, 122]. The “15-

puzzle” [123] depicted in Figure 51 is commonly used to illustrate this view. One can

11114 | 3 | 10

6 8 |9
12| 2 (13| 1
157 4|5

Figure 51. The 15-puzzle. The object is to rearrange the fifteen numbered tiles to
form an increasing sequence from top left to bottom right. Tiles are rearranged via
the movement of a numbered tile into the vacant (dark) location.

imagine the entire set of possible arrangements (states) in a connected fashion such
as that shown in Figure 52. Puzzle configurations are connected through the action
of sliding a tile into the unoccupied location. This is known as a state space and the
problem can be viewed as that of finding a path through this network to the unique
solution state.



123

[
\i \
14| 3 | 10 11 3 |10 11|14 10
11| 6 (8|9 6|14 | 8 | 9 68|39
121 2 |13 | 1 12| 2 |13 1 12| 2 |13 ] 1
15(7 (4|5 15(7 4|5 15(7 4|5
A A A
Y \ Y
11114 | 3 |10 11 (14| 3 (10 11 (14| 3 (10
6819 6 819 6| 8 9
121 2 |13 | 1 12| 2 |13 1 12| 2 |13 1
15|74 |5 15|74 |5 15|74 |5
A A A
\i \i y
11114 | 3 |10 11114 | 3 |10 11114 | 3 | 10
12| 6 [ 8 ]9 612|819 6|8 13| 9
2 |13 1 12 13| 1 12| 2 1
15|74 |5 15|74 |5 15|74 |5
\ A [
\j y y

Figure 52. A portion of the state space for the 15-puzzle.
unoccupied location transforms one state into another.

Sliding a tile into the
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Viewing a problem as a search within a state space is very common in Al. A
state space and the operations used to move between states produces a directed
graph. This is the connection with the landscape model of this dissertation and is the
subject of this chapter. Al has developed many algorithms that are designed to search
graphs. In these algorithms, the nodes of the graph are labeled with the value of some
heuristic function that provides an estimate of the worth of the state, often in terms
of its distance from a goal state. State space graphs are also known within Al as OR-
graphs in contrast to the more general AND/OR-graphs [124]. Pearl demonstrates
that it is sometimes possible to adopt either view when solving a problem and that the
choice between them can have a large influence on the difficulty of finding a solution
[31]. This chapter is not concerned with AND/OR-graphs, and seeks only to establish

connections between landscapes and state spaces.

5.3. Similarities Between Evolutionary
Algorithms and Heuristic Search

The correspondence between these two classes of algorithms is based on the fact that
both can be seen as searching labeled graphs. This section presents various aspects of
the correspondence in enough detail to show that the resemblance is not superficial.
Table 31 summarizes the different language used to describe essentially the same
things in the two fields. The correspondence between fitness functions and heuristic

functions is investigated in detail in the second half of this chapter.

5.3.1. Landscapes and State Spaces

Figure 52 shows that a state space may be naturally viewed as a directed graph. If
we consider the origin of a state space in the same way that we considered the origin
of the components of a landscape in §2.3(19), important parallels can be observed.
Considering a problem as a state space search is so common within Al. This step
may appear so natural, that it is easy to overlook the fact that the searcher makes a
decision to do so, and thus must make a choice about how this should be done. When
introducing state space search, many Al texts (for example [125, 126, 127, 128, 129,
130, 131, 132, 133, 134]), adopt a particular state space view of a problem without
explicit acknowledgment of the fact that doing so is a choice or that other choices of
state space are possible. This is generally because in the examples used, there is an

obvious and natural state space that it is simple to adopt. This choice of state space
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Table 31. The languages of evolutionary and heuristic search algorithms.

Evolutionary algorithms | Heuristic state space search
Landscape State space (or database)
Individual Potential Solution
Navigation strategy Control strategy

Fitness function Heuristic function

Global Optima Goal states

Population OPEN list (for example)
Operator Operator

is also often recommended by the structure of the problem at hand. Exceptions to
this trend can be found in [43, 44, 135].

But the statement of a search problem usually says nothing about states. If one
thinks of many of the classic search problems that Al has dealt with, for example
the n-queens problem, the 8-puzzle, the 15-puzzle, Rubik’s Cube, Nim, Tic-Tac-Toe,
sliding tile puzzles, missionaries and cannibals, and the Tower of Hanoi, in no case
does the problem statement say anything about states or state spaces. The state
space is constructed by the problem solver, and is therefore a choice that is made
when solving a problem.

The move to considering a problem from a state space point of view can be so
natural that it is easy to overlook. Emphasizing the fact that a choice is being made
leads to questions about alternatives. In order to adopt a state space point of view,
we must first decide what it is that constitutes a state. Often in AI problems there
is an underlying structure which is imposed by physical properties of the problem
(e.g., manipulating Rubik’s Cube) or by rules of a game. Such a structure, which
I call predefined connectivity produces a natural state space. Examples of problems
with predefined connectivity include all those given above with the exception of the
n-queens problem. The existence of predefined connectivity does not preclude the
construction of state spaces other than the natural one. In this case, states will consist

of sets of states from the natural state space and operators will be compositions of



126

operators in the natural state space. Rubik’s Cube is useful for illustrating this choice.

The natural state space representation for the cube has each configuration of the
cube correspond to a state in the state space graph, with edges emanating from a
vertex given by the possible twists of the cube’s sides. A second choice is to construct
a state space with only three elements, one being the set of all cube configurations
that have one layer complete, the second the set of all cube configurations with two
layers complete and the third the completed cube. This state space would be very
easy to search if we could find the operators that connected the states. In a third
view, used by Korf [33], the individual “cubies” and the possible cubie positions are
labeled from 1 to 20. State .5 (for 1 <7 < 20 and 7 < 5 < 20) indicates that cubies
numbered less than or equal to ¢ are all positioned correctly and that cubie 2 + 1 is
in position 3. When ¢ = 20 the puzzle is solved and the value of j is irrelevant. In
this state space, each state corresponds to a set of cube configurations. This state
space also has the advantage of being trivial to navigate in. Fortunately, it is possible
(though by no means easy) to find operators that connect successive states [33]. Korf
calls the sequences of cube twists that make up the operators in this state space
macro-operators and attributes the idea to Amarel [32]. The problem of finding such
operators is a challenging search problem in itself. Korf’s preference is to continue to
regard the natural state space as the state space under investigation, hence the name
macro-operator. Mine is to treat sets of states of the natural state space as states
in a new state space and the macro-operators as operators in the new state space.
The relation “in the same Korf 7.5 class as” is an equivalence relation over the set
of all cube configurations. Each of the equivalences classes defined by this relation
can be regarded as a state in a new state space. Allowing a state in a state space
to correspond to a set of states from another state space is merely an example of
allowing a landscape vertex to correspond to a multiset of elements of R.

These choices are all possible approaches to solving Rubik’s cube by viewing the
search as taking place in a state space. The first state space is simple to construct
and hard to search and the second and third are hard to construct and simple to
search. This tradeoff is exactly the tradeoff that we encountered in §2.11(41) when
discussing operators and representation in the context of landscapes. The issues that
we face when constructing a state space and operators to move between states are
the same as those that we face when choosing an object space (and, subsequently, a
representation space) and operators when constructing a landscape. In both cases we
need to decide what we will focus on as possible solutions to the problem and how we
will transform these possible solutions into others. In both cases, the results of these

choices can be viewed as a graph in which the search will take place.
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5.3.2. Individuals, Potential Solutions, and Populations

Evolutionary algorithms usually deal with populations of individuals. A vertex in
a landscape graph corresponds to a multiset of individuals drawn from R. In some
landscapes, these multisets will always contain a single individual (e.g., in mutation)
while in others they will correspond to pairs of individuals (crossover) or entire pop-
ulations (as in selection and in the view of an evolutionary algorithms as a Markov
chains). In state spaces we have a very similar situation. A state in a state space
might correspond to a single configuration of the 15-puzzle (which we could call an
individual if we pleased), or perhaps to some piece of a Hamiltonian circuit in a graph.
This can be thought of as a partial individual, but also as representing the set of all
Hamiltonian circuits that contain this piece as a subgraph. This set may be thought
of as a population. In many Al search algorithms, a list of potential solutions (often
called the OPEN list) is kept. The contents of this list is very much like a population
and the search algorithm chooses promising directions (individuals) to explore from.
This point was also made by Tackett [119, 120] in the context of a correspondence he
develops between genetic programming and beam search. Whether we call the objects
that correspond to vertices in the graphs of landscapes and state spaces “individuals”

or “potential solutions” (or something else) is of little importance.

5.3.3. Fitness Functions and Heuristic Functions

The correspondence between landscapes and state spaces at the graph level was shown
above. We now consider the labels on the vertices in the respective graphs. In the
landscape model, graph vertices are labeled with elements of a partial order, F, and
the label on a vertex is a measure of the worth of that vertex as a solution to the
search problem. If the vertex corresponds to more than a single element of R, then
the label attached to the vertex will typically be some overall measure of the worth
of the points of R to which the vertex corresponds. In heuristic search, labels drawn
from a partial order are also attached to states. The label is again a reflection of the
worth of the set of solutions that is represented by that state. An approach similar
to this is used to determine whether one set dominates another in search via dynamic
programming. In other situations, the label attached to a state is interpreted as a
measure of the distance to a goal state elsewhere in the graph. The importance of the
relationship between fitness functions in GAs and heuristic functions that provide an

estimate of the distance to a goal is explored below.
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5.3.4. Navigation Strategies and Control Strategies

Search algorithms in Al contain a direct counterpart of what I have called the nav-
igation strategy of an evolutionary algorithm. The method by which AT search al-
gorithms explore their state space graphs has been termed the control strategy (e.g.,
[31, 44]). The quotation from Rich [44] at the beginning of Chapter 2 illustrates the
extent to which Al search algorithms are viewed as being tied to the idea of explo-
ration of a graph structure. The division of evolutionary algorithms into structure
and navigation strategy is entirely in keeping with the view of search that Al has held
for many years. The remainder of this section outlines some of the most common Al

control strategies.

o Generate-and-Test was the name given to early control strategies. The name
is not a particularly useful one as descriptions of generate-and-test methods
tend to be so general that they encompass a very wide range of possible control
strategies. The following description (adapted from [44])

1. Generate a possible solution.
2. Test to see if this is actually a solution.

3. If a solution has been found, quit. Otherwise, return to step 1.

does not specify at all how step 1 should be performed. The operation of the
algorithm can be imagined to take place on a landscape graph K, with edges
provided by the operator that implements step 1, though there is little to be

gained from such visualization.

e In Means-Ends Analysis a problem that cannot be directly solved is broken
into subproblems. The control strategy focuses on reducing the distance be-
tween the current state and the goal state (these can be thought of as nodes in
a graph). Reduction into subproblems occurs when it is noticed that although
the system does not know how to get directly from A to C', it could complete
this if it knew how to get from A to B and subsequently from B to C'. Iden-
tifying a suitable node B may not be simple. The production system uses a
collection of rules consisting of preconditions and actions. The preconditions
match the differences that need to be removed to bring one closer to a solution
and the actions effect the removal. The best known use of means-ends analysis
was in the General Problem Solver [136].

e Production Systems consist of three elements (from Nilsson [137, page 17]):
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1. A global database,
2. A set of production rules, and

3. A control system.

The rules consist of preconditions and actions. The preconditions may match
some aspect of the global database, in which case the rule may be applied to
the database, thereby changing it. The control system determines which rules
it is appropriate to invoke, resolves conflicts (when the preconditions of many
rules are satisfied) and brings the search to a halt when the global database
satisfies some stopping criterion. This description may seem to have little to
do with evolutionary algorithms. Actually, it has everything to do with these
algorithms. If one substitutes C (the collection of elements of the representation
space in the landscape model), operators and navigation strategy for global
database, production rules and control system in the above, the description fits

the landscape model almost perfectly.

Bi-Directional Search. When searching a graph that contains a known start
and goals state (or states), a common technique is to try the search in both
directions. More powerful, and more complicated, is to conduct the forward
and backward searches simultaneously. This is known as bi-directional search
[138]. In terms of the number of nodes visited, the potential gains from this
method are enormous. If the number of nodes visited increases exponentially
with search depth (as is often the case), and the two searches meet at a ideal
distance close to halfway between their origins, the search requires that only
O(b%?) nodes be visited instead of the O(b?) that would be required of a single
uni-directional search. Naturally, such a control strategy relies on knowledge
of the initial and goal states and that the problem is to find a path between
these. Neither of these is typically true of the problems that are addressed by

evolutionary algorithms.

Other Graph Searching Control Strategies. There are many other control
strategies that are in wide use. One of the best known is the A* algorithm [139].
These algorithms are generally designed explicitly to search graphs. In many
cases they interpret the value found at a vertex as an estimate of the distance
to some goal vertex. Pearl provides extensive coverage of many such control

strategies [31].
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5.4. Differences Between Evolutionary
Algorithms and State Space Search

The previous section emphasized many commonalities between heuristic state space
search and evolutionary algorithms. The main difference between the two was that
some of the control strategies were not applicable to evolutionary algorithms as the
latter typically have no sense of start or goal nodes. Even if they encounter a sat-
isfactory vertex, the problem statement may not provide enough information that
this can be recognized. There are a number of other differences between these search
algorithms.

Search algorithms in Al and OR are often not concerned with locating individu-
als. In fact, the optimal individual’s identity and location are sometimes part of the
problem statement (consider Rubik’s Cube); the problem is to find a path through a
graph that connects the current vertex to a goal vertex. Often, the problem contains
some predefined connectivity. Also common is the search for a tree, perhaps a decision
tree that represents a strategy for solving a problem. Most of the problems addressed
by Al seem to fall into one of a few categories: search for an individual, search for a
path and search for a tree. Pearl [31, page 26] calls these three constraint-satisfaction
problems, path-finding problems and strategy-finding problems, and argues that a
state space representation (an OR-graph) is generally a better representation of the
first two and that a problem-reduction representation (AND/OR-graph) is generally
better for the latter.

AT and OR search algorithms do not restrict themselves to trafficking exclusively
in whole individuals, whereas evolutionary algorithms typically do. In many cases,
partial individuals are created, compared and extended by these algorithms. As men-
tioned above, a partial solution can also be regarded as a set of solutions that all
include the partial solution. This difference in viewpoint is historical; Al regards
partial solutions as being generated and enhanced to form whole solutions, while OR
regards them as representing sets of possible solutions to be split and pruned [31].
Branch-and-bound and dynamic programming algorithms manipulate these partial
solutions explicitly, using comparisons based on lower bounds and dominance rela-
tions. A general treatment of search algorithms that operate on partial objects (there
called conjuncts) can be found in [140], which uses TSP and the matrix chain asso-
ciation problem as detailed examples.

Compared to the similarities between heuristic state space search and evolution-
ary algorithms, these differences are rather minor. The commonalities are so strong

that differences provide an indication of a possible area of fruitful interaction between
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the fields rather than an indication that the correspondence is weak. For example,
AT and OR algorithms commonly operate on partial individuals but this is not the
case in evolutionary algorithms. Rather than challenging the correspondence between
the fields, one may be tempted to devise evolutionary algorithms that explicitly ma-
nipulate partial individuals. As another example, the values attached to vertices by
an heuristic function in Al are often interpreted as a distance to a goal, but this is
never done in evolutionary algorithms. The result of viewing the fitness function of
an evolutionary algorithm as an heuristic (distance providing) function is the subject

of the following sections.

5.5. Fitness and Heuristic Functions Revisited

We now return to the correspondence between fitness functions and heuristic func-
tions. These functions are used to label the vertices in a graph. If we ask how this
could be done to make search as simple as possible, one answer is the following. Sup-
pose the set of vertices in the graph that represent an object that would satisfy the
purposes of the search is S. Then label each vertex in the graph with its distance
from the nearest element of S. This produces a landscape on which we would like to
find vertices with low “fitness.” Negating each fitness value converts the problem into
one of maximization. Such a landscape is simple to search because from every vertex
there is a path of increasing fitness that leads to an element of S. Actually, every up-
hill direction leads to an element of S. It is not hard to see that if we could find such a
fitness function in polynomial time that we could solve the well-known NP-complete
SATISFIABILITY problem in polynomial time [141]. If each of n binary variables is
represented by a bit in a bit string of length n, then steepest ascent hillclimbing will
examine n different assignments to the variables on each step of its search, and the
search will take no more than n such steps, giving a worst-case of O(n?) different
variable settings that need testing before a satisfying solution is found.

It is clearly unreasonable to hope that we might find a fitness function such as
this in polynomial time (unless P=NP). However, it might be reasonable to expect
that the more a fitness function resembles this ideal, the simpler the landscape will
be to search. If this is true, we should be seeking fitness functions that do a good
job of providing an estimate of the distance to a solution. A fitness function of this
nature is not really a fitness function if we consider a fitness function to be something
that provides a measure of the worth of an individual without reference to other
individuals. The ideal fitness function just described does not provide this kind of

information. Instead, it provides a measure of how far away a good individual is.
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Such a fitness function is exactly what is sought in an heuristic function for many
AT search algorithms. In these algorithms, the value attached to a vertex by the
evaluation function is often interpreted as a distance. For example, in A* [139],
search from a state n proceeds according to a function f(n) = g(n) + h(n) where
g(n) is a function estimating the minimum distance from the starting state to state
n and h(n) is an heuristic function estimating the minimum distance from n to the
goal state. There are many results that show that the better an estimate h(n) is to
the function h*(n), which gives the exact distance to the goal, the better an heuristic
search algorithm will perform. AT is typically concerned with admissible heuristic
functions, in which Vn, h(n) < h*(n). However, the original descriptions of searching
labeled graphs suggested only that h(n) be correlated with h*(n) [142].

The type of fitness function we would most like in evolutionary algorithms is
exactly what is desirable as an heuristic function in Al search algorithms. If we as-
sume that the closer our fitness functions approximate the Al ideal the easier search
will be, and can quantify how well they do this, we have a measure of search diffi-
culty. The usefulness of the measure will provide an indication of how realistic the
original assumption was. The remainder of this chapter introduces a measure of this

correlation and investigates its usefulness as a predictor of GA performance.

5.6. GA Difficulty

The search for factors affecting the ability of the GA to solve optimization problems
has been a major focus within the theoretical GA community. Horn and Goldberg
[143] recently stated “If we are ever to understand how hard a problem GAs can
solve, how quickly, and with what reliability, we must get our hands around what
‘hard’ is.” The most visible attempt at pinning down what it is that makes search
more or less difficult for GAs is work on the theory of deceptive functions, which
has been developed by Goldberg [104] and others, based upon early work by Bethke
[144]. However, researchers seem quite divided over the relevance of deception, and
we have seen reactions ranging from proposals that “the only challenging problems
are deceptive” [145, 146] to informal claims that deception is irrelevant to real-world
problems, and Grefenstette’s demonstration that the presence of deception is not
necessary or sufficient to ensure that a problem is difficult for a GA [147]. In addition,
the approach has not been generalized to GAs that do not operate on binary strings;
it requires complete knowledge of the fitness function; quantifying deception can be
difficult computationally; the theory is rooted in the schema theorem, which has also

been the subject of much recent debate; and finally, non-deceptive factors such as
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spurious correlations (or hitch-hiking) [96, 148] have been shown to adversely affect
the GA. Kargupta and Goldberg have recently considered how signal and noise
combine to affect search [149, 150]. They focus on how the dynamics of schema
processing during the run of a GA alters measures of signal and noise. This method
is promising, and provides plausible explanations for GA performance on a number
of problems, some of which are considered here.

Another attempt to capture what it is that makes for GA difficulty is centered
around the notion of “rugged fitness landscapes.” At an informal level, it is commonly
held that the more rugged a fitness landscape is, the more difficult it is to search.
While this vague statement undoubtedly carries some truth, “ruggedness” is not
easily quantified, even when one has defined what a landscape is. Unfortunately, the
informal claim also breaks down. For example, Ackley [26] and Horn and Goldberg
[143] have constructed landscapes with a provably maximal number of local optima,
but the problems are readily solved by a GA. At the other extreme, a relatively
smooth landscape may be maximally difficult to search, as in “needle in a haystack”
problems. Thus, even before we can define what ruggedness might mean, it is clear
that our intuitive notion of ruggedness will not always be reliable as an indicator of
difficulty and we can expect that it will be extremely difficult to determine when the
measure is reliable.

The most successful measure of ruggedness developed to date has been the cal-
culation of “correlation length” by Weinberger [65] which was the basis for the work
of Manderick et al. [60]. Correlation length is based on the rate of decrease in correla-
tion between parent and offspring fitness, and clearly suffers from the above problem
with relatively flat landscapes—correlation length is large (indicating an easy search
problem) but the problem may be very difficult. Additionally, parent/offspring fitness
correlation can be very good even when the gradient of the landscape is leading away
from the global maximum, as in deceptive problems. Associated with ruggedness is
the notion of “epistatic interactions,” which were the basis of a proposed viewpoint
on GA difficulty proposed by Davidor [151]. Although it is clear that some highly
epistatic landscapes are difficult to search [117, 118], it is not clear how much epis-
tasis is needed to make a problem difficult and Davidor’s measure is not normalized,
making comparisons between problems difficult. Also, the method does not provide
confidence measures; is computationally “not economical,” and will have the same
problems on landscapes with little or no epistasis (because they are relatively flat) as
described above.

As final testimony to the claim that we have not yet developed a reliable indica-

tor of GA hardness, there have been several surprises when problems did not prove
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as easy for a GA as had been expected. Tanese [152] constructed a class of Walsh
polynomials of fixed order and found that a GA encountered difficulty even on the-
oretically easy low-order polynomials. In an attempt to study GA performance in a
simple environment, Mitchell et al. constructed the “royal road” functions [36]. They
compared the GA’s performance on two royal road functions, one of which contained
intermediate-size building blocks that were designed to lead the GA by the hand to
the global optimum. Surprisingly, the GA performed better on the simpler function
in which these intermediate building blocks did not exist.

All these notions of what makes a problem hard for a GA all have something to
recommend them, but all seem to be only a piece of the whole story. It is clear that
we are still some way from a good intuition about what will make a problem hard
for a GA. T propose that it is the relationship between fitness and distance to the
goal that is important for GA search. This relationship is apparent in scatter plots
of fitness versus distance and is often well summarized by computing the correlation

coeflicient between fitness and distance.

5.7. Fitness Distance Correlation

The easiest way to measure the extent to which the fitness function values are corre-
lated with distance to a global optimum is to examine a problem with known optima,
take a sample of individuals and compute the correlation coefficient, r, given the
set of (fitness, distance) pairs. As we are maximizing, we should hope that fitness
increases as distance to a global maxima decreases. With an ideal fitness function,
r will therefore be —1. When minimizing, the ideal fitness function will have r = 1.
Given a set F' = {fi, fo, -, fu} of n individual fitnesses and a corresponding set
D ={dy,dy,--.,d,} of the n distances to the nearest global maximum, we compute

the correlation coefficient r, in the usual way, as

C%D

OF0D

where |
Cro =+ (= T)di @)
=1
is the covariance of F and D, and o, op, f and d are the standard deviations and
means of ' and D. This fitness distance correlation will be abbreviated FDC.
In the results that follow, Hamming distances are always used and the distance

associated with an individual is the distance from it to the closest point which satisfies
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the object of the search (usually a global maxima). It is likely that a better statistic
would be obtained if distances were computed using the operator that defined the
edges of the landscape graph, though these will be more difficult to compute. Ham-
ming distance is a simple first approximation to distance under the actual operators
of a GA. That Hamming distance works well as a predictor of GA performance is
perhaps a result of its close relationship to distance under mutation. These issues are
discussed in §5.7.2(158).

[ will use r (FDC) as a measure of problem difficulty. Correlation works best as
a summary statistic of the relationship between two random variables if the variables
follow a bivariate normal distribution. There is no guarantee that this will be the case
if we have a random sample of fitnesses, and there are therefore situations in which r
will be a poor summary statistic of the relationship between fitness and distance. I am
not claiming that correlation is necessarily a good way to summarize the relationship
between fitness and distance. I do claim that this relationship is what is important.
In practice, examining the scatter plot of fitness versus distance is very informative
in the cases where there is a structure in this relationship that cannot be detected
by correlation. It is important to realize that correlation is only one of the possible
ways that the relationship between fitness and distance can be examined. It appears
quite useful, although we will see examples of problems for which it is too simplistic.
In all of these cases, the scatter plots are useful for revealing the shortcomings of

correlation.

5.7.1. Summary of Results

The reliability of the FDC measure is explored by first confirming existing knowledge
about a wide range of problems. The results obtained have been uniformly encour-
aging. I chose to test FDC in three ways: (1) to confirm existing knowledge about
the behavior of a GA on a number of reasonably well-studied problems, (2) to test
whether FDC would have predicted results that at one time seemed surprising, and
(3) to investigate whether FDC could detect differences in coding and representation.
These are discussed in three subsections below. In the results that follow, FDC is
computed via examining all points in the space when it contains 2! or fewer points,
and via a sample of 4,000 randomly chosen points otherwise. Given a binary string
x, the number of ones in = will be denoted by u(x).

Figure 53 shows r values for some instances of all the problems studied. The ver-
tical axis corresponds to the value of r obtained. Problems that are treated together

are grouped together on the horizontal axis. An explanation of the abbreviations used
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Figure 53. Summary of results. Horizontal position is merely for grouping, vertical
position indicates the value of r. Abbreviation explanations and problem sources are

given in Table 32.
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in this figure, together with a short description of the problems and their sources can
be found in Table 32. Figures 54 and 104 show examples of scatter plots of fitness and
distance from which r is computed. The plots represent all the points in the space
unless a number of samples is mentioned. In these scatter plots, a small amount of
noise has been added to distances (and in some cases fitnesses) so that identical fit-
ness/distance pairs can be easily identified. This was suggested by Lane [153] and in
many cases makes it far easier to see the relationship between fitness and distances.

This noise was not used in the calculation of r, it is for display purposes only.

5.7.1.1. Confirmation of Known Results

This section investigates the predictions made by FDC on a number of problems that
have been relatively well-studied. These include various deceptive problems, and
other simply defined problems.

Easy Problems
Ackley’s “one max” problem [26] was described in §3.8.1(58). According to the FDC

measure, this problem is as simple as a problem could be. It exhibits perfect negative
correlation (r = —1), as is shown in Figure 54. The one max fitness function is
essentially the ideal fitness function described above. The distance to the single
global optimum is perfectly correlated with fitness. Ackley’s “two max” problem is
also correctly classified as easy by FDC (r = —0-41). This function has two peaks,
both with large basins. For binary strings of length n, the function is defined as

f(z) = |18u(x) — 8n].

For K < 3, the NK landscape problems (described in §4.7.1(97)) produce high
negative correlation (—0-83, —0-55 and —0-35), though r moves rapidly towards zero
as K increases, which qualitatively matches the increases in search difficulty found
by Kauffman [117, 118] and others. As NK landscapes are constructed from a table
of N25+! random numbers, the r value for each K value is the mean of ten different
landscapes. Figures 56 and 58 show three NK landscapes for N = 12 and K =1, 3
and 11. When K = 11 the landscape is completely random, and this is reflected by
an r value that is very close to zero.

One, two and three instances of Deb and Goldberg’s [105] 6-bit fully easy problem
(described in §3.8.2(59)) are shown in Figures 59 and 61. Interestingly, each of these
problems has r = —0-2325, which is an indication that in some sense the problem

difficulty is not affected by changing the number of copies of the same subfunction.
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Table 32. The problems of Figure 53. Where a problem has two sources, the first
denotes the original statement of the problem and the second contains the description

that was implemented.

Abbreviation Problem Description Source
BBE& Busy Beaver problem with k states. [106, 110]
Deb & Goldberg 6-bit fully deceptive and easy functions. [105]
Fk(7) De Jong’s function k& with j bits. (30, 5]
GFE(j) As above, though Gray coded. (30, 5]
Goldberg, Korb & Deb | 3-bit fully deceptive. [154, 145]
Grefenstette easy The deceptive but easy function. [147]
Grefenstette hard The non-deceptive but hard function. [147]
Holland royal road Holland’s 240-bit royal road function. [112, 155]
Horn, Goldberg & Deb | The long path problem with 40 bits. [36]

Horn & Goldberg A 33-bit maximally rugged function. [143]
Liepins & Vose (k) Deceptive problem with & bits. [47, 156]
Mix(n) Ackley’s mix function on n bits. [26]
NIAH Needle in a haystack. p. 148
NK(n, k) Kauffman’s NK landscape. N =n, K = k. | [117]
One Max Ackley’s single 3-peaked function. [26]
Plateau(n) Ackley’s plateau function on n bits. [26]
Porcupine(n) Ackley’s porcupine function on n bits. [26]
R(n,b) Mitchell et al. n-bit royal road, b-bit blocks. | [36, 96]
Tanese ({,n,0) [-bit Tanese function of n terms, order o. [152, 157]
Trap(n) Ackley’s trap function on n bits. [26]

Two Max(n) Ackley’s two 3-peaked function on n bits. [26]
Whitley Fk 4-bit fully deceptive function k. [145]
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Figure 54. Ackley’s one max problem on 8 Figure 55. Ackley’s two max problem on 9
bits (r = —1). Ackley’s fitnesses were actually bits (r = —0-41).
ten times the number of ones, which has no
affect on r.

Although an algorithm may require more resources to solve a problem with more
subfunctions, the problem difficulty, in the eyes of FDC, does not increase. This is
intuitively appealing. It is very hard to dissociate problem difficulty from algorithm
resources, yet the FDC measure can be interpreted as “recognizing” that solving the
same problem twice (perhaps simultaneously) is no harder than solving it once. Of
course it will require more resources, but it can be argued that it is not more difficult.
It is possible to prove that FDC remains the same when any number of copies of a
function are concatenated in this manner. For this reason, we will see this behavior
in all the problems below that involve multiple identical subproblems. The proof of
this invariance is given in Appendix D.

Figure 62 shows Grefenstette’s deceptive but easy problem [147] (r = —0-33). In
this problem, two variables x; and z, are encoded using 10 bits each. The problem

is to maximize

:1;% + 10:1;% if zo < 0-995.
f(xlv 1}2) =
2(1 —xy)* + 1023 if 29 > 0-995.

While this problem is highly deceptive (at least under some definitions of deception),
it is simple for a GA to optimize. FDC correctly classifies the problem as simple.

Ackley’s maximally rugged “porcupine” function is shown in Figure 64. In this
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Figure 59. Deb & Goldberg’s Figure 60. Two copies of Deb Figure 61. Three of Deb &

fully easy 6-bit problem (r = & Goldberg’s fully easy 6-bit Goldberg’s fully easy 6-bit prob-

—0-23). problem (r = —0-23). lems (r = —0-23, 4000 sampled
points).

function, every binary string with even parity is a (-local-maximum. For a binary

string of even length n, the function is defined as

10u(z) — 15 if u(z) is odd.
oy | 1o (@

10u(x) otherwise.

Despite the ruggedness, the function is not difficult to optimize (unless your algorithm
never goes downhill and only employs an operator that changes a single bit at a time).
FDC is very strongly negative (r = —0-88).

Horn and Goldberg’s maximally rugged function, shown in Figure 65 is very

similar and also exhibits strong negative correlation (r = —0-83). Given a binary
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Figure 62. Grefenstette’s deceptive but easy Figure 63. Grefenstette’s non-deceptive but
20-bit problem (r = —0-32, 4000 sampled hard 10-bit problem. The single point with
points). fitness 2048 is omitted from the plot. When

included, r = —0-09, when excluded, » = 0-53).

string, z, of odd length, the function is defined to be
flz) =u(x)+ 2 x parity(x)

where parity(x) is one if u(x) is odd and zero otherwise. It is easy to see that in this
function, every binary string with odd parity is a (-local-optimum. The string with
all ones is the global optimum. This function is known to be easily optimized by a
GA [143].

These two maximally rugged functions provide examples in which the idea that
a lot of ruggedness will make search difficult is incorrect. On both of them, FDC
reports correctly that the problems should not be difficult.

Finally, Ackley’s “mix” function, a combination of five functions studied in [26]
(all of which are considered here) is also classified as easy by FDC. This is not
surprising as four of his five functions receive strong negative r values. The function

M wW

is a combination of “one max,” “two max,” “trap,” “porcupine,” and “plateaus.”

The trap and plateaus functions are introduced below. Figure 66 shows the scatter

plot from a sample of points on the 20-bit mix function.
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Figure 64. Ackley’s porcupine problem on 8 Figure 65. Horn & Goldberg’s maximum
bits (r = —0-88). modality problem on 9 bits (r = —0-83).

Deceptive Problems

An early fully deceptive problem is that given by Goldberg, Korb and Deb [154]. It

is defined over three bits as follows:

£(000) =28  f(100) = 14
£(001) =26 f(101) =0
£(010) =22 f(110) =0
f011) =0 f(111) =30

Figures 67 and 69 show two to four concatenated copies of this function for which
r = 0-32. Deb and Goldberg’s 6-bit fully deceptive problem [105] (described in
§3.8.3(60)) has r = 0-30. Figures 70 and 72 show one to three copies of this function.
As with the fully easy subproblems described above, the concatenation of several

deceptive subproblems does not affect r.
Ackley’s “trap” function is defined on binary strings of length n as follows

(8n/z)(z —u(x)) if u(z) < z.

flz) =
(10n/(n — 2))(u(x) — z) otherwise.
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Figure 66. Ackley’s mix problem on 20 bits (r = —0-44, 4000 sampled points).

where z = [3n/4]|. This function has two (-peaks the higher of which has a small
basin of attraction. Deb and Goldberg showed that the function is not fully deceptive
for n < 8 [158]. However, the problem becomes increasingly difficult (from the point of
view of 3) as n increases, as the basin of attraction (under 3) of the global maximum
(the string with n ones) only includes those points with u(x) > z, a vanishingly small
fraction of the entire space [41, page 22]. FDC becomes increasingly strongly negative
as n is increased. For n =9, 10, 12 and 20, the r values obtained are 0-56, 0-71, 0-88
and 0-98 respectively. The last of these is from a sample of 4,000 points and the
scatter plot is shown in Figure 73.

In [145], Whitley discusses three fully deceptive functions. The first of these is
the 3-bit problem due to Goldberg, Korb and Deb [154] just discussed. The second
and third functions (which will be referred to as Whitley’s F2 and F3) both had four
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Figure 72. Three copies of Deb
& Goldberg’s fully deceptive 6-
bit problem (» = 0-30, 4000
sampled points). Notice the ad-
ditive effect.

bits. The function values for the 16 four bit strings for F2 are as follows:

£(0000) = 28
£(0001) = 26
£(0010) = 24
£(0011) = 18

£(0100) =22 f(1000) = 20
£(0101) =16 f(1001) =1
f(0110) =14 f(1010) = 1
FO111) =0 f(1011) =2

F(1100) =8
f(1101) = 4
f(1110) = 6
f(1111) = 30

For one, two and three copies of Whitley’s F2, » = 0-51. Scatter plots of these are
shown in Figures 74 and 76.
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Figure 73. Ackley’s trap function on 20 bits (r = 0-98, 4000 sampled points).

The function values for Whitley’s F3 are:

£(0000) =10 f(0100) =27 f(1000) =28 f(1100) =5
£(0001) =25 f(0101) =5  f(1001) =5 f(1101) =0
£(0010) =26 f(0110) =5  f(1010) =5  f(1110) =0
F0011) =5 f(0111) =0 f(1011) =0 f(1111) =30

for which r = 0-36. Figures 77 and 79 show scatter plots of these functions.
Grefenstette’s difficult but non-deceptive problem [147] gave r = 0-38 and is

shown in Figure 63. In this problem, a bit string of length L is used to encode the

interval [0..1]. Then, given x (the real value obtained by decoding a binary string of
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Whitley’s F3 (r = 0-37).

length L), The function is defined as:

2L+ if ¢ = 0.
flz) =

x? otherwise.

FDC correctly classifies this problem as difficult.

Holland’s royal road [112] (described in §3.8.6(62)) gives r = 0-26 with parameter
settings similar to Holland’s defaults. Two members of Holland’s class of functions

are shown in Figures 80 and 81.
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Figure 81. Holland’s royal road on 128 bits
(b =8 k=4and g = 0), (r = 0-27, 4000
sampled points).

Long Path Problems

Horn, Goldberg and Deb’s long path problem [86] has r = —0-90. This problem is
difficult for the hillclimber it was constructed to be difficult for, but GAs apparently
have little trouble with it. The idea of the function is to construct a path through the
space of bit strings of a length n. The Hamming distance between successive points on
the path is &£ and no point on the path is less than & bits away from any other point on
the path. The path’s length is exponential in n and the fitnesses assigned to points on
the path are strictly increasing. The highest point on the path is the global optimum
of the entire space. All points not on the path are placed on a slope that leads to some
point on the path. As a result, a randomly started hillclimb that considers neighbors
at distances not greater than k will at some point encounter the path and begin to
follow it upwards. On average, the climb will have to traverse half the path and will
thus involve an exponential number of steps. Thus, although the space has a single
global optimum and no local optima, such a hillclimber has exponential average case
performance. This runs counter to the intuition that a unimodal space is necessarily
simple to search. This problem may be easy to an algorithm that uses an operator
that modifies more than &k bits in an individual. When &£ = 1, the GA does not have
any great difficulty in finding the global optimum.

The r value above was obtained through sampling. When r is calculated for the

entire space, its value falls considerably (towards 0). If we calculate r just for the
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Figure 82. Horn, Goldberg & Deb’s long path problem with 11 bits (r = —0-12).
Notice the path.

points on the path, it is strongly negative, as it is for the points not on the path (e.g.,
for strings with 12 bits, we get r = —0-39 and r = —0-67) but combining the samples
gives a much lower correlation (r = —0-19 for 12 bits). This is a first illustration
of how correlation may sometimes prove too simplistic a summary statistic of the
relationship between fitness and distance. Fortunately, the striking structure of the

problem is immediately apparent from the scatter plot, as can be seen in Figure 82.

Zero Correlation

The needle in a haystack (NIAH) problem is defined on binary strings of length n as
follows:
1 if u(x) = n.
fz) =
0 otherwise.
The function is everywhere zero except for a single point. When we compute FDC
exhaustively (or in a sample which includes the needle), r is very close to zero. This

illustrates how FDC produces the correct indication when a function is very flat.
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In such cases, measures such as correlation length will indicate that the problem is
simple whereas it is actually maximally hard. If the sample used to compute FDC
does not include the needle, the correlation is undefined as there is no variance in
fitness. In this case it can be concluded that the problem is difficult (i.e., similar to
r = 0) or some amount of noise can be added to fitness values, which will also result

in r &~ 0. A similar NTAH problem is the following,

100 ifu(z) =n.
f(z) = )

uniform[0..1] otherwise.

where uniform[0..1] is a function that returns a real value chosen uniformly at random
from the interval [0..1]. For the NIAH problem, r will be approximately zero whether
the needle is sampled or not.

The 2-, 3-, and 4-state busy beaver problems (described in §3.8.5(60)) (Figures 83
and 85) and the NK(12,11) landscape (Figure 58 on page 140), all known to be difficult
problems, also had r approximately 0.
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Figure 83. 2-state busy beaver Figure 84. 3-state busy beaver Figure 85. 4-state busy beaver
problem (r = —0-06, 4000 sam- problem (r = —0-08, 4000 sam- problem (r = —0-11, 4000 sam-
pled points). pled points). pled points).

Some of De Jong’s functions have very low r values. For example, F1(15) (Fig-
ure 86) has r = —0-01. Though the correlation measures correctly predict that F1(15)
will be harder for the GA than GF1(15), the low correlation for F1(15) is misleading.
Looking at the scatter plot in Figure 86 it is clear that the function contains many
highly fit points at all distances from the global optimum. From this, it is reasonable
to expect that a GA will have no trouble locating a very high fitness point.
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Figure 86. De Jong’s F1 binary coded with Figure 87. De Jong’s F1 Gray coded with 15
15 bits converted to a maximization problem bits (r = —0-30, 4000 sampled points).

(r = —0-01, 4000 sampled points).

5.7.1.2. Confirmation of Unexpected Results

Here we examine the predictions of FDC on two problems sets whose results were
surprising to GA researchers at the time they were obtained. These are the Tanese
functions and the royal road functions. In both cases, FDC’s predictions match the

behavior of the GA.

Tanese Functions

Tanese found that on Walsh polynomials on 32 bits with 32 terms each of order 8
(which we will denote via T(32,32,8)) a standard GA found it very difficult to locate
a global optimum [152]. FDC gives an r value very close to 0 for all the instances of
T(32,32,8) considered, as it does for T(16,16,4) functions. When the number of terms
is reduced, the problem becomes far easier, for instance, T(16,8,4) functions typically
have an r value of approximately —0-37. This contrast is illustrated by Figures 88
and 89. These results are consistent with the experiment of Forrest and Mitchell [157]
who found that increasing string length made the problem far simpler in T(128,32,8)
functions. It is not practical to use FDC on a T(128,32,8) function since it is possible
to show that they have at least 2% global optima and the FDC algorithm requires

computing the distance to the nearest optimum.
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Figure 88. Tanese function on 16 bits with Figure 89. Tanese function on 32 bits with
8 terms of order 4 (r = —0-37, 4000 sampled 32 terms of order 8 (r = 0-03, 4000 sampled
points). points).

Royal Road Functions

Mitchell, Forrest and Holland examined the performance of a GA on two “royal road”
problems, R1 and R2 [36]. Under R1 a 64-bit string was rewarded if it was an instance
of 8 non-overlapping order 8, defining length 8, schema. R2 gives additional reward for
instances of 4 order 16 and 2 order 32 schema that will ideally be discovered through
recombination of lower order schema. It was thought that the additional building
blocks of R2 would make the problem simpler for a GA. The opposite proved true.
The GA performed slightly better on R1. FDC could have been used to predict this,
or at least predict that R2 would not be simpler than R1. On a range on royal road
functions, including the originals, R1 has had a slightly smaller r value than R2.
Perhaps due to insufficient sampling, the difference does not appear significant on the
original (64,8) problem. However it clearly is (at the 0-0001 confidence level with a
Wilcoxon rank-sum test) on (32,4), (24,3) and (16,2) problems. Figures 90 and 91
illustrate this slight difference, showing R1(32,4) and R2(32,4).

It is interesting to compare the scatter plots from the royal road functions with
those for Ackley’s “plateaus” function shown in Figure 92. The plateau function
divides a string into four equal sections and these are each rewarded only if they

consist entirely of one bits. This is very similar to the R1 function described above.
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Figure 90. Royal road function R1 with 8 Figure 91. Royal road function R2 with 8
blocks of length 4 (r = —0-52, 4000 sampled blocks of length 4 (r = —0-50, 4000 sampled
points). points).

5.7.1.3. Confirmation of Knowledge Regarding Coding

This section examines the effects of another choice that affects landscape structure
that can also be detected by FDC, the influence of changes in I', the mapping from
objects to representation. FDC’s predictions regarding Gray versus binary coding
(which is a change in I') lead to the discovery that the superiority of one code over

another depends on the number of bits used to encode the numeric values.

Gray Versus Binary Coding

Although it is common knowledge that Gray coding is often useful to a GA in function
optimization, there has never been any method of deciding whether one coding will
perform better than another, other than simply trying the two. Experiments along
this line have been performed by Caruana and Schaffer [159]. They studied De Jong’s
functions [30] (and one other) and found that Gray coding was significantly better
than binary coding, when considering online performance, on 4 of the 5 functions.
When they looked at the best solutions found under either coding, Gray was signif-
icantly better on one of the five. In no case did binary coding perform significantly
better than Gray.

Using FDC, it is possible to examine different encodings and make predictions
about which ones will be better. Surprisingly, FDC’s predictions about the relative
worth of binary and Gray codes depended on the number of bits in the encoding.
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Figure 92. Ackley’s plateau function on 12 bits (r = —0-65).

Experiments with a GA have indicated that these predictions are accurate. For
example, consider the positions in Figure 53 of F2(n) and GF2(n). F2 is a problem
on two real variables, so F2(n) indicates that n/2 bits were used to code for each
variable. When n = 8, we calculated r(F2(8)) = —0-24 whereas r(GF2(8)) = —0-06,
indicating that with 8 bits, binary coding is likely to make search easier than Gray
coding.! Figures 93 and 94 show a clear difference in the encoding on 8 bits. But now
consider r(F2(12)) = —0-10 versus r(GF2(12)) = —0-41. With 12 bits, Gray coding
should be better than binary. The scatter plots for F2(12) and GF2(12) are shown in
Figures 95 and 96. When we move to 16 bits, we get r(F'2(16)) = r(GF2(16)) = —0-19
(Figures 97 and 98). Finally, with 24 bits (the number used by Caruana and Schaffer),
we have r(F2(24)) = —0-09 and r(GF2(24)) = —0-26 (Figures 99 and 100). Once
again, Gray coding should be better (as was found by Caruana and Schaffer when

considering online performance).

1As the De Jong functions are minimization problems, positive r values are ideal. We have
inverted the sign of r for these functions, to be consistent with the rest of the dissertation. It is
straightforward to prove that this is the correlation that will obtain if we convert the problem to a
maximization problem via subtracting all original fitnesses from a constant.
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Figure 95. De Jong’s F2 binary coded with
12 bits converted to a maximization problem
(r = —0-10). The unusual appearance is due
to the presence of many highly fit points and
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Figure 96. De Jong’s F2 Gray coded with 12
bits converted to a maximization problem (r =

—0-41).
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Are the reversals in FDC reliable indicators of GA performance? Preliminary
results indicate that the answer is yes. For example, in 10,000 runs of a fairly stan-
dard GA (population 50, 25 generations, tournament selection, mutation probability
0-001, two-point crossover probability 0-7), binary coding on 8 bits finds the optimum
approximately 4% more often than Gray coding does. On 12 bits, the GA with Gray
coding finds the optimum approximately 4% more often than it does with binary
coding. On 16 bits, the difference between the two falls to approximately 0-5%. This
reversal from 8 to 12 bits and then equality at 16 bits are exactly what FDC predicts.

It is difficult to predict the results of Caruana and Schaffer for a number of
reasons. One difficulty is that FDC is telling us something about how difficult it is to
locate global maxima, whereas Caruana and Schaffer examined online performance
and best fitness. While these are obviously related to the FDC measure, it is not
clear to what extent FDC should be a reliable predictor of these performance criteria.
As another example of this difficulty, FDC indicates that Gray coding will perform
worse than binary coding on F3 when 15, 30 and 50 bits are used, yet Caruana and
Schaffer found no significant difference between binary and Gray on this function for
either of their performance measures. Does this mean that FDC has erred? Not
necessarily. The situation is resolved when one notices that the resources given to the
GA by Caruana and Schaffer were enough to allow their GA to solve the problem on
every run under both encodings. There does appear to be a difference for a GA on
this problem, but it can only be illustrated when the GA is given limited resources.
For instance, on 15 bits, with a population of size 50 and 25 generations mutation
probability 0-001 and two-point crossover probability 0-7, a standard GA found the
optimum 1050 times out of 2000, compared to only 673 out of 2000 using Gray coding.
With 30 bits, a population of 100 and 50 generations, binary coding succeeded 100
out of 500 runs, while Gray coding succeeded only 34 out of 500. Figures 101 and 102
show sampled scatter plots for 15 bits.

Problems such as these make it difficult to compare FDC with the results of
Caruana and Schaffer. A comparison with the binary coding results of Davis [160] is
even more difficult since we do not know how many bits were used to encode variables,
which, as we have seen may alter performance considerably, and the evaluation metric
used by Davis was unusual. At this stage we have found nothing to indicate that FDC
is misleading in its predictions regarding Gray and binary coding. Our preliminary
experiments with a GA, using the number of times the global optimum is encountered

as a performance measure, have all matched FDC’s predictions.



3000 —
§ 2000 —
2
1000
0- -
T T T T T
2 4 6 8 10
Distance

Figure 97. De Jong’s F2 binary coded with
16 bits converted to a maximization problem
(r = —0-18). encoding.

Fitness

T T T T
6 9 12 15 18 21

Distance
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Figure 101. De Jong’s F3 binary coded with Figure 102. De Jong’s F3 Gray coded with 15
15 bits converted to a maximization problem bits (r = —0-57, 4000 sampled points).

(r = —0-86, 4000 sampled points).

Liepins and Vose’s Transform

The deceptive problem of Liepins and Vose [47] exhibits almost perfect correlation
(r = 0-99), as can be seen in Figure 105. The transformation they give alters what
they term the “embedding” of the problem, which is denoted by I' in the model of
this dissertation. This transformation is simply another way to interpret bit strings
in the algorithm as corresponding to objects that are potential solutions to the search
problem. Binary coding and Gray coding are also mappings of this kind. The trans-
formed problem is interesting because it is described as “fully easy” yet it has almost
zero correlation. Examining scatter plots of fitness and distance gives the explana-
tion; the plots resemble an X, as shown in the example on ten bits in Figure 106.
Approximately one half of the space has a very good FDC (r &~ —1) and the other
half has a poor FDC (r &~ 1). The overall result is an r value close to zero. This is
the second example of a way in which correlation can prove a poor summary statistic.
Once again, the structure in the problem is quickly revealed when the scatter dia-
gram is plotted, reinforcing our claim that it is the relationship between fitness and
distance which is important and that important aspects of this may be missed if one
relies solely on correlation. It is reasonable to expect that the portion of the space
with FDC approximately —1 should allow the global solution to be found without
undue trouble. A standard GA (population 100, 50 generations, mutation probability
0-001, two-point crossover probability 0-7 and binary tournament selection) found the
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Figure 103. De Jong’s F5 binary coded with Figure 104. De Jong’s F5 Gray coded with 12
12 bits converted to a maximization problem bits (r = —0-57).
(r = —0-86).

global optimum 59 times out of 500.

5.7.2. Discussion

There is an intuitively appealing informal argument that the correlation between
fitness and distance is what is important for success in search. Suppose you get out
of bed in the night, hoping to make your way through the dark house to the chocolate
in the fridge in the kitchen. The degree to which you will be successful will depend
on how accurately your idea of where you are corresponds to where you actually are.
If you believe you're in the hallway leading to the kitchen but are actually in the
bedroom closet, the search is unlikely to end happily. This scenario is also the basis
of an argument against the claim that good parent/offspring fitness correlation is
what is important for successful search. Determining whether the floor is more or
less flat will not help you find the kitchen. If r has a large magnitude, we conjecture
that parent/child fitness correlation will also be high. This is based on the simple
observation that if FDC is high, then good correlation of fitnesses between neighbors
should be a consequence. Thus good parent/child fitness correlation is seen as a
necessary but not sufficient condition for a landscape to be easily searchable. If this
conjecture is correct, such correlation is not sufficient as it will also exist when FDC
gives a value that is large and positive. This will likely be unimportant in real world

problems, if problems with large positive FDC are purely artificial constructions of
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Figure 105. Liepins and Vose’s fully deceptive Figure 106. The transform of Liepins and
problem on 10 bits (r = 0-98). Vose’s fully deceptive problem on 10 bits (r =
—0-02). Correlation cannot detect the X struc-
ture.

the GA community.

It is far from clear what it means for a problem to be difficult or easy. As a
result it is inherently difficult to test a measure of problem difficulty. A convincing
demonstration will need to account for variability in the resources that are used to
attack a problem, the size of the problem, variance in stochastic algorithms, and
other thorny issues. FDC will only give an indication of how hard it is to locate what
you tell it you are interested in locating. If you only tell it about global maxima,
it is unreasonable to expect information about whether a search algorithm will find
other points or regions. If all the global optima are not known and FDC is run on a
subset of them, its results may indicate that the correlation is zero. When the other
optima are added, the correlation may be far from zero. FDC is useful in saying
something about problems whose solutions are already known. It can be hoped that
information on small examples of problems will be applicable to larger instances,
but in general this will not be the case. FDC is intended to be a general indicator
of search difficulty, and is not specific to any search algorithm. In particular, FDC
knows nothing whatsoever about a GA. This is both encouraging and alarming. It
is encouraging that the measure works well on a large number of problems, but is
alarming since, if we are to use it as a serious measure of problem hardness for a
GA, it should know something about the GA. Probably the best interpretation of
FDC values is as an indication of approximately how difficult a problem should be.
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For example, if r = —0-5 for some problem, but a GA never solves it, there is an
indication that the particular GA is doing something wrong.

Hamming distance is not a distance metric that applies to any of a GA’s opera-
tors. Distance between strings s; and s, under normal GA mutation is more akin to
the reciprocal of the probability that s; will be converted to s, in a single application
of the mutation operator. Naturally, Hamming distance is strongly related to this
distance and this is presumably one reason why FDC’s indications correlate well with
GA performance. A more accurate measure might be developed that was based on
the distances between points according to the operator in use by the algorithm. That
Hamming distance works at all as an indicator of GA performance is a strong hint that
a simplistic (i.e., easily computed) distance metric on permutations (for example, the
minimum number of remove-and-reinsert operations between two permutations) may
also prove very useful as a metric in FDC when considering ordering problems, even
if the algorithms in question do not make use of that operator. A similar approach,
also successful, was been adopted by Boese, Kahng and Muddu [116] (see §6.4(169)
for some details).

Because the computation of FDC relies on prior knowledge of global optima,
the measure does not appear well-suited for prediction of problem difficulty. Ongoing
research is investigating an approach to prediction, based on the relationship between
fitness and distance. In this approach, an apparently high peak is located (via some
number of hillclimbs) and FDC is computed as though this peak were the global
optimum.? This gives an indication of how hard it is to find that peak. This process
is repeated several times to get an overall indication of the difficulty of searching
on the given landscape. It is expected that such a predictive measure could be
“fooled” in the same way that measures of correlation length can be fooled. That
is, 1t will classify a deceptive problem as easy because, if the single global optimum
is ignored, the problem is easy. In practice, it is probably more desirable that a
measure of problem difficulty reports that such problems are easy. Only a very strict
and theoretical orientation insists that these problems be considered difficult.

Discussion in this section has concentrated mainly on fitness and distance. It
should be noted that FDC is affected by not only fitness function, but by operator
(which gives distance), by representation and by I' (the mapping from objects in the
real world to the representation used by the search algorithm). Because these will all
affect FDC, it follows that FDC should be useful in comparing all of these choices.

2Tt is not even necessary for the vertex from which distance is computed to be a peak. A randomly
chosen vertex will still allow the calculation of FDC.
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5.7.3. Conclusion

This chapter presented a perspective from which evolutionary algorithms may be
regarded as heuristic state space search algorithms. Much of the change in perspective
can be accomplished by a simple change in language that sets aside the biological
metaphor usually employed when describing evolutionary algorithms. One aspect
of the correspondence between the fields was examined in detail, the relationship
between fitness and heuristic functions.

The relationship between fitness and distance to goal has a great influence on
search difficulty for a GA. One simple measure of this relationship is the correlation
coefficient between fitness and distance (FDC) which has proved a reliable, though
not infallible, indicator of GA performance on a wide range of problems. On occasion,
correlation is too simplistic a summary statistic, in which case a scatter plot of fitness
versus distance will often reveal the structure of the relationship between fitness and
distance. FDC can be used to compare different approaches to solving a problem.
For instance, FDC predicted that the relative superiority of binary and Gray coding
for a GA was dependent on the number of bits used to encode variables. Subsequent
empirical tests have supported this.

The development of FDC proceeded directly from thinking in terms of a model
of search which views the GA as navigating on a set of landscape graphs. Al has
long regarded search from a similar perspective, and a simple change in language
is sufficient to view (GAs as state-space search algorithms using heuristic evaluation
functions. In Al, the heuristic function is explicitly chosen to be as well correlated
with distance to the goal state as possible, and it is easy to argue that a similar
fitness function in a GA will make for easy search. Having done that, it is a small
step to consider to what extent our current GA landscapes match this ideal, and to
use that as an indicator of search difficulty. The fact that this proves successful is
likely to be unsurprising to those in the AT community who work on heuristic search
algorithms. I believe there is much that can be learned about GAs via considering

their relationship with heuristic state-space search.



CHAPTER 6

Related Work

6.1. Introduction

This chapter divides work related to this dissertation into three areas (1) work on
landscapes in other fields, (2) work on landscapes in computer science and evolu-
tionary computation, and (3) work related to the connection between landscapes and
heuristic search, especially to fitness distance correlation. Several pieces of research
discussed below could be placed in more than one of these categories. This is merely

one way of roughly grouping related work.

6.2. Related Work on Landscapes

The landscape metaphor originated with the work of Sewall Wright [16]. The idea
has received wide attention within biology, but has also been adopted by researchers
in other fields. This section provides an outline of the use of landscapes in biology,

chemistry, computer science and physics.

6.2.1. Landscapes in Biology

Provine [87] has done an excellent job of summarizing the uses (and abuses) of

7 This section merely touches on some of the

Wright’s “surfaces of selective value.
points that are so well made by Provine. Wright’s original diagrams were published
in 1932 [16] and were intended to make it simpler to understand his earlier and far
more mathematically sophisticated paper on population genetics [161]. The diagrams
used by Wright became a popular vehicle for explanations of various phenomena in
biology and have become known as “fitness landscapes.” Unfortunately, they were

widely used in at least three ways:
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o In Wright’s 1932 paper, each axis of his landscape corresponded to a gene
combination. An additional dimension was added for fitness. Thus a point
on a landscape corresponded to an individual gene combination and there was
one axis for every possible combination. Because each “axis” corresponds to
the genetic makeup of an individual, it is not clear how to interpret them as
axes. The axes have no units and no gradations. Here is Provine’s summary of

Wright’s original diagrams:

“Thus the famous diagrams of Wright’s 1932 paper, certainly the
most popular of all graphic representations of evolutionary biology in
the twentieth century, are meaningless in any precise sense.”

Provine [87, page 310].

In defense, Wright [37] acknowledges that his two-dimensional diagrams are
“useless for mathematical purposes,” but argues that they were never intended
for such use. Rather, the diagrams were intended as a convenient pictorial

representation of a process taking place in a high-dimensional space.

Although these first published landscapes make little sense mathematically, the
idea of the landscape above fits into the landscape model of this dissertation.
Each genetic combination is represented as a vertex in a landscape graph and
each is assigned a fitness that is used to label the vertex. The advantage of the
new model is that it requires no notion of dimensionality, and can therefore be

used naturally to produce a landscape graph that is perfectly well-defined.

e In a second interpretation of his landscapes, Wright regarded each axis as cor-
responding to the frequency of a give gene. Thus the landscape had as many
axis as there were genes, and each axis went from zero to one according to the
frequency of the gene in a population. A point in this space therefore corre-
sponds to the gene frequencies of a population of organisms and fitness, the
extra dimension, is given by the mean fitness of this population. Many popula-
tions might have the same gene frequencies however, and this leads to difficulties
with this interpretation. This interpretation predates the one published in 1932.
Wright tended to use this version mathematically, while continuing to publish
the 1932 diagrams.

The landscape model of this dissertation can be used to describe this form
of Wright’s landscapes if one views the process that creates one population

from another as an operator that produces edges in a graph whose vertices
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correspond to entire populations. More in line with Wright’s formulation would
be a landscape in which a vertex corresponds to the infinite set of populations
that exhibit a given distribution of gene frequencies. As Provine observes, this

greatly complicates matters when one tries to assign a “fitness” to a vertex,

[87].

e Simpson [19] was responsible for the introduction of a third interpretation in
which axes measured structural (i.e., phenotypic) variation in individuals. In
this version it appears that Simpson intended points in the space to correspond
to individuals, with the extra dimension given by individual fitness. This land-
scape can be viewed as a graph in the model of this dissertation in an analogous

fashion to that in which Wright’s first version is described above.

These conflicting interpretations of fitness landscapes suggest that the metaphor
was an attractive one to many. The lack of a rigorous definition did not prevent use
of the landscape metaphor from becoming widespread. Actually, lack of definition
may have encouraged this. There is nothing inherently wrong with this situation if
landscapes are used to convey a vague picture of some process. When attempts are
made to use landscapes in a rigorous fashion, it becomes more important to know
what is being referred to. A similar situation exists in evolutionary computation,
where the word landscape tends to be used in a rather cavalier fashion. Landscapes
are frequently heard of but infrequently defined. In some instances this is very useful.
In other cases, landscapes are used as the foundation of seemingly plausible arguments

that, when closely examined, can be extremely difficult to make any sense of at all.

6.2.2. Landscapes in Physics and Chemistry

Two fields in which landscapes are used that do not suffer from a lack of formal
definition are physics and chemistry. Formal definitions can be found in the work
of Weinberger [63, 64] and in a number of papers by Fontana, Huynen, Schuster,
Stadler and others in theoretical biology and chemistry (see [162, 163], and references
below, for examples). Weinberger’s landscapes are described in the following section.
Both these models were formulated to study specific systems; the dynamics of spin
glasses and the folding and evolution of RNA sequences and secondary structure.
They are clearly defined and are useful for the study of these systems. However, not
surprisingly, they are not directly applicable to evolutionary algorithms. There are

three primary reasons for this:
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e These models are only relevant to systems in which an operator acts on a single
“individual” to produce another “individual.” That is, one RNA sequence is
converted to another, or one Hamiltonian circuit in a graph is converted into
another.

e The systems under consideration all involve a single operator. For example,
an operator which changes a spin in a spin glass or a point mutation operator

which changes a nucleotide in an RNA molecule.

e All possible outcomes from an application of an operator have equal probability

of occurrence.

These differences make the application of these landscape models to evolutionary
algorithms problematic. In evolutionary algorithms, none of the above are true.
These algorithms have operators that act on and produce multiple individuals, they
employ multiple operators, and the possible results of operator application are not
equally probable. These possibilities are incorporated in the landscapes model of this
dissertation.

6.2.3. Landscapes in Computer Science

Weinberger’s work has had a significant influence on work done in computer science
[63, 64, 65, 164]. Weinberger provides a precise definition of a fitness landscape. His
landscape is also a graph (though finite), whose vertices are labeled using some real-
valued function. He introduces the autocorrelation function and shows its use as a
measure of landscape fitness correlation or “ruggedness.” This measure and others
derived from this work have been relatively widely used [60, 61, 62, 70, 117, 118, 165].
The model presented in this dissertation generalizes Weinberger’s model. It allows
operators that act on and produce multisets of points in R, allows the graph to be
infinite and/or unconnected, and assigns probabilities to edges which is important
when considering mutation or crossover. Figure 1 on page 31 illustrates this common
situation with crossover. Weinberger considered operators that would assign an equal
probability to each outgoing edge from a vertex, and so had no need for probabilities.

Manderick, De Weger and Spiessens [60] used Weinberger’s landscape and auto-
correlation function to examine the relationship between the statistical structure of
landscapes and the performance of genetic algorithms on the same landscapes. This
important paper illustrates how successfully statistics concerning landscape structure
can predict algorithm performance. Manderick et al. viewed a landscape as something

defined by an operator that acted on and produced a single point of R. Weinberger’s
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autocorrelation function can be calculated for these simplest of operators. They rec-
ognized crossover as an operator without making the generalization of the model of
this dissertation. To deal with this, they defined a measure of operator correlation
which they applied successfully to one-point crossover on NK landscapes and to four
crossover operators for TSP. This statistic is calculated by repeated use of the op-
erator from randomly chosen starting points. Thus, they were actually computing
statistical measures about the crossover landscape without recognizing it as a land-
scape. Had they done so, they might have used the autocorrelation function, since
they dealt with the walkable landscapes generated by crossover operators that take
two parents and produce two children.

Taking the work of Manderick et al. as a starting point, Mathias and Whitley
[61] examined other crossover operators for TSP and Dzubera and Whitley develop
measures of “part” and “partial” correlation which they also apply to TSP. Much
of the work mentioned above in theoretical chemistry has also been influenced by
Weinberger’s work (see, for example, [62, 166, 167, 168]). An overview of uses of
the landscape perspective is far beyond the scope of this section. These works are
mentioned to show the extent of the influence of Weinberger’s model and definition
of the autocorrelation function and correlation length.

The work of Nix and Vose and others on Markov chain analysis of GAs [52, 169,
170, 171, 172, 115] can also be looked at from a landscape perspective. As mentioned
in §2.3(23), the choice of what one regards as an operator is a matter of perspective.
Different choices will impact the ease with which we can study different aspects of
search algorithms. By viewing an entire generation of a GA as an operator that
converts one population to another, the GA can be imagined as taking a walk on a
landscape graph whose vertices correspond to populations. This operator, like any
other, can also be viewed as defining a transition matrix for a Markov chain. Natu-
rally, for a process as complex as an entire GA generation, calculating the transition
probabilities will be quite involved, but this is what Nix and Vose have done. Because
this operator is used repeatedly (unlike simpler operators such as crossover and mu-
tation which are used in series), the expected behavior of a GA can be determined via
Markovian analysis. Due to the exponential growth in the number of possible states
of this Markov process, such analysis is typically restricted to small populations con-
sisting of short individuals. Nevertheless, it offers exact results and insights that are
otherwise not available. Markov chain-like analysis of individual operators has been
carried out by Goldberg and Segrest [173], Mahfoud [174], Horn [175] and Whitley
and Yoo [176].

Recently, Culberson [29] independently conceived of a crossover landscape. His
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structure, which he calls a search space structure, is also a graph and the vertices
correspond to a population of points from {0,1}". He examines crossovers between
two complementary strings which creates a graph that corresponds to the largest
connected component of the crossover landscape generated by X?7? (two parents,
two offspring, one crossover point) in the current model. That component (like all
others) is a hypercube. It contains vertices that correspond to all possible pairs of
binary strings of the form (a,@). Culberson shows that the structure of the component
is isomorphic to the hypercube generated by the bit-flipping operator for strings of
length n — 1. He shows the existence of Xj*-local-minima in this structure and
demonstrates how to transform a problem that appears hard for one operator into
a problem that appears hard for the other. This provides further evidence of the
importance of structure for search and of how that structure is induced by the choice of
operator. Wagner is also investigating isomorphisms between crossover and mutation
landscapes [177].

There is other related work whose connections to the landscape model have
not yet been well explored. This includes work done by Whitley and by Vose on
mixing matrices [178, 179], work by Altenberg [180], whose transmission functions for
crossover operators in ¢y_,1 can be drawn as landscape graphs similar to that shown
in Figure 11 on page 54, and Helman’s work on a general algebra for search problems

[140].

6.3. Work Related to the Heuristic Search Con-
nection

Tackett [119, 120] proposes that there is a connection between Genetic Programming
(and thus GAs) and heuristic search. In particular, he outlines a correspondence
between GP and beam search [181]. The correspondence is based on the fact that
the population in a GA can be viewed as akin to the priority queue of beam search.
Population members in a GA are “expanded” (chosen to produce offspring) in a fash-
ion prioritized by fitness. In beam search, nodes (individuals) are expanded strictly
according to position in the priority queue. This correspondence fits perfectly into
the correspondence between evolutionary algorithms and heuristic search developed
in Chapter 5 using the language changes summarized in Table 31 on page 125. Tack-
ett [119] also makes the point that the uniform use of biological language to describe

(GAs tends to obscure the connection with heuristic search.
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6.4. Work Related to FDC

There are four pieces of work (that I am aware of) which present diagrams similar
to those used to compute fitness distance correlation. In each case, the diagrams are
closely related to the scatter plots used for FDC, but the uses to which they are put

(if any) and the research they motivate are all quite different.

1. Kauffman ([117, page 564] and [118, page 61]) shows scatter plots of the fit-
ness of local minima versus their distance from the best local minimum found,
for several NK landscapes. A number of local minima are discovered through
hillclimbing, and each is represented by a single point in the plot. These dia-
grams demonstrate the existence of what Kauffman calls a “Massif Central” in
NK landscapes with small K. By this it is meant that the highest peaks in the
landscape are near each other and this region occupies a very small region of
the entire search space. These scatter plots differ from the plots used in FDC
only in the fact that each point in the plots corresponds to a peak on the land-
scape, not to a randomly chosen vertex in the landscape. Kauffman does not
compute correlation or other statistics about the relationship between distance

from (apparent) global optimum and fitness of local optima.

2. Boese, Kahng and Muddu [116] produce similar scatter plots, but on a variety of
different problems, and use them to motivate the construction of “multi-start”
hillclimbers that take advantage of the “big valley” structure they observe.
Their “big valley” is Kauffman’s “Massif Central” inverted (Boese et al. study
minimization problems). They observe that the highest peaks (found by various
hillclimbers based on different heuristics) are tightly clustered. They use this
knowledge to construct an “adaptive multi-start” hillclimber that takes uphill
steps in the same way the BH algorithm of §3.6(55) does. The hillclimber
uses the 2-opt operator introduced by Lin and Kernighan [182]. The algorithm
assumes that the problem at hand exhibits the big valley structure, and they
show how the hillclimber compares very favorably with other hillclimbers that
do not take advantage of this global structure. The hillclimber uses information
about high fitness peaks located earlier in the search to select new starting
vertices on subsequent climbs. This technique is applied to 100- and 500-city
randomly generated symmetric traveling salesperson problems and to 100- and
150-vertex graph bisection problems. Boese [183] extends this work to consider

the 532-city traveling salesperson problem of Padberg and Rinaldi [184] and
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mentions that similar plots have been obtained on circuit partitioning, graph

partitioning, number partitioning, satisfiability, and job shop scheduling.

In addition to scatter plots showing fitness of local optima against distance
to global optimum, Boese et al. produced plots of fitness of local optima ver-
sus mean distance to other local optima. On the problems they have studied,
there has (apparently) been a single global optimum, rather than many, as with
some problems studied with FDC (which uses distance to the nearest global
optimum). Boese [183] produced similar plots on the 532-city problem using
local optima located via several hillclimbers, each using a different “heuristic”
(“operator” in the language of this dissertation). The results for these different
hillclimbers allow Boese to compute the size of the “big valley” for each op-
erator. The correlation between fitness of local optima and distance to global
optimum was also computed and used to examine the relative strengths of the

relationship for each of the operators.

Boese et al. use a distance metric that is not the same as the distance defined
by the operators they employ. There is no known polynomial time algorithm for
computing the minimum number of 2-0pt moves between two circuits in a graph.
Instead, they use “bond” distance which is the number of vertices in the graph
minus the number of edges the two circuits have in common. Some analysis
shows that this distance is always within a factor of two of the 2-opt distance
between the circuits. This is similar to the use of Hamming distance instead of

“mutation distance” or “crossover distance” in the calculation of FDC.

Because the scatter plots of Boese et al. examine local optima, the relationship
that will be observed between fitness and distance will depend on the difficulty
of the problem and on the quality of the local optima that are examined. If a
good hillclimber is used to locate local optima on an easy problem, few local
optima may be found. In the worst case, on a non-pathological (in the style
of Horn et al. [86]) unimodal problem, only one peak will be located, and it
will be the global optimum. Boese et al. and Hagen and Kahng [185] have
observed instances where the relationship between fitness and distance deteri-
orates and this appears dependent not only on the problem at hand, but on
the quality of the heuristic used to locate local optima. FDC does not run into
problems in these situations because it considers randomly chosen vertices of
the landscape—there is no requirement that they be local optima. Thus FDC
is useful for classifying easy problems as well as difficult ones. This is of little

consequence to Boese et al., who are motivated to take advantage of the big
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valley structure in problems that contain many local optima. Naturally, the
pervasiveness of the “big valley” structure across problem types and instances
will determine how useful the adaptive multi-start algorithm is. Judging from
these initial investigations, the class of problems possessing this structural prop-
erty may quite large. If so, algorithms designed to exploit this structure, such
as adaptive multi-start, will be hard to beat.

. Ruml, Ngo, Marks and Shieber have also produced a scatter plot of fitness
against distance from a known optimum [186]. They examined an instance of
the number partitioning problem (of size 100) and compared points in several
representation spaces to the optimum obtained by Karmarkar and Karp [187]
(KK-optimum). Ruml et al. generate points by taking directed walks away
from the global optimum, at each step increasing the distance from the KK-
optimum by one. The points found on several such walks are then plotted as
fitness (normalized by the fitness of the KK-optimum) versus distance from the
KK-optimum. The resulting plots exhibit a “bumpy funnel” in which there is
a strong correspondence between solution quality and distance from the KK-
optimum. As with the observations of Boese et al. [116, 183], the high quality
solutions are tightly clustered around the best-known optimum and Ruml et
al. suggest that search algorithms that take advantage of this type of structure
(which they term “gravitation”) will prove competitive. It is clear from these
results that the problem structure around the KK-optimum is qualitatively like
that around the optima studied by Boese et al.. Unlike Boese’s results with
the 532-city TSP problem, we cannot be so confident that the KIK-optimum is
the global optimum as Karmarkar and Karp’s algorithm exhibits a strong bias
towards equal-sized partitions. The relationship between fitness and distance is
not quantified in any way—the scatter plots are used to give pictorial evidence

of the structure of the problem and “gravitation.”

. As mentioned in §1.3(8), Korf presented several heuristics for the 2 x 2 x 2
version of Rubik’s cube [33]. Korf’s graphs have heuristic value on the X axis
and the mean distance of all cube configurations with a given heuristic value on
the Y axis. At first glance, these graphs would seem to have little to do with
the FDC scatter plots of Chapter 5, but this is not the case. If the axes are
swapped and each point is replaced by the actual set of points that it represents,
the result is a scatter plot. As Korf points out, there will be virtually no
correlation between fitness and distance in any of these plots. This replacement

and inversion of axes has not been done, but Korf’s diagrams make it apparent
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that if correlation is not zero, it can only be slightly negative (this is undesirable

in Korf’s heuristic functions, which must be maximized).

Finally, there is a relationship between FDC and Weinberger’s correlation length
[65]. Correlation length is a measure of correlation between fitness values, but the au-
tocorrelation function, from which correlation length is calculated, also takes distance
into account. The autocorrelation function provides the correlation between fitnesses
at all distances. The connection between this measure and FDC is the subject of cur-
rent investigation. In particular, if FDC proves useful for prediction using the method
suggested in §5.7.2(160), it will likely be prone to “error” in the way that correlation
length is when the fitness landscape is not isotropic. When FDC is computed from
the point of view of a randomly chosen vertex (or peak), it, like correlation length,
will indicate that fully deceptive problems (for example) are easy. In practice there
may be nothing wrong with this, since if we ever encounter a reasonably large fully
deceptive problem, it would be a simple problem, as far as we would ever be able to
tell. The global maximum may as well not exist. A measure of problem difficulty
that accords well with what we actually experience is likely to be far more useful than

some measure which insists that such a problem is actually very hard.



CHAPTER 7

Conclusions

In the introduction to this work, I wrote that the dissertation was a collection of very
simple questions and my attempts to answer them. It seems appropriate then that
a concluding chapter should present these questions and summarize (1) the answers
[ have found, (2) the increase in understanding that the answers bring, and (3) the

practical benefits that result from the understanding.

What is a landscape?

This is the most fundamental question of this dissertation. In the model of this
dissertation, a landscape is a labeled, directed, graph. The vertices of the graph
correspond to multisets of individuals and the edges correspond to the actions of
an operator. If an operator acts on an individual A, producing individual B with
probability p, then the landscape graph contains an edge from the vertex representing
A to the vertex representing B and that edge is labeled with p. It is important to
allow a vertex to correspond to a multiset of individuals, not just a single one. By
so doing, landscape graphs are well defined for operators that act on and produce
multiple individuals. The vertices of a landscape graph are labeled with a value that
can be thought of as a height, and this gives rise to the landscape image. When
vertices correspond to single individuals, they are typically labeled with values from
a fitness function. If not, the label is some function of the fitnesses of the individuals
represented by the vertex. This, in essence, is the landscape model of this dissertation.

When evolutionary algorithms are viewed from the perspective of this model,
there is an important consequence. Because these algorithms are usually viewed as
making use of several operators, they are not operating on a single landscape, but
on many. As a result, there are mutation landscapes, crossover landscapes, selection
landscapes—every operator creates a landscape graph. Every time an algorithm uses

a particular operator, it can be seen as traversing an edge, or taking a “step,” on
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the landscape defined by the operator in question. I call this the “One Operator,
One Landscape” consequence of the current model. If we intend to study and talk
about landscapes, my model insists that we pay attention to the “one operator, one
landscape” consequence. Naturally, we can study the results of using several oper-
ators in concert, but we can ask simpler questions—questions about the individual
landscapes.

There are other consequences of the model, and these are described in §2.7(36).
Two of these are the fact that landscapes may not be connected, and that they may
not be walkable.

The model of landscapes presented in this dissertation was designed to be useful
for thinking about evolutionary algorithms. Other models, designed for different pur-
poses, have limitations that make them inappropriate for this purpose. The difficulties
are that these other models do not (1) allow for algorithms that employ multiple op-
erators, (2) account for operator transition probabilities, or (3) admit operators that

act on or produce multiple individuals.

What Makes a Search Algorithm?

The landscape model is a very general one, and its usefulness is not restricted to
evolutionary algorithms. The model is presented in terms of search, which leads one
to ask what are the components of a search algorithm. If we suppose that the task of
a search algorithm is to find some object or objects, we can ask what kinds of objects
are examined by the algorithm and what its methods are for generating new objects
when looking for the solution. The landscape model regards the methods used for
creating new objects to examine as operators. Each operator creates the edges in a
landscape graph, the vertices of which correspond to the collections (or multisets) of
objects that the operator acts on and produces.

But a search algorithm is more than a collection of landscape graphs. The
algorithm must explore these graphs in search of a solution object. The landscape
model tells us nothing about this aspect of search. From the point of view of the
model, search algorithms can be divided into landscapes and everything else. I call
the “everything else” the navigation strategy of the search algorithm. The navigation
strategy determines how and in what order the graphs are explored, from where
exploration should commence, how it should be altered as the search proceeds, and
when it should be halted. Thus, search algorithms may be thought of as composed
of structure(s) and strategy.

It is reassuring to note that this perspective, though arrived at through thinking
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about evolutionary algorithms and landscapes, is nothing more than the perspec-
tive on search that has long been held in the Artificial Intelligence community. For
example, production systems have been described as consisting of a “database,” “pro-
duction rules,” and a “control strategy.” These correspond fairly well to our landscape
view of search with its vertices, edges (operators), and navigation strategy. Estab-
lishing links with the Artificial Intelligence search community is a good reality check,

and, as will be seen, these links are more than superficial.

Can the Pieces be Reassembled?

If search algorithms can be decomposed into landscape structures and strategies, can
we take several search algorithms apart and reassemble them into new algorithms?
The answer is that we can do this and that it is easy. The reason is that landscapes
are graphs and navigation strategies are designed to search graphs. So long as the
landscape graphs of one algorithm satisfy any assumptions made by the navigation
strategy of another algorithm (e.g., that the graph is a tree or that it is connected),
there seems to be no logical reason to prevent the combination of pieces of search algo-
rithms in any way we choose. With nothing more than the perspective offered by the
landscape model, a vast number of possible new algorithms suggest themselves. Hy-
brid search algorithms are nothing new, but the landscape model encourages this and
gives a formal framework for doing it. The field of possibilities can be explored sys-
tematically, rather than through investigations that follow occasional creative leaps.

Though this perspective might be obvious to those who study search in other
contexts, it suggests novel ideas for hybrid algorithms whose pieces are drawn from
evolutionary algorithms. The model seamlessly accommodates operators that act on
multiple individuals, and so there is no difficulty exploring the graphs that correspond
to these operators. To anyone familiar with these algorithms, and with the important
unanswered questions about them, an attractive first choice of targets is an algorithm
that explores the crossover landscape of a genetic algorithm. The simplest (interest-
ing) navigation strategy is some form of hillclimbing, and so is born the crossover
hillelimber.

The crossover hillclimber uses a simple hillclimbing strategy to explore the land-
scape graph of a crossover operator (§3.7(57)). On virtually all of the problems studied
in Chapter 3, the algorithm performs better than either the bit-flipping hillclimbing
algorithm from which the navigation strategy was taken, or the genetic algorithm
from which the landscape was taken. The division into structure and strategy can be

made, the pieces can be combined in novel ways, and the resulting algorithms can be
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practical. The success of the crossover hillclimber leads to another simple question.

Is Crossover Useful?

This question has no simple answer because it is too general. It is tautological to
answer that crossover is useful if it manages to orchestrate the exchange of building
blocks between individuals. The question we should be asking is: “Given a particular
set of choices about algorithm, representation and fitness function etc., does the use
of crossover produce benefits that other, simpler, operators cannot produce?” If so,
there is a good argument for the use of crossover in that situation. A more complex
subsequent question could ask for the characteristics that these situations have in
common. In other words, as Eshelman and Schaffer asked, what is crossover’s niche?
[89].

From a cursory inspection of the crossover hillclimbing algorithm, it appears that
the algorithm has isolated crossover from a genetic algorithm and harnessed its power
by searching using a more exploitative navigation strategy. New individuals are either
created completely at random or via the use of crossover. As it is easily shown that
the randomly created individuals are of predictably low quality, the credit for success
of the algorithm must go to crossover. This reasoning is correct, but it is far from
being the whole story.

Closer examination of the crossover hillclimbing algorithm reveals that its perfor-
mance correlates extremely well with the number of crossovers it performs in which
one individual is randomly created (§3.10(72)). But crossovers involving one ran-
dom individual are nothing more than macromutations of the non-random individual,
where the mutations are distributed in the fashion of the crossover operator in ques-
tion. The conclusion that crossover hillclimbing was successful because it was making
macromutations was confirmed when an extreme version of the algorithm, in which
every crossover involved one random individual, proved better than all previous ver-
sions of the algorithm. This leads to a distinction between the idea and the mechanics
of crossover. The idea is what crossover is trying to achieve (the recombination of
above average genetic material from parents of above average fitness) and the me-
chanics is the method by which this is attempted. All crossover operators share the
same basic idea, but their mechanics vary considerably. The crossover hillclimbing
algorithm is a clear demonstration that crossover can be used effectively for search

even when it is only the mechanics that are doing the work.
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Can the Usefulness of Crossover be Tested?

Crossover can be useful in two ways, one of which is purely macromutational. To de-
cide whether crossover is more useful than other, simpler, operators therefore requires
answering whether the idea of crossover is producing gains over what could be ob-
tained through macromutation alone. The standard test for determining if crossover
is useful cannot answer this question. The standard test involves comparing a genetic
algorithm with crossover to one without crossover. This is a comparison between an
algorithm with both the idea of crossover and the mechanics that attempt to im-
plement it, and an algorithm with neither of these. If the genetic algorithm with
crossover does better than the one with no crossover, the conclusion that crossover is
therefore useful (i.e., that it is doing more to aid the search than a simple macromu-
tational operator would) is not justified. Enter the headless chicken.

The headless chicken test, in which a genetic algorithm with crossover is com-
pared to one with random crossover is more informative (§3.12(77)). In random
crossover, two random individuals are generated and used in normal crossovers with
the parents. One offspring from each of these crossovers is passed back to the genetic
algorithm. There is no communication between members of the population. The ran-
dom crossover operator throws out the idea of crossover while keeping the mechanics.
If the genetic algorithm with crossover does not outperform the genetic algorithm
with random crossover, then by our definition of usefulness, crossover is not useful.
Crossover is not producing gains that could not be obtained with a simpler operator
(in this case macromutation). If the genetic algorithm with crossover fails the test
(i.e., it does not outperform the genetic algorithm with random crossover), we cannot
conclude that the genetic algorithm with crossover is not combining building blocks.
The test simply shows that the rate at which this is being done (if at all) is not
sufficient to produce gains that are greater than those that can be obtained through
simple macromutation.

When the genetic algorithm with crossover does not outperform the genetic al-
gorithm with random crossover on a particular combination of representation, fitness
function etc., it is difficult to argue that the genetic algorithm in that configuration
is making effective use of the population. If the genetic algorithm with crossover is
worse than the genetic algorithm with random crossover, the population may actu-
ally be hindering the search. Not only are building blocks not being combined at
any significant rate, but the possibility of advancing the search via macromutations
is reduced because a population is used. The random crossover algorithm has the
benefit of being able to conduct wider exploration. It is not constrained to drawing

partners for crossover from a partially converged population whose makeup varies
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relatively slowly over time.

If crossover is not useful, the usefulness of the population and therefore of the
genetic algorithm is called into question. If the genetic algorithm does not pass the
headless chicken test, it is either time to look for alternate representations, fitness
functions and operators etc. for the genetic algorithm, or, it is time to look for a new

algorithm.

What i1s a Basin Of Attraction?

One of the purposes of using the landscape metaphor is to discuss properties of
landscapes. To some extent, landscapes can be studied independently of the search
algorithms that will be used to explore them. While it is true that all the components
of a landscape (vertices, edges, vertex labels and transition probabilities) are deter-
mined by choices that are part of a search algorithm, a particular set of choices may
be made by many algorithms. Properties of a particular landscape will be relevant
to the entire family of algorithms that make the set of choices that determine the
landscape. Algorithms which make very similar choices will perhaps be operating on
similar landscapes, and these landscapes can be compared.

A feature of landscapes that is often discussed are the basins of attraction of
peaks. Given a landscape, the basin of attraction of a vertex v in landscape graph is
the set of vertices that are connected to v by a path (directed towards v). As edges
correspond to applications of an operator, the basin of attraction is the set of vertices
from which a random walk, using the operator, could possibly reach v.

Natural questions about the basin of attraction Bs(v) of a vertex v include the
size of By(v), the identity of the vertices in By(v), the number of vertices By(v) has
in common with other basins, the probability that vertices in By(v) will reach v, and
the overall probability that v will be discovered via a random walk, using ¢, from a
randomly chosen starting vertex in the landscape. Many of these questions can be
answered by the reverse hillclimbing algorithm developed in Chapter 4. Given a set
of peaks on a landscape, reverse hillclimbing can discover their basins of attraction
for a number of hillclimbers and use these results to indicate which of these has the
highest probability of locating a peak in the desired set. An exact answer is provided
(assuming the number of vertices in the basins are not so great as to exhaust available
computational resources). Using methods based on (non-exhaustive) sampling to
obtain this information is computationally prohibitive and the answers are necessarily
inexact. Chapter 4 and the results in [110] show how the reverse hillclimbing method

can be used to reach rapid and accurate conclusions about hillclimbers based on data
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about basins of attraction.

What Makes Search Hard?

This is the most important question of this dissertation. This question is extremely
hard to answer in general, and it is made harder by the fact that hardness is in the
eye of the beholder. If one algorithm finds a problem hard but another does not,
is the problem hard? If one algorithm never solves a problem with a given level of
computational resources, but always solves the problem when the resources available
are doubled, is the problem hard? The theory of NP-completeness [141, 188, 189] has
produced many beautiful results concerned with problem difficulty, but the fact that
a problem type is NP-complete does not necessarily tell us anything about a given
instance of that problem [190]. The Halting Problem is formally undecidable, but
faced with a particular Turing machine, it may be trivial to determine whether it
halts. Additionally, we may not be concerned with finding the optimal solution to a
problem. We may be satisfied by solutions that are very far from optimal. How hard
are these problems?

If, instead, we ask “What properties of a landscape make it hard to search?” we
can make significant progress. By ignoring algorithms (apart from the choices they
make that determine landscapes), the problem becomes at once easier and harder.
We may decide that a certain landscape feature, for instance “ruggedness,” makes
search difficult. If, in some quantitative sense, a landscape can be classed as “rugged”
(and therefore difficult), does that mean that all search algorithms that operate on
that landscape will have difficulty? No, because search algorithms are more than
landscapes; they also have navigation strategies. What is difficult for one navigation
strategy may be simple for another. On the other hand, our task is simpler as we
are ignoring navigation strategies and it should be possible to develop statistical
measurements of landscape graphs that might correlate well with observed algorithm
difficulty.

My answer to this question can be arrived at most simply by considering what
properties a landscape might have that would make search easy. The vertices of any
connected graph can be labeled with the length of the shortest path to a designated
vertex (whose label is therefore zero). If the designated vertex corresponds to the
optimal solution to a search problem the landscape becomes unimodal. If a function
of this nature could be found for any instance of a problem, it could be used to solve
SATISFIABILITY in polynomial time. We obviously cannot hope to find such a (fitness)

function, but it might be reasonable to hope that the more closely our fitness function



179

and landscape approximate this ideal, the easier search will be on the landscape.

A measure of this, Fitness Distance Correlation (FDC), is defined in Chapter 5.
The application of FDC to approximately 20 problems from the literature on genetic
algorithms shows it to be a very reliable measure of difficulty for the genetic algorithm.
Correlation is only one summary of the relationship between fitness and distance from
the goal of the search, and in some cases it is too simplistic. Scatter plots of sampled
vertices on a landscape often reveal structure not detected by correlation. These
plots are one way of looking for structure in a landscape graph and they are often
surprisingly revealing. Apart from correctly classifying many problems correctly,
including ones that gave surprising results when first studied. FDC also predicted
that the question of whether or not Gray coding was beneficial to a genetic algorithm
was dependent on the number of bits used in the encoding. The accuracy of this
prediction was later confirmed experimentally.

FDC captures a property of a landscape graph. It has nothing to do with any
search algorithm beyond the choices that determine the landscape. As a result, FDC
can indicate that a problem should be easy, but an algorithm, because of its navigation
strategy, may find the problem hard. The indications of FDC about a problem can
be interpreted as a rough measure of how hard a problem should be. If FDC says a
problem is easy but an algorithm does not find it so, this may be taken as a sign that
this choice of algorithm (or algorithm parameters) is unusually bad for this problem.

As an indicator of genetic algorithm performance, FDC has proved very reliable.

Are Evolutionary and Other Search Algorithms Related?

The development of the landscape model was driven by the characteristics of evolu-
tionary search algorithms. Because it is quite general, it is worth taking the trouble
to examine how search on a landscape resembles ideas of search in other domains.
The division of search algorithms into navigation strategy and landscape graphs was
shown above to correspond to the Artificial Intelligence community’s view of search.
A look at the details of heuristic search in a state space, particularly a look at earlier
work [43, 142, 191], reveals that the correspondence between this form of search and
search in the landscape model is rather strong.

The connection is so strong that much of what needs to be done to move be-
tween the fields can be accomplished by a simple change in the language used to

W

describe algorithms. Substituting “state space” for “landscape,” “potential solution”

for “individual,” “control strategy” for “navigation strategy,” “heuristic function” for
bYANAS

“fitness function,” “goal” for “global optimum,” and “OPEN list” for “population,”
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much of what needs to be changed is achieved. Naturally, there are differences in
these algorithms, but the similarities are very strong. Areas of difference do not so
much weaken the argument of a correspondence as they indicate areas of potentially
fruitful interaction between the fields.

As an example of this, consider heuristic functions and fitness functions. Both
are used to label graphs in which search takes place. One big difference is the amount
of research that has gone into the theory of these functions. Heuristic functions have
been studied for almost 30 years [142] and there are many results regarding their
properties and desirable characteristics [31]. In the world of evolutionary algorithms,
fitness functions are relatively unexamined. The choice of fitness function is rarely
even acknowledged as a choice. Can we transfer some of the knowledge from the
theory of heuristic functions to help us with a theory of fitness functions?

The answer is Yes, and the evidence is the FDC measure. The idealized fitness
function described in the previous section is not really a fitness function. A fitness
function typically assigns a fixed fitness to an individual, regardless of where that in-
dividual is located. The ideal function above assigns “fitnesses” according to distance
from the global optimum. But this is exactly what Artificial Intelligence has been
explicitly seeking in heuristic functions since they were first introduced [142]. To ques-
tion how well a fitness function approximates the ideal is to question how close they
are to the Artificial Intelligence ideal. What we would like is not a fitness function
but an heuristic function. The FDC measure arose from considering fitness functions
as heuristic functions and asking what sort of a job they did. Questions about admis-
sibility, monotonicity and informedness, from the theory of heuristic functions, can
be put to fitness functions. In particular, theory of non-admissible heuristics may

inform the study of fitness functions in evolutionary algorithms.
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APPENDIX A

Implementation Issues for Reverse
Hillclimbing

Hopefully this appendix will be helpful to anyone who implements the reverse
hillclimbing algorithm. The idea is conceptually simple, but relatively efficient im-
plementation is a little tricky.

I have implemented the reverse hillclimbing in three different ways. The first,
which was the method used to produce the results in [110], used a hash table in the
manner described in §4.4.2(93). Using that approach, it is necessary to keep every
vertex in the basin of attraction in memory until the recursion is complete. This
is due to the possibility of vertices being revisited. This algorithm was controlled
using the recursive strategy described for the basic algorithm. This first implementa-
tion was sufficient to obtain basin information for steepest ascent hillclimbing on the
busy beaver problem that was described in §3.8.5(60). It suffered from the need to
keep the entire basin in memory (though in the cases examined in [110], the basins
never contained more than 10,000 vertices), and proved far slower than the third
implementation.

The second implementation tried to reduce the memory requirements of the
first implementation. The experiments of Chapter 4 occasionally required identifying
basins that contained over half a million vertices. Instead of keeping all the vertices
of the basin of attraction in memory simultaneously and updating the statistics of
vertices that were re-encountered, this version simply wrote all its discoveries to a file
that was post-processed once the run completed. The resulting file contained a line of
output for each vertex that was encountered during the recursion. For example, the
vertex 000 in Figure 49 on page 93 would appear as the subject of three output lines,
as it would be encountered during descents from 100, 010 and 001. The post-processor
sorted the output file by vertex identity and then collected the statistics for the groups
of lines that corresponded to each vertex. The initial phase of this implementation
required very little memory, and ran very quickly. Unfortunately, it produced output
files containing many tens of megabytes, which rendered this approach less useful in
practice than the first.

The first two solutions both employ a strategy that resembles a depth-first search
in the landscape graph. Both of the difficulties with these solutions are a result of

this form of exploration. A more appealing strategy is some form of breadth-first
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exploration of the landscape. A breadth-first exploration based on distance from the
original vertex faces the problem that a vertex vy at distance d; might not appear to
be in the basin of attraction of the original vertex until the depth-first search reaches
some vertex vy at distance dy > dy and discovers that vertex vy has some probability
of ascending to vy. Such an algorithm would be faced with storage problems similar
to that of the first implementation.

The breadth-first approach can be used however if the search proceeds breadth-
first according to fitness rather than breadth-first according to distance from the
initial vertex. If all the fitter neighbors of a vertex v; have been completely processed
by the algorithm, and have all updated their downhill neighbors that could re-ascend,
then the vertex vy can never again be encountered. Once the downhill neighbors of
the vertex vy are updated according to their probabilities of reaching vy, the statistics
for vy can be written to a file (if these are to even be recorded) and the memory

allocated to vy can be freed. This idea has several advantages:

e Vertices in the basin will be encountered multiple times, but will only be de-
scended from once. In the previous implementations, each time a vertex was
reached, its basin of attraction would be calculated afresh. This provides a

significant increase in speed.

e This implementation returns memory to the operating system as it does not need
to keep the entire basin of attraction in memory. There is a simple condition
that indicates when a vertex has been completely dealt with, and at that time
its summary statistics can be gathered and the vertex discarded from memory.
The peak memory load is typically 15 to 20 percent less than that required by

the first implementation.

e The vertices in the basin of attraction are found in order of decreasing fitness.
This allows the efficient delineation of some fraction of the upper part of the
basin of attraction. The earlier implementations also provide a method of ap-
proximation, as recursive calls can be made only if the probability of ascent (or

the fitness) has not fallen below some lower limit.

This method provides a large speed increase and a moderate saving in memory.
Its main drawback is the memory requirement, but it has been used to find basins
containing over half a million vertices.

The data structures used to implement this version are naturally more involved.
The two most important operations are the fast lookup of a vertex based on its identity

and a fast method for retrieving the vertex with highest fitness from those that still
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need to be processed. The first task is best accomplished using a hash table and the
second using a priority queue (implemented as a heap). T implemented a combination
hash table and priority queue to solve both problems at once. The elements of the
hash table contain a pointer into the priority queue and vice-versa. This allows O(1)
expected vertex identity comparisons to retrieve a vertex given its identity and O(1)
worst-case retrieval of the unprocessed vertex with the highest fitness (the priority
queue retrieves a pointer into the hash table of the highest fitness vertex in constant
time, and this is dereferenced in constant time since it points directly to the stored
element and does not require hashing). Insertion of a new vertex requires insertion
into both the hash table and the priority queue and this requires O(lgn) comparisons
(worst and average case) where n is the number of elements currently in the priority
queue. Deletion requires O(lgn) comparisons (worst and average case) for similar
reasons.

A somewhat simplified pseudo-code summary of this implementation is shown
in Algorithm A.1. The pseudo-code assumes that the original point has already been
inserted into both the hash table and the priority queue. Details of the coordination
of pointers from the hash table to the priority queue and vice-versa are not shown.
For more efficiency, the hash table find and insert can be done at the same time if
the vertex is not present.

The above solution should not be taken as being in any way optimal. It is simply
better than two others that are less sophisticated. A more efficient solution might
employ a better mix of memory requirement and post-processing. If the hash table
were allowed to contain only some maximum number of vertices, incomplete vertices
(probably those that were judged most complete—for instance those with the highest
ascent probabilities) could be written to a file for later coalescing, as in the second
implementation. If a good balance could be found (and there is no reason to think
this would not be straightforward, e.g., do as much in memory as you can afford),
this would cap memory requirements and hopefully not demand too much disk space

or post-processing time.
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basin_size(initial vertex)

VERTEX initial vertex;

{
PRIORITY_QUEUE pq;
HASH_TABLE ht;
VERTEX v, w;

pg.insert(initial vertex);
ht.insert(initial vertex);

while (v = pq.get()) {
for each (w|v € Ny(w) and f(w) <» f(v)) {

if (ht.find(w)) {
update hashed entry for w;

}

else {
pg.insert(w);
ht.insert(w);

free memory associated with v;

Algorithm A.1 A more sophisticated version of the reverse hillclimbing algorithm.
This algorithm proceeds depth first (by fitness) from the original vertex. When
all the vertices that could ascend to a vertex v have been considered, the memory
corresponding to v can be freed.
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APPENDIX B
Balanced Hillclimbing

On the six landscapes examined in Chapter 4, SA had the highest probability
of locating a peak on a single hillclimb on all of them. AA was always been second.
Despite this, on five of the six problems, AA is the algorithm of choice since it ex-
pects to perform fewer evaluations per uphill step than SA does, and this advantage
outweighs SA’s greater location probability. It was always clear that, all other things
being equal, making fewer evaluations per step rather than more would result in a
better algorithm. Reverse hillclimbing shows that, at least on the instances of the
problems considered in Chapter 4, all other things being equal, being more exploita-
tive rather than less will also produce a better algorithm. Since SA and AA represent
two extremes when it comes to these choices in hillclimber design, it is reasonable to
expect that a more balanced algorithm might perform better than either of them.

This line of reasoning leads to the idea of hillclimbers that spend some amount
of time identifying uphill neighbors and then move to the highest of those found.
If we restrict attention to those hillclimbers that do not restart unless they have
examined all neighbors and found no improvement, these algorithms can be thought
of as members of a family of hillclimbers that make use of a function called another.
The another function returns a boolean value which is used to decide whether another
uphill neighbor should be sought. The arguments to the function are the number of
neighbors (n), the number of uphill directions located so far (u), and the number
of neighbors that have been tried (¢). The assumption that these hillclimbers will
always continue to search for an uphill neighbor until the first is found is equivalent
to saying that another(n,0,t) = TRUE for all algorithms in this family. Similarly, we
can assume that the another function will not be called if t = n, i.e., if all neighbors
have been tried.

Both AA and SA are members of this family (LA and MA are not since they do
not, in general, move to the steepest of the uphill neighbors). In AA, the another
function always returns FALSE, never continuing the search for uphill neighbors after
the first has been located. In SA, the another function always returns TRUE, since
SA requires the examination of all neighbors. Within this family of hillclimbers, it is
easy to see the sense in which AA and SA are the extreme algorithms.

There are several obvious alternatives for the another function. A very simple

one is a function that returns TRUE only if u < k for some k (a constant or a function
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of n). This might be called Best-of-k hillclimbing since the resulting algorithm finds
k uphill neighbors (if possible) and moves to the best of these. 1 will denote this
algorithm by BO-k. When k = 1, this algorithm becomes AA and when £ = n it
becomes SA. AA will, on average, choose the median of all the uphill neighbors for
a certain amount of work. On average, BO-2 will do twice as much work but will
only choose an uphill neighbor whose rank is 1/3rd amongst all uphill neighbors. A
rough estimate argues that twice as much work finding uphill neighbors will not be
adequately compensated for by only receiving a one-sixth increase in the ranking of
the uphill neighbor chosen.

Another strategy attempts to find another uphill neighbor only if less than &
neighbors have been examined for some k (a constant or a function of n). That is,
the another function returns TRUE if ¢ < k. This algorithm also degenerates to AA
and SAif k =1 or k = n. When k = 2 the algorithm is very similar to AA, and
can be thought of as identical to AA, except it seeks a second neighbor only on those
occasions when AA found an uphill neighbor on the first trial. If £ is small compared
to n, this algorithm can be thought of as trying for a second neighbor when AA gets
lucky. This algorithm will be called Try-£ hillclimbing.

Table 33. The another function for several hillclimbers. n is the number of neighbors,
u 18 the number of uphill directions located so far, and ¢ is the number of neighbors
tried so far.

Hillclimber | another(n,u,t) = TRUE if
AA NEVER

SA ALWAYS
Best-of-k u<k

PA n—t>t/u

Pess n—t>2t/u

Try-k t<k

A more sophisticated strategy, that is close to SA in behavior, is to form an esti-
mate of the number of neighbors that will need to be examined to locate an additional

uphill neighbor. If this is greater than the remaining number of unexamined neigh-
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bors, then return FALSE. This hillclimber attempts to find many uphill neighbors, but
stops looking once it appears likely that no more exist. It is similar to SA, but should
use fewer evaluations, at the risk of missing uphill directions. For example, if only
a single uphill direction has been found and more than half the neighbors have been
examined, the another function of this algorithm would return FALSE. If two uphill
neighbors have been found and more than two-thirds of the neighbors have been ex-
amined, it returns FALSE etc. The another function returns TRUE if n —¢ > ¢/u. This
will be called predictive ascent hillclimbing, and abbreviated PA. A similar algorithm
that is more pessimistic, denoted Pess, returns TRUE if n — ¢ > 2¢/u. The another
functions for AA, SA, and the above algorithms are summarized in Table 33.

A graphical interpretation of these functions is shown in Figure 107. Any par-
titioning of such graphs into TRUE and FALSE regions represents a hillclimbing algo-
rithm. These graphs also illustrate what is meant by the claim that AA and SA are
in some sense algorithms at the two extremes of another functions.

Tables 34 to 39 show the result of hillclimbing with AA, SA, BO-2, PA, Pess,

Table 34. The results from 10,000 hillclimbs on a 16,12 NK landscape. The table
shows, for eight hillclimbers, how frequently the best 5% of 1,000 randomly located
peaks were located, and the mean and standard deviation of the number of evaluations

to do so.

AA | SA | BO-2 | PA | Pess | Try-2 | Try-4 | Try-n/2
Peaks found 653 | 760 738 | 741 | 674 604 639 642
Evals/peak 492 | 646 548 | 579 | 596 540 537 597
Evals/peak s.d. | 504 | 620 541 | 593 | 579 514 523 604

Try-2, Try-4 and Try-n/2 on the NK landscapes and busy beaver problems studied in
Chapter 4. A 7 sign is used to indicate occasions when one of the six new hillclimbers
has a mean number of evaluations per peak that is less than both AA and SA.
The main conclusion that can be drawn from these tables is that AA is difficult
to beat. Apart from one instance in which Pess beats AA (2-state busy beaver),
the only hillclimbers to occasionally beat AA are the Try-n hillclimbers. There is a
correspondence between the difficulty of the problem and how Try-2, Try-4 and Try-
n/2 compare to AA. As problems get simpler, the performance of Try-n increases

as n does. As problems get harder, the expected number of uphill directions can be
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Figure 107. A graphical interpretation of six another functions. The X axis displays
the number of neighbors examined and the Y axis the number of uphill neighbors
found. The TRUE and FALSE regions indicate what the another function will return.
All axes have a minimum of one and a maximum of n (the number of neighbors).
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expected to fall and so an algorithm that spends less time looking for things that
probably do not exist will tend to perform better. It should be remembered that
AA is actually Try-1. Try-2 is very similar to AA—it only looks for another uphill
direction if one was found on the very first neighbor examined. As the number of
uphill neighbors increases, spending more time looking for them may be worthwhile.
For this reason, the Try-n hillclimbers tend to do better on easy problems when n is

greater.

Table 35. The results from 10,000 hillclimbs on a 16,8 NK landscape. The table
shows, for eight hillclimbers, how frequently the best 5% of 700 randomly located
peaks were located, and the mean and standard deviation of the number of evaluations
to do so.

AA | SA | BO-2| PA | Pess | Try-2 | Try-4 | Try-n/2

Peaks found 1661 | 1873 | 1771 | 1775 | 1693 | 1634 | 1614 1682

Evals/peak 227 | 332 276 | 303 | 289 235 251 280

Evals/peak s.d. | 198 | 290 244 1 263 | 262 209 226 241

Table 36. The results from 10,000 hillclimbs on a 16,4 NK landscape. The table
shows, for eight hillclimbers, how frequently the best 5% of the 180 peaks were located,
and the mean and standard deviation of the number of evaluations to do so.

AA | SA | BO-2| PA | Pess | Try-2 | Try-4 | Try-n/2

Peaks found 1600 | 1999 | 1941 | 1894 | 1798 | 1649 | 1724 1839

Evals/peak 269 | 397 297 | 358 | 335 | 2687 276 311

Evals/peak s.d. | 250 | 346 267 | 327 | 303 236 248 273
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Table 37. The results from 40 million hillclimbs on the 4-state busy beaver problem.
The table shows, for eight hillclimbers, how frequently an optimal Turing machine
was located, and the mean and standard deviation of the number of evaluations to
do so (rounded to the nearest million).

AA | SA | BO-2 | PA | Pess | Try-2 | Try-4 | Try-n/2
Peaks found 44 | 94 68 | 5l 59 41 44 58
Evals/peak (x10°) 73| 58 69 | 84| 64 77 75 70
Evals/peak s.d. (x10°) | 66 | 56 63| 95 67 66 66 76

Table 38. The results from 100,000 hillclimbs on the 3-state busy beaver problem.
The table shows, for eight hillclimbers, how frequently an optimal Turing machine
was located, and the mean and standard deviation of the number of evaluations to

do so.
AA SA | BO-2 PA Pess Try-2 Try-4 | Try-n/2
Peaks found 397 444 424 435 411 430 433 438
Evals/peak 12,670 | 17,732 | 16,607 | 14,527 | 14,013 | 11,761" | 11,9037 13,694
Evals/peak s.d. | 13,048 | 16,977 | 16,165 | 13,967 | 14,090 | 10,494 | 10,942 | 13,507

Table 39. The results from 100,000 hillclimbs on the 2-state busy beaver problem.
The table shows, for eight hillclimbers, how frequently an optimal Turing machine
was located, and the mean and standard deviation of the number of evaluations to
do so.

AA | SA | BO-2| PA | Pess | Try-2 | Try-4 | Try-n/2

Peaks found 3409 | 3795 | 3902 | 3991 | 3908 | 3791 | 3738 3874

Evals/peak 767 | 1003 918 | 786 | 743" | 718" | 7421 7

Evals/peak s.d. | 739 | 939 872 | 745 | 707 671 728 748
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The following tables show the standard errors for all data plotted in Figures 13

to 43 in Chapter 3. Algorithm abbreviations appear in Table 1 on page 56. The var-

ious levels of achievement are listed across the top of each table. When an algorithm

did not reach a performance level at least ten times, the table entry is left blank. In

some cases, the levels displayed correspond only to the higher end of the performance

range.

Table 40. The standard errors for CH, GA-S, GA-E and BH on the one max problem

with 60 bits for the data graphed in Figure 13 on page 67.

33

36

39

42

45

48

51

54

57

60

CH 0-16
GA-S | 0-05
GA-E | 0-04
BH 0-10

0-32
0-19
0-17
0-12

0-53
1-06
0-98
0-14

0-85
7-49
6-51
0-15

1-34
12-9
10-8
0-17

2-08
13-9
12-1
0-20

3-38
16-0
14-0
0-24

5-63
19-2
16-6
0-31

10-4
24-6
20-6
0-43

34-0
44-6
353
2-45

Table 41. The standard errors for CH, GA-S, GA-E and BH on the one max problem

with 120 bits for the data graphed in Figure 14 on page 67.

66

72

78

84

90

96

102

108

114

120

CH 0-37
GA-S | 0-13
GA-E | 0-08
BH 0-22

0-74
1-30
0-77
0-27

1-36
14-5
8-80
0-30

2-45
20-8
12-6
0-33

4-41
24-6
14-6
0-36

7-54
29-7
18-0
0-43

12-8
38-9
23-0
0-50

22-8
58-1
32-6
0-64

45-2
901
82-4
0-93

1014

7-62
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Table 42. The standard errors for CH, GA-S, GA-E and BH on the fully easy problem
with 10 subproblems for the data graphed in Figure 15 on page 69.

2 3 4 3 6 7 8 9 10
CH 0-65 | 3-79 | 846 | 13-8 | 20-2 | 29-7 | 46-0 | 92.7 | 301 2137
GA-S [ 0-06 | 1-02 | 16-4 | 48-6 | 85-0 | 202 | 753 | 5099 | 92126 | 1-.0E7
GA-E | 0-06 | 1-01 | 16-0 | 42-9 | 68-9 | 118 | 335 | 1435 | 14537 | 4-3E5
BH 1-:02 | 3-24 | 12.7 | 80-0 | 614 | 9213

Table 43. The standard errors for CH, GA-S, GA-E and BH on the fully easy problem
with 15 subproblems for the data graphed in Figure 16 on page 69.

6 7 8 9 10 11 12 13 14 15
CH 27-5 | 354 | 46-2 73-8 152 401 | 1494 | 9610 | 1-4E5 | 5-0E6
GA-S | 117 | 320 1451 | 11743 | 2-3E5 | 1-5E7
GA-E | 121 | 303 | 1028 | 5838 | 53218 | 1-0E6
BH 373 | 2897 | 36718
Table 44. The standard errors for CH, GA-S, GA-E and BH on the fully deceptive
problem with 10 subproblems for the data graphed in Figure 17 on page 70.
2 3 4 5 6 7 8 9 10
CH 0-85 | 3-71 | 158 | 47-0 | 101 | 227 | 774 | 4710 | 69912 | 3-9E6
GA-S | 0-06 | 1-00 | 10-5 | 44-1 | 201 | 761 | 4164 | 47627 | 1-1E6
GA-E | 0-06 | 1-00 | 9-09 | 36-5 | 152 | 488 | 2160 | 14596 | 2-2E5
BH 20-2 | 491 | 20146




Table 45. The standard errors for CH, GA-S, GA-E and BH on the fully deceptive
problem with 15 subproblems for the data graphed in Figure 18 on page 70.

3 4 3 6 7 8 9 10 11 12
CH 5-10 | 16-5 | 41-8 | 87-0 | 173 | 384 | 1222 | 5585 | 46369 | 4-9E5
GA-S | 5:63 | 13:5 | 32.8 | 102 | 264 | 718 | 2826 | 19927 | 4-3E5
GA-E | 5:59 | 12:6 | 32.5 | 81-5 | 199 | 488 | 1438 | 6489 | 47247 | 6-6E5
BH 6213

Table 46. The standard errors for CH, GA-S, GA-E and BH on the distributed fully
deceptive problem with 10 subproblems for the data graphed in Figure 19 on page 71.

1 2 3 4 3 6
CH 0-30 | 10-0 | 296 7479 | 3-8E5
GA-S [ 0-04 | 0-77 | 182 | 17368 | 3-1E6
GA-E | 0-06 | 1-01 | 194 7705 | 2-8E5 | 7-2E6
BH 21-3 | 510 | 23629

Table 47. The standard errors for CH, GA-S, GA-E and BH on the distributed fully
deceptive problem with 15 subproblems for the data graphed in Figure 20 on page 71.

1 2 3 3 6 7
CH 0-15 | 1-92 | 652 | 682 | 6552 | 1-2E5 | 2-2E6
GA-S | 0-:04 | 0-44 | 20-3 | 1208 | 76983 | 6-1E6
GA-E | 004 | 0-44 | 181 | 665 | 10004 | 1-3E5 | 3-7TE6
BH 18-0 | 248 | 4167
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Table 48. The standard errors for CH, GA-S, GA-E and BH on the busy beaver
problem with 3 states for the data graphed in Figure 21 on page 72.

0

1

2

3

4 3

6

CH
GA-S
GA-E
BH

0-05
0-01
0-01
0-16

0-10
0-02
0-03
0-18

0-38
0-15
0-16
0-71

1-24 | 3-65
1.77 | 13-0
1-86 | 124
1-17 | 1-51

10-4 | 154
48-7 | 787
39-7 | 616
12-1 | 126

Table 49. The standard errors for CH, GA-S, GA-E and BH on the busy beaver
problem with 4 states for the data graphed in Figure 22 on page 72.

4 3 6 7 8 9 10 11 12 13
CH 1-93 1 4.96 | 11-2 | 34-9 | 131 917 | 12930 | 1-4E5 | 1-3E6 | 5-9E6
GA-S | 5:31 | 19-5 | 50-0 | 257 | 2201 | 43098 | 3-3E5 | 6-0E6 | 1-1E7
GA-E | 6:59 | 22-4 | 50-3 | 167 | 951 | 16545 | 2-1E5 | 2-4E6 | 8-1E6
BH 1-03 | 1-58 | 4-66 | 16-8 | 784 | 1003 | 25372 | 2-4E5 | 1-4E6

Table 50. The standard errors for CH, GA-S, GA-E and BH on Holland’s royal road
problem with k = 4 for the data graphed in Figure 23 on page 73.

1 2 3 4
CH 3-23 | 22.2 | 403 | 1-8E5
GA-S | 0-15 | 37-5 | 2070
GA-E | 0-15 | 34-3 | 1321 | 3-1E6
BH 2345




Table 51. The standard errors for CH, GA-S, GA-E and BH on Holland’s royal road
problem with k = 6 for the data graphed in Figure 24 on page 73.

1 2 3
CH 0-86 | 33-8 | 38849
GA-S | 0-:03 | 29-0 | 13786
GA-E | 003 | 31.5 | 12262
BH 359 | 7-4E5

Table 52. The standard errors for CH, CH-1S and CH-NJ on the one max problem
with 120 bits for the data graphed in Figure 25 on page 75.

66 72 78 84 90 96 | 102 | 108 | 114 | 120
CH 0-37 | 0-74 | 1-36 | 2:45 | 4.41 | 7-54 | 12:8 | 22-8 | 45-2 | 1014
CH-15 | 0-31 | 0-80 | 1-81 | 3-52 | 6:19 | 10-4 | 19-4 | 34-5 | 69-1 | 627
CH-NJ | 1.57 | 873 | 257

Table 53. The standard errors for CH, CH-1S and CH-NJ on the fully easy problem
with 15 subproblems for the data graphed in Figure 26 on page 75.

6 7 8 9 10 | 11 12 13 14 15
CH 27-5 1354 | 46-2 | 73-8 | 152 | 401 | 1494 | 9610 | 1-4E5 | 5-0E6
CH-15 | 284 | 36-7 | 48-0 | 65-9 | 97-5 | 164 | 334 | 879 | 3385 | 35004
CH-NJ
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Table 54. The standard errors for CH, CH-1S and CH-NJ on the fully deceptive
problem with 15 subproblems for the data graphed in Figure 27 on page 75.

3 6 7 8 9 10 11 12 13 14
CH 41-8 | 87-0 | 173 | 384 | 1222 | 5585 | 46369 | 4-9E5
CH-15 | 42-1 | 86-3 | 161 | 312 | 708 | 2090 | 7764 | 41828 | 3-8E5 | 5-3E6
CH-NJ

Table 55. The standard errors for CH, CH-1S and CH-NJ on the distributed fully
deceptive problem with 15 subproblems for the data graphed in Figure 28 on page 75.

1 2 3 4 3 6 7
CH 0-15 | 1-92 | 652 | 682 | 6552 | 1-2E5 | 2-2E6
CH-15 | 0-11 | 1-47 | 60-5 | 757 | 7573 | 97328 | 1-8E6
CH-NJ | 0-24 | 2:51 | 50-8 | 1068

Table 56. The standard errors for CH, CH-1S and CH-NJ on the busy beaver problem
with 4 states for the data graphed in Figure 29 on page 76.

4 3 6 8 9 10 11 12 13
CH 1-93 | 496 | 11-2 | 34-9 | 131 | 917 | 12930 | 1-4E5 | 1-3E6 | 5-9E6
CH-15 | 1.92 | 536 | 11-7 | 36-4 | 136 | 964 | 15697 | 1-2E5 | 5-6E5 | 1-7TE6
CH-NJ | 782 | 7718 | 1-0E5

Table 57. The standard errors for CH, CH-1S and CH-NJ on Holland’s royal road
problem with k& = 4 for the data graphed in Figure 30 on page 76.

2 3 4
CH 3-23 | 222 | 403 | 1-8E5
CH-1S | 1-93 | 21-1 | 258 | 14619
CH-NJ | 6-35 | 14063
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Table 58. The standard errors for GA-S and GA-RC on the one max problem with
120 bits for the data graphed in Figure 32 on page 79.

72 77 82 87 92 97 | 102 | 107 | 112 | 117
GA-S 1-30 | 11-5 | 20-2 | 23-2 | 26-2 | 30-5 | 38-9 | 53-0 | 108 | 4-6E5
GA-RC | 0-91 | 10-2 | 55-0 | 2641 | 5-6E6

Table 59. The standard errors for GA-S and GA-RC on the fully easy problem with
15 subproblems for the data graphed in Figure 33 on page 79.

2 3 4 3 6 7 8 9 10 11
GA-S 0-43 | 811 | 31-8 | 62-:8 | 117 | 320 | 1451 | 11743 | 2-3E5 | 1.5E7
GA-RC | 0-42 | 8:56 | 86-0 | 2762 | 3-6E5

Table 60. The standard errors for GA-S and GA-RC on the fully deceptive problem
with 15 subproblems for the data graphed in Figure 34 on page 79.

2 3 4 3 6 7 8 9 10 11
GA-S 0-44 | 563 | 13-5 | 32.8 | 102 | 264 | 718 | 2826 | 19927 | 4-3E5
GA-RC | 0:43 | 6-74 | 38-6 | 616 | 52192

Table 61. The standard errors for GA-S and GA-RC on the distributed fully de-
ceptive problem with 15 subproblems for the data graphed in Figure 35 on page 79.

1 2 3 4 3 6
GA-S 0-04 | 0-44 | 20-3 | 1208 | 76983 | 6-1E6
GA-RC | 0-04 | 0-44 | 7-06 | 124 | 7444 | 8-5E5
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Table 62. The standard errors for GA-S and GA-RC on the busy beaver problem
with 4 states for the data graphed in Figure 36 on page 80.

3 4 3 6 7 8 9 10 11 12
GA-S 0-68 | 5-31 | 19-5 | 50-0 | 257 | 2201 | 43098 | 3-3E5 | 6-0E6 | 1-1E7
GA-RC | 0-87 | 6-87 | 39-0 | 285 | 4407 | 50396 | 7-1E5 | 7-1E6

Table 63. The standard errors for GA-S and GA-RC on Holland’s royal road problem
with k& = 4 for the data graphed in Figure 37 on page 80.

1 2 3
GA-S 0-15 | 37-5 | 2070
GA-RC | 0-16 | 65-7

Table 64. The standard errors for CH-1S, GA-E, BH-MM and BH-DMM on the one
max problem with 120 bits for the data graphed in Figure 38 on page 82.

66 72 78 84 90 96 | 102 | 108 | 114 | 120
CH-15 0-31 | 0-80 | 1-81 | 3-52 | 6-19 | 10-4 | 19-4 | 34-5 | 69-1 | 627
GA-E 0-08 | 0-77 | 8:80 | 12:6 | 14-6 | 18-0 | 23-0 | 32-6 | 82-4
BH-MM | 0-11 | 0-22 | 0-46 | 0-92 | 1-83 | 3-43 | 6-03 | 10-6 | 21-7 | 111
BH-DMM | 0-12 | 0-21 [ 0-37 | 0-66 | 1-15 | 2:05 | 3-59 | 6-29 | 13-3 | 69-5
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Table 65. The standard errors for CH-1S, GA-E, BH-MM and BH-DMM on the fully
easy problem with 15 subproblems for the data graphed in Figure 39 on page 82.

6 7 8 9 10 11 12 13 14 15
CH-1S 28-4 36-7 | 48-0 | 65-9 | 975 164 | 334 | 879 | 3385 | 35004
GA-E 121 303 | 1028 | 5838 | 53218 | 1-0E6
BH-MM 28-8 37-1 | 477 | 61-6 | 81-2 110 | 159 | 278 | 666 | 2630
BH-DMM | 19320 | 1-7Eb
Table 66. The standard errors for CH-1S, GA-E, BH-MM and BH-DMM on the
fully deceptive problem with 15 subproblems for the data graphed in Figure 40 on
page 83.
6 7 8 9 10 11 12 13 14 15
CH-1S 86-3 | 161 | 312 | 708 | 2090 | 7764 | 41828 | 3-8E5 | 5-3E6
GA-E 81-5 | 199 | 488 | 1438 | 6489 | 47247 | 6-6E5
BH-MM 98-8 | 163 | 257 | 399 | 727 | 1445 | 3909 | 13855 | 78320 | 8-2E5
BH-DMM

Table 67. The standard errors for CH-1S, GA-E, BH-MM and BH-DMM on the
distributed fully deceptive problem with 15 subproblems for the data graphed in
Figure 41 on page 83.

1 2 3 4 3 6 7
CH-15 0-11 | 1-47 | 60-5 | 757 | 7573 | 97328 | 1-8E6
GA-E 0-04 | 0-44 | 18-1 | 665 | 10004 | 1-3E5 | 3-7E6
BH-MM | 042 | 88-1 | 383 | 2028 | 14548 | 1-9E5
BH-DMM | 1.77 | 345 | 1106 | 5213 | 28631
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Table 68. The standard errors for CH-1S, GA-E, BH-MM and BH-DMM on the
busy beaver problem with 4 states for the data graphed in Figure 42 on page 83.

4 3 6 7 8 9 10 11 12 13
CH-15 1-92 | 5:36 | 11-7 | 36-4 | 136 | 964 | 15697 | 1-2E5 | 5-6E5 | 1-7TE6
GA-E 6-59 | 22.4 | 50-3 | 167 | 951 | 16545 | 2-1E5 | 2-4E6 | 8-1E6
BH-MM | 0-89 | 2.23 | 5-07 | 17-4 | 78-4 | 528 6948 | 1-0E5 | 6-:3E5 | 2-0E6
BH-DMM | 1-77 | 4-36 | 10-0 | 36-7 | 150 | 890 | 12761 | 1-9E5 | 9-2E5

Table 69. The standard errors for CH-1S, GA-E, BH-MM and BH-DMM on Hol-
land’s royal road problem with k& = 4 for the data graphed in Figure 43 on page 83.

1 2 3 4 3
CH-1S 1-93 | 21-1 | 258 | 14619
GA-E 0-15 | 34-3 | 1321 | 3-1E6
BH-MM 0-66 | 11-9 ] 93-4 | 911 | 29560
BH-DMM | 6:42 | 452
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APPENDIX D

Function Repetition and Invariance in

FDC

As noted in §5.7.1.1(139) the correlation between fitness and distance is un-
changed when multiple copies of a problem are concatenated to form a larger problem.
This appendix proves that this will occur for any number of copies of any function.
We will denote the set of (fitness, distance) pairs of the original “base” function by
S = (X,Y) with cardinality n. When two copies of this function are concatenated, the
(fitness, distance) pairs of the composite function will be the set (X; + X;,Y; +Y;) for
1 <,7 < n since the fitnesses and distances of the new function are simply the sums

of the fitnesses and distances in the solutions to the two subproblems. In general, let

Se=(X®y®)= |J Xi+Xot-+Xp,Vi4 Yot o+ Y5),

(X:,Y;)es

The set of (fitness, distance) pairs S is obtained when k copies of the base set are
concatenated. Henceforth, we will abandon mention of fitness and distance, since the
concepts are irrelevant to the proof. Clearly, S; = (XM, Y1) = & = (X,Y). X and
Y will generally be used in preference to X1 and Y. The notation XZ»(k) will be
used to represent a general element of X®). A simple counting argument shows that
|IX®)| = |Y®)| = nk. The correlation r(P) of any set of ordered pairs P = (A, B) is
given by

_ Cap

r(P)
OACRB
where

Cap= LY (A~ A)(B -~ B)

7

is the covariance of A and B, A and B are the means of A and B, and

n 1 n _ B
UA:sz(AZ o UB:JZZZABZ B)

n n

are the standard deviations of A and B.!

!The denominator in the formula for standard deviation is usually given as n — 1, not n. This is
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Lemma 1 For any two sets A and B both of size n,

SU-T)(B-B) =Y ap— =228

n

This is a well-known statistical identity. It can be proved as follows:

SA-A)(B-B) = Y AB-BY A-AY B+nAB
= ZAB—nZE—nZF—I—nZF

= ZAB—nZF
- T AY B
= ZAB—in )

Lemma 2 For all integers k > 0, Y, XZ»(k) = kn*X.

The proof will rely on an identity that will be frequently used in subsequent proofs:

> xP= > (x4 x)

1<i<nk 1<i<nk—1
1<j<n
An identical result holds for Y*). The identity follows from the construction of X*).
This double summation will hereafter be denoted >~ with the understanding that the
ij
index ¢ runs from 1 to n*~! and the index j runs from 1 to n. The proof of the lemma

follows:
S X = x4 xg)
- £xeE
zféjﬂ“”;%*i}@
4 J

= 2 X5 1t

because the value of the mean that is used in the formula is an estimate of the true mean. When the
actual mean of the underlying distribution is known (as in the computation of FDC by examination
of the entire representation space), n replaces n — 1 in the computation of standard deviation [192,
page 19].
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Letting Ty, = >=; XZ»(k), we have arrived at the recurrence relation

nT_1+n"X k>1
T, = B
nX k=1.

Small values of k suggest that T} = kn*X which is quickly confirmed by induction

on k.

Corollary 1 For all integers k>0, X)) = kX,
Since [X®)| = p* and ¥, XZ»(k) = kn*X,

[ k_
xm= Ay

n

Theorem 1 For all integers k > 0, r(Sx) = r(S).

This is the main result and its proof indicates that any number of copies of the base
function S will exhibit the same fitness distance correlation (FDC). The proof is in
two parts. In the first, it is proved that

CX(k)y(k) = kCXy YV k> 0, (1)
and in the second that
Tx ROy — koxoy Y k> 0. (2)

It follows immediately that

Cxmymw _ kCxy  Cxy

r(Sy) = =r(9).

O x (k) Oy (k) kO‘XO'Y oxoy

Lemma 3 For all integers k >0, Cxw yw = kCxy.

COxmym = — S (X - XE) W - vw)

n*Oxmym = S(XH - X®) v - y®)
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— Y xBy nFEXn kY
i 1 1 nk

= ZXZ'(k)YZ(k) —n*2XY

= > - XY

= Y[+ x4y - XY
i7j

= Z [Xi(k_l)yi(k_l) + YjXZ»(k_l) —I-X]Yi(k_l) —I-X]Yj LYY
i7j

— Z (Xl(k—l)}/i(k—l) _ (k _ 1)27?) —I— Z}/J ZXZ(k_l)
b j ;
+2X2 YD 4 XY= (2k-1)XY

J 1 iJ i

= S (xFIyEY XG0 YED) 4 Vek o (k- )X

AR WEERVIRY N

We now examine the sum in the first term of (3), Zi()(,(k—l)y;(k—l) _ mm)

K3
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If we let w =k — 1, then

Z(Xz(w)m(w) _ X (w) W) _ Z

7 7

= Z XZ.(w)YZ.(w) —wYwn"X —wXwn"Y +n"wXwY
= XYM — WV XM —wX v
+ 3 X Y @)

_ Z(X(w)}/l(w) _ w?X(w) —wX i(w) + X(w) Y(w))

K3

~

_ Z(X(w)ifi(w) _ Yy _ X(w)}/i(w) 4+ X Y ()

K3

= (XM =X @) (v — Y (4)

Replacing w by k — 1 and substituting (4) back into (3), we have
nkCX(k),y(k) = nZ(XZ»(k_l) — X(k—l))(yi(k_l) — Y1)
bt 0 - (- )

Zi(X'(k_l) _ X(k_l))(yi(k_l) — Y (-1

K3

nk—1 n
= COxe-vyyo-n +Oxy

= kCXy

This proves (1), the first part of the main theorem.

Lemma 4 For all integers k > 0, oywoyw = koxoy

This will be proved by examining >; (XZ»(k) — X(’“))2 from which ox (and similarly

oy ) are easily obtained.
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= S - (k= D)X) 42 (Y - (k- )XY - X)
+3 (X =X (5)

Consider the middle term of (5):
23 (XY — (k- 1)X)(X, - X) = z[zxj’f—”xj - ZX}’f—l
’ —Z — )X X; +Z ~ )X’
= [ZX ZX —nXZXk )
- (Zk—1 nk- 1X2Xj + (k= 1)n*X"]
J

= 2[(k—1)n* " XnX = (k- 1)n*X"
— (k= 1)n*X" + (k — )n*X"]

= 0
Therefore (5) becomes
S X0 = S k- )X) Y (- %)
2 1,] 2¥

= nZ(XZ»(k_l)—(k 1)X) —I—nk IZ

. Z (XZ'(k_l) _ X(k—l)) _I_ nk—l Z X] o X)
{ J

Letting T}, = Y; (X»(k) — X®)) | we have arrived at the recurrence relation

nTk_l + nk_lTl k > 1
SHXi - X)) k=1

Small values of k suggest that Ty = kn*~! 3. (X; — 7)2 which is quickly confirmed
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by induction on k. Thus we have

= Vkoy

Similarly, oyx) = Vkoy. Therefore oxm oy = koxoy which proves (2) and com-

pletes the proof of the main theorem.
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