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ABSTRACT
There are many methods for detecting and mitigating soft-
ware errors but few generic methods for automatically re-
pairing errors once they are discovered. This paper high-
lights recent work combining program analysis methods with
evolutionary computation to automatically repair bugs in
off-the-shelf legacy C programs. The method takes as input
the buggy C source code, a failed test case that demonstrates
the bug, and a small number of other test cases that encode
the required functionality of the program. The repair pro-
cedure does not rely on formal specifications, making it ap-
plicable to a wide range of extant software for which formal
specifications rarely exist.

1. INTRODUCTION
Fixing bugs is a difficult, time-consuming, and manual

process. Some reports place software maintenance, tradi-
tionally defined as any modification made on a system after
its delivery, at up to 90% of the total cost of a typical soft-
ware project [22]. Modifying existing code, repairing defects,
and otherwise evolving software are major parts of those
costs [19]. The number of outstanding software defects typ-
ically exceeds the resources available to address them. Ma-
ture software projects are forced to ship with both known
and unknown bugs [13] because they lack the development
resources to deal with every defect.

In this paper, we describe how to address this problem
by combining program analysis methods with evolutionary
computation to automatically repair bugs in off-the-shelf
legacy C programs. Genetic programming (GP) is a com-
putational method inspired by biological evolution which
evolves computer programs tailored to a particular task [12].
GP maintains a population of individual programs, each of
which is a candidate solution to the task. Each individual’s
suitability is evaluated using a task-specific fitness function,
and the individuals with highest fitnesses are selected for

The material in this paper is taken from two original
publications, titled “A Genetic Programming Approach to
Automated Software Repair” (Genetic and Evolutionary
Computation Conference, 2009) and “Automatically find-
ing patches using genetic programming” (Proceedings of the
2009 IEEE 31st International Conference on Software Engi-
neering, IEEE Computer Society).
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continued evolution. Computational analogs of biological
mutation and crossover produce variations of the high-fitness
programs, and the process iterates until a high-fitness pro-
gram is found. GP has solved an impressive range of prob-
lems (e.g., [21]), but it has not been used to evolve off-the-
shelf legacy software. For example, the 2008 Field Guide to
Genetic Programming notes that “while it is common to de-
scribe GP as evolving programs, GP is not typically used to
evolve programs in the familiar Turing-complete languages
humans normally use for software development. It is in-
stead more common to evolve programs (or expressions or
formulae) in a more constrained and often domain-specific
language.” ([18] as quoted by [15])

Our approach assumes that we have access to C source
code, a negative test case that exercises the fault to be re-
paired, and several positive test cases that encode the re-
quired behavior of the program. The C program is rep-
resented as an abstract syntax tree (AST), in which each
node corresponds to an executable statement or control-flow
structure in the program. With these inputs in hand, a mod-
ified version of GP evolves a candidate repair that avoids
failing the negative test case while still passing the positive
ones. We then use structural differencing [1] and delta de-
bugging [25] techniques to minimize the size of the repair,
providing a compact human-readable patch.

A significant impediment for an evolutionary algorithm
like GP is the potentially infinite-size search space it must
sample to find a correct program. To address this prob-
lem, we introduce two key innovations. First, we restrict
the algorithm so that all variations introduced through mu-
tation and crossover reuse structures in other parts of the
program. Essentially, we hypothesize that even if a program
is missing important functionality (e.g., a null check) in one
location, it likely exhibits the correct behavior in another
location, which can be copied and adapted to address the
error. Second, we constrain the genetic operations of mu-
tation and crossover to operate only on the region of the
program that is relevant to the error, specifically the AST
nodes on the execution path that produces the faulty behav-
ior. Instead of searching through the space of all ASTs, the
algorithm searches through the much smaller space of nodes
representing one execution path. In practice, the faulty exe-
cution path has at least an order of magnitude fewer unique
nodes than the AST. Combining these insights, we demon-
strate automatically generated repairs for eleven C programs
totaling 63,000 lines of code.

The main contributions of the work reported in [8, 24] are:

• Algorithms to find and minimize program repairs based



on test cases that describe desired functionality. The
algorithms are generic in the sense that they can repair
many classes of bugs.

• A novel and efficient representation and set of opera-
tions for applying GP to program repair. This is the
first published work that demonstrates how GP can
repair unannotated legacy programs.

• Experimental results showing that the approach gen-
erates repairs for several classes of defects in eleven
production programs taken from multiple domains.

• Experiments to analyze how algorithm performance
scales up with problem size and the relative contri-
bution of different components of the evolutionary al-
gorithm.

In the remaining sections of the paper we first give an
overview of our technical approach (Section 2), illustrating
it with a recent bug in Microsoft’s Zune media player (Sec-
tion 3). In Section 4 we report results obtained for repairs
of several benchmark programs and study how algorithm
performance scales with problem size. We place the work
in the context of prior contributions in Section 5 and dis-
cuss our experiences, caveats and thoughts for future work
in Section 6, concluding in Section 7.

2. TECHNICAL APPROACH
The core of our method is an evolutionary algorithm that

repairs programs by selectively searching through the space
of related program variants until it discovers one that avoids
known defects and retains key functionality. We use a novel
GP representation and make assumptions about the prob-
able nature and location of the necessary repair, improving
search efficiency. Given a defective program, there are sev-
eral issues to be addressed:

1. What is it doing wrong? We take as input a set
of negative test cases that characterizes a fault. The
input program fails all negative test cases.

2. What is it supposed to do? We take as input
a set of positive test cases that encode functionality
requirements. The input program passes all positive
test cases.

3. Where should we change it? We favor changing
program locations visited when executing the negative
test cases and avoid changing program locations visited
when executing the positive test cases.

4. How should we change it? We insert, delete, and
swap program statements and control flow. We favor
insertions based on the existing program structure.

5. When are we finished? We call the first variant that
passes all positive and negative test cases a primary
repair. We minimize the differences between it and
the original input program to produce a final repair.

To present the repair process, we first describe our pro-
gram representation (Section 2.1) and fault localization (Sec-
tion 2.2) choices. We then detail the GP-based repair strat-
egy (Section 2.3), discussing the genetic operators (Section 2.4)
which modify the representation, and the fitness function

(Section 2.5), which uses test cases to evaluate the results of
the modifications. Finally, a post-processing step is used to
minimize the resulting repair (Section 2.6).

2.1 Representation
There are a number of commonly accepted structures for

representing programs, such as control flow graphs (CFGs)
and abstract syntax trees (ASTs). We chose ASTs because
they can losslessly represent all structured programs and tree
operations are well-studied in genetic programming. ASTs
can be expressed at multiple levels of abstraction or granu-
larity, and our program representation reflects the tradeoff
between expressive power and scalability. For example, C
programs contain both statements, such as the conditional
statement “if (!p) { x=0; }” and expressions, such as “0”
or “(!p)”. For scalability, we treat the statement as the
basic unit, or gene. Thus, we never modify “(!p)” into
“(p || error_flag)”because doing so would involve chang-
ing the inner structure of an expression. Instead, when ma-
nipulating compound statements, we operate on entire AST
subtrees. For example, we might delete the entire “if . . . ”
statement, including its then-branch and else-branch chil-
dren. Finally, we never directly modify low-level control-
flow directives such as break, continue or goto, although
statements around them can be modified.

2.2 Fault Localization
We assume that software defects are local and that fixing

one does not require changing the entire program. We thus
narrow the search space by limiting code changes to portions
of the program likely to contain the defect. We bias mod-
ifications towards statement nodes that were visited when
running the negative test cases but not visited when running
the positive test cases. We find this information by assigning
each statement a unique ID and instrumenting the program
to print out the ID of each statement visited [14]. This
allows our approach to scale to larger program sizes. For
example, while the atris program contains a total of 8068
statement nodes (Table 1), we can use this fault localization
information to bias the search toward 34 statement nodes
that are likely to matter, a reduction of over two orders of
magnitude.

Formally, each program variant is a pair containing:

1. An abstract syntax tree (AST) including all of the state-
ments s in the program.

2. A weighted path through that program. The weighted
path is a list of pairs 〈s, ws〉, each containing a state-
ment in the program visited on the negative test case
and the associated weight for that statement.

The default path weight of a statement is 1.0 if it is visited
in the negative test case but not on any positive test case.
Its weight is 0.1 if it is visited on both positive and negative
test cases. All other statements have weight 0.0. The weight
represents an initial guess of how relevant the statement is
to the bug. This approach is related to the union/inter-
section model of fault localization [20]. The weighted path
length is the sum of statement weights on the weighted path.
This scalar gives a rough estimate of the complexity of the
search space and is correlated with algorithm performance
(Section 4). We return to the issue of fault localization in
Section 6.



2.3 Genetic Programming (GP)
We use GP to maintain a population of program vari-

ants. Each variant, sometimes referred to as an individual,
is represented as an abstract syntax tree (AST) annotated
with a weighted path (fault localization information). We
modify variants using two genetic operations, mutation and
crossover and, specifically targeted to this representation.
Mutation makes random changes to the nodes along the
weighted path, while crossover exchanges subtrees between
two ASTs (see below for details). Each modification pro-
duces a new AST and weighted program path. The fitness
of each variant is evaluated by compiling the AST and run-
ning it on the test cases. Its final fitness is a weighted sum of
the positive and negative test cases it passes. Once the fit-
nesses have been computed for each individual, a selection
phase deletes the bottom-ranked 50% of the population.1

The new population is formed by first crossing over the re-
maining high-fitness individuals with the original program.
Each crossover produces a single child. We add the children
to the population and retain the parents unchanged, main-
taining a constant population size. Finally, all surviving
individuals are mutated.

The repair process terminates either when it finds a can-
didate solution that passes all its positive and negative test
cases, or when it exceeds a preset number of generations.
The first variant to pass all test cases is the primary repair.

2.4 Genetic Operators
As mentioned above, we apply genetic programming op-

erators to a given variant to produce new program variants,
thus exploring the search space of possible repairs. A key
operator is mutation, which makes random changes to an in-
dividual. Because the primitive unit (gene) of our represen-
tation is the statement, mutation is more complicated than
the simple bit flip used in other evolutionary algorithms.
Only statements on the weighted path are subject to the
mutation operator. Each location on the weighted path is
considered for mutation with probability equal to its path
weight multiplied by a global mutation rate. A statement se-
lected for mutation is randomly subjected to either deletion
(the entire statement and all its sub-statements are deleted:
s ← {}), insertion (another statement is inserted after it:
s ← {s; s′; }), or swap of (s ← s′ while s′ ← s). Note that
a single mutation step in our scheme might contain multi-
ple statement-level mutation operations along the weighted
path.

The second operation for manipulating variants is crossover,
which in GP exchanges subtrees chosen at random between
two individuals. Although our initial experiments used a
more complicated form of crossover, we have seen that the
results do not depend on the particular crossover operator
used [8]. During each generation, every surviving variant
undergoes crossover.

Finally, there are a number of other C program compo-
nents not touched by the GP operators, such as datatype
definitions and local and global variable declarations. Be-
cause these are never on the weighted path, they are never
modified by mutation or crossover. This potentially limits
the expressive power of the repairs: If the best fix for a bug
is to change a data structure definition, GP will not dis-

1 We obtained results qualitatively similar to those re-
ported here with a more standard method known as tour-
nament selection.

cover that fix. For example, some programs can be repaired
either by reordering the data structure fields, or by chang-
ing the program control flow; our technique finds the second
repair. Ignoring variable declarations, on the other hand,
can cause problems with ill-formed variants. Because of the
constraints on mutation and crossover, GP never generates
syntactically ill-formed programs (e.g., it will never generate
unbalanced parentheses). However, it could move the use of
a variable outside of its declared scope, leading to a seman-
tically ill-formed variant that does not type check and thus
does not compile.

2.5 Fitness Function
In GP, the fitness function is an objective function used

to guide the search. The fitness of an individual in a pro-
gram repair task should assess how well the program avoids
the program bug while still doing “everything else it is sup-
posed to do.” We use test cases to measure fitness. For our
purposes, a test case consists of input to the program (e.g.,
command-line arguments, data files read from the disk, etc.)
and an oracle comparator function that encodes the desired
response. A program P is said to pass a test case T iff the or-
acle is satisfied with the program’s output: Toracle(P (Tinput)) =
pass. Test cases may check additional behavior beyond pure
functional correctness (e.g., the program may be required to
produce the correct answer within a given time bound or
otherwise avoid infinite loops). Such testing accounts for as
much as 45% of total software lifecycle costs [17], and finding
test cases to cover all parts of the program and all required
behavior is a difficult but well-studied problem in the field
of software engineering.

We call the defect-demonstrating inputs and their anoma-
lous outputs (i.e., the bug we want to fix) the negative test
cases. We use a subset of the program’s existing test in-
puts and oracles to encode the core functionalities of the
program, and call them the positive test cases. Many tech-
niques are available for identifying bugs in programs, both
statically (e.g., [3, 10]) and dynamically (e.g., [7, 13]). We
assume that a bug has been identified and associated with
at least one negative test case.

The fitness function takes a program variant (genotype),
compiles the internal representation into an executable pro-
gram and runs it against the set of positive and negative test
cases. It returns the weighted sum of the test cases passed.
The sum is weighted so that the passing the negative test
cases is worth at least as much as passing the positive test
cases. Intuitively, this weighting rewards the search for mov-
ing toward a possible repair. Programs that do not compile
are assigned fitness zero.

2.6 Minimizing the repair
Because the GP may introduce irrelevant changes, we use

program analysis methods to trim unnecessary edits from
the primary repair. For example, in addition to the repair,
the GP might produce dead code (x=3; x=5;) or calls to
irrelevant functions. We use tree-structured difference algo-
rithms and delta debugging techniques in a post-processing
step to generate a simplified patch that, when applied to the
original program, causes it to pass all of the test cases.

Using tree-structured differencing [1], we view the primary
repair as a set of changes against the original program. Each
change is a tree-structured operation such as “take the sub-
tree of the AST rooted at position 4 and move it so that it



becomes the 5th child of the node at position 6”. We seek
to find a small subset of changes that produces a program
that still passes all of the test cases.

Let Cp = {c1, . . . , cn} be the set of changes associated
with the primary repair. Let Test(C) = 1 if the program ob-
tained by applying the changes in C to the original program
passes all positive and negative test cases; let Test(C) = 0
otherwise. A one-minimal subset C ⊆ Cp is a set such that
Test(C) = 1 and ∀ci ∈ C. Test(C \ {ci}) = 0. That is, a
one-minimal subset produces a program that passes all test
cases, but dropping any additional elements causes the pro-
gram to fail at least one test case. Checking if a set is valid
involves a fitness evaluation (a call to Test).

We use delta debugging [25] to efficiently compute a one-
minimal subset of changes from the primary repair. Delta
debugging is conceptually similar to binary search, but it re-
turns a set instead of a single number. Intuitively, starting
with {c1, . . . , cn}, it might check {c1, . . . , cn/2}: if that half
of the changes is sufficient to pass the Test , then {c1+n/2, . . . , cn}
can be discarded. When no more subsets of size n/2 can
be removed, subsets of size n/4 are considered for removal,
until eventually subsets of size 1 (i.e., individual changes)
are tested. Finding the overall minimal valid set by brute
force potentially involves O(2n) evaluations; delta debug-
ging finds a 1-minimal subset in O(n2) [25, Proposition 12].
However, we typically observe a linear number of tests in
our experiments. This smaller set of changes is presented
to the developers as the final repair in the form of a stan-
dard program patch. In our experiments, the final repair
is typically at least an order-of-magnitude smaller than the
primary repair.

3. ILLUSTRATION
On December 31st, 2008 a bug was widely reported in the

Microsoft Zune media players, causing them to freeze up.2

The fault was a bug in the following program fragment:3

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year )){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 else {
10 }
11 }
12 else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("the year is %d\n", year);
18 }

When the value of the input days is the last day of a leap
year (such as 10593, which corresponds to Dec 31, 2008),
the program enters an infinite loop on lines 3–16.

2 See Microsoft Zune affected by “Bug”, BBC News, De-
cember 2008, http://news.bbc.co.uk/2/hi/technology/
7806683.stm
3 Downloaded from http://pastie.org/349916 (Jan.

2009). Note that the original program source code does
not make lines 9–10 explicit: our AST represents missing
blocks, such as those in if statements without else clauses,
as blocks containing zero statements.

We now walk through the evolution of a repair for this pro-
gram. We first produce its AST and determine the weighted
path, using line numbers to indicate statement IDs. The
positive test case zunebug(1000) visits lines 1–8, 11–18.
The negative test case zunebug(10593) visits lines 1–16, and
then repeats lines 3, 4, 8, and 11 infinitely.

For the purposes of this example, the negative test cases
consist of the inputs 366 and 10593, which cause an infinite
loop (instead of the correct values, 1980 and 2008), and the
positive test cases are the inputs 1000, 2000, 3000, 4000, and
5000, which produce the correct outputs 1982, 1985, 1988,
1990 and 1993.

We consider one variant, V , which is initialized to be iden-
tical to the original program. In Generation 1, two opera-
tions mutate V : the conditional statement“if (days > 366)

{ days -= 366; year +=1; }” is inserted between lines 6
and 7 of the original program; and the statement“days -= 366”
is inserted between lines 10 and 11. Note that the first in-
sertion includes not just the if but its entire subtree. This
produces the following code fragment:

5 if (days > 366) {
6 days -= 366;
7 if (days > 366){ // insert #1
8 days -= 366; // insert #1
9 year += 1; // insert #1
10 } // insert #1
11 year += 1;
12 }
13 else {
14 }
15 days -= 366; // insert #2

This modified program passes the negative test case 366
(year 1980) and one positive test case 1000.

Variant V survives Generations 2, 3, 4, 5 unchanged, but
in Generation 6, it is mutated with the following operations:
lines 6–10 are deleted, and “days -= 366” is inserted be-
tween lines 13 and 14:

5 if (days > 366) {
6 // days -= 366; // delete
7 // if (days > 366){ // delete
8 // days -= 366; // delete
9 // year += 1; // delete
10 // } // delete
11 year += 1;
12 }
13 else {
14 days -= 366; // insert
15 }
16 days -= 366;

At this point, V passes all of the test cases, and the search
terminates with V as the primary repair. The minimization
step is invoked to discard unnecessary changes. Compared
to the original program (and using the line numbers from the
original), there are three key changes: c1 = “days -= 366”
deleted from line 6; c2 = “days -= 366” inserted between
lines 9 and 10; and c3 = “days -= 366” inserted between
lines 10 and 11. Only c1 and c3 are necessary to pass all
tests, so change c2 is deleted, producing the final repair:

1 void zunebug_repair(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year )){
5 if (days > 366) {
6 // days -= 366; // deleted
7 year += 1;



8 }
9 else {
10 }
11 days -= 366; // inserted
12 } else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("the year is %d\n", year);
18 }

On average, constructing and minimizing a repair for the
Zune fragment shown here takes our prototype a total 42
seconds, including the time to compile and evaluate variants
against a suite of five positive and two negative tests.

4. RESULTS
To date, we have repaired twenty defects in modules to-

taling 186kLOC from twenty programs totaling 2.3MLOC
(not all shown here). We have repaired defects from eight
classes: infinite loop, segmentation fault, heap buffer over-
run, non-overflow denial of service, integer overflow, invalid
exception, incorrect output, and format string vulnerabil-
ity. Constructing a repair requires 1428 seconds on average,
most of which is spent performing an average of 3903 fitness
evaluations. In Table 1, we summarize results for eleven
benchmark programs reported in [8, 24]. The benchmark
programs, test cases, GP code, and the supporting infras-
tructure used to generate and reproduce these results are
available at: http://genprog.adaptive.cs.unm.edu/.

In all of our experiments, a standard trial uses the follow-
ing setup. The population size is 40, and GP runs for a max-
imum of 20 generations. For the first ten generations, the
global mutation rate is 0.06. If no primary repair is found,
the current population is discarded, the global mutation rate
is halved to 0.03, and, if possible, the weighted path is re-
stricted to statements visited solely during the negative test
case, and the GP is run for ten additional generations. These
results show that GP can automatically discover repairs for
a variety of documented bugs in production C programs.

The trial terminates if it discovers a primary repair. We
performed 100 trials for each program, memoizing fitnesses
such that within one trial, two individuals with different
ASTs but the same source code are not evaluated twice.
Similarly, individuals that are copied to the next generation
without change are not reevaluated.

Once a primary repair has been located, the process of
minimizing it to a final repair is quite rapid, requiring under
five seconds on average. Final repairs, expressed in patch

format, varied in size from four lines (e.g., zune: one insert,
one delete, and one context-location line for each edit) to 11
lines (e.g., look utx 4.3).

Not all trials lead to a successful repair; in the repairs
shown here, an average of 60% of trials produce a primary
repair. The “Time” and “Fitness Evals” columns in Table 1
measure the effort taken for a successful trial. Since all trials
are independent, a number of trials can be run in parallel,
terminating when the first successful trial yields a primary
repair. In addition, the fitnesses of different variants and
the results of different test cases for a given variant can all
be evaluated independently, making our approach easy to
parallelize on multicore architectures. The measurement in
Table 1 were made on a quad-core 3 GHz machine.

Over half of the total time required to create a repair is

  

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

uniq look utx
look svr

units

deroff     

nullhttpd      

indent

flex

openldap

lighttpd
atris

tiff

ccrypt

leukocyte

imagemagick 

php

wu-ftpd

f(x) = 0.78x + 0.08
R² = 0.62

log of weighted path length

lo
g 

o
f 

av
g 

fit
n
e
s 

ev
al

s 
p
er

 r
e
pa

ir

Figure 1: GP search time scales with weighted path
size. Data are shown for 18 programs successfully
repaired by GP (gcd and zune examples omitted),
with best linear fit. The x-axis is the base-10 log-
arithm of the weighted path length, and the y-axis
shows the logarithm of the total number of fitness
evaluations performed before the primary repair is
found (averaged over 100 runs).

spent evaluating fitness by running compiled variants through
test cases. For programs with large test suites, this cost can
be considerable. A dominant factor in the scalability of our
approach is thus the number of such fitness evaluations that
must be made to find a repair. The number of fitness eval-
uations required is related to the size of the search space
and the efficacy of the search strategy: each fitness evalua-
tion represents a single probe. We hypothesize that the size
of the weighted path is a good representation of the search
space size; recall that we only modify statements along the
path (Section 2.2 and Section 2.4). Figure 1 shows the re-
sults of an empirical investigation into this relationship, plot-
ting the average number of fitness evaluations required to
produce each of eighteen repairs against the length of their
weighted paths (note log-log scale). Although more data
points are needed before strong conclusions can be drawn,
the plot suggests that the number of fitness evaluations, and
thus the search time, may scale as a power law of the form
y = axb where b is the slope of the best fit line (1.07). This
suggests that the time to find a repair scales nearly linearly
with the size of the weighted path for a fixed number of test
cases.

Our approach has also failed to repair some defects, in-
cluding those that require many simultaneous edits or changes
that cannot be made directly at the statement level (e.g.,
matmul(b,a) should be matmul(a,b)). We return to the
issue of repair quality in Section 6.

5. RELATED WORK
Arcuri [2] proposed the idea of using GP to repair software

bugs automatically, and Orlov and Sipper experimented with



Lines Weighted Fitness Repair
Program of Code Path Description Fault Time Evals Size

gcd 22 1.3 Euclid’s algorithm infinite loop 153 s 45.0 2
zune 28 2.9 MS Zune excerpt infinite loop 42 s 203.5 4
uniq utx 4.3 1146 81.5 duplicate filtering segmentation fault 34 s 15.5 4
look utx 4.3 1169 213.0 dictionary lookup segmentation fault 45 s 20.1 11
look svr 4.0 1363 32.4 dictionary lookup infinite loop 55 s 13.5 3
units svr 4.0 1504 2159.7 metric conversion segmentation fault 109 s 61.7 4
deroff utx 4.3 2236 251.4 document processing segmentation fault 131 s 28.6 3
nullhttpd 0.5.0 5575 768.5 webserver heap buffer overrun 578 s 95.1 5
indent 1.9.1 9906 1435.9 source code formatting infinite loop 546 s 108.6 2
flex 2.5.4a 18775 3836.6 lexical analyzer generator segmentation fault 230 s 39.4 3
atris 1.0.6 21553 34.0 graphical tetris game stack buffer overrun 80 s 20.2 3

total 63277 8817.2 2003 s 651.2 39

Table 1: Eleven defects repaired by our technique, summarized from previous work. The size of each program
is given in lines of code as well as weighted path units (see Section 2.2). Each repair used five or six positive
tests and one or two negative tests. The “Time” column gives the total wall-clock time required to produce
and minimize the repair (on a successful trial). The “Fitness Evals” column lists the number of times the
entire fitness function was called before a repair was found (averaged over only the successful trials). The
“Repair Size” column gives the size of the final minimized repair, as measured in lines by the Unix diff utility.

evolving Java bytecode [15]. However, our work is the first
to report substantial experimental results on real programs
with real bugs. The field of Search-Based Software Engi-
neering (SBSE) [9] uses evolutionary and related methods
for software testing, e.g., to develop test suites, improve soft-
ware project management and effort estimation find safety
violations and in some cases re-factor or re-engineer large
software bases In SBSE, most innovations in the GP tech-
nique involve new kinds of fitness functions, and there has
been less emphasis on novel representations and operators,
such as those explored here.

Our approach automatically repairs programs without spec-
ifications. In previous work we developed an automatic algo-
rithm for soundly repairing programs with specifications [23].
However, formal specifications are not always available (e.g.,
there were no formal specifications available for any of the
programs repaired here), so the present work focuses on test
cases to check and ensure correctness.

Trace and fault localization, minimization, and explana-
tion (e.g., [11]) projects also aim to elucidate faults and ease
debugging. These approaches typically narrow down an er-
ror symptom to a few lines (a potential cause). Our work
extends this work by by proposing a concrete repair. In
addition, these other algorithms are usually limited to the
given trace or source code and will thus never localize the
“cause” of an error to a missing statement or suggest that
a statement be moved. Our approach can infer new code
that should be added, deleted, or swapped: six of the eleven
repairs in Table 1 required insertions or swaps.

Demsky et al. [5] present a technique for data structure
repair. Given a formal specification of data structure con-
sistency, they modify a program so that if the data struc-
tures ever become inconsistent, they can be modified back
to a consistent state at runtime. Their technique does not
modify the program source code in a user-visible way. In-
stead, it inserts run-time monitoring code that “patches up”
inconsistent state so that the buggy program can continue
to execute. Thus, their programs continue to incur the run-
time overhead after the repair is effected. Another difference

from our work is that their data structure repair requires
formal specifications Finally, their technique is limited to
data structures and does not address the full range of logic
errors. The gcd infinite loop in Section 3, for example, is
outside the scope of this technique. However, this technique
complements ours: in cases where runtime data structure
repair does not provide a viable long-term solution, it may
enable the program to continue to execute while our tech-
nique searches for a long-term repair.

Clearview [16] automatically detects and patches assembly-
level errors in deployed software. Clearview monitors a pro-
gram at runtime, learns invariants that characterize nor-
mal behavior, and subsequently flags violations for repair.
Candidate patches that make the implicated invariant true
are generated and tested dynamically. Although the perfor-
mance overhead of Clearview is high, it has successfully been
applied to buggy versions of Mozilla Firefox and evaluated
against a Red Team of hackers. However, Clearview can re-
pair only those errors that are relevant to selected monitors.
Our method is more generic, providing a single approach to
repair multiple classes of faults without the need for specific
monitors, and we do not require continual runtime moni-
toring (and the incumbent slowdown) to create and deploy
repairs.

This body of work illustrates a burgeoning interest in the
problem of automated software repair and some of the many
possible approaches that might be tried. There are sev-
eral other recent but less mature proposals for automatically
finding and repairing bugs in software, e.g., [4], suggesting
that we can expect rapid progress in this area over the next
several years.

6. DISCUSSION
The results reported here demonstrate that GP can be

applied to the problem of bug repair in legacy C programs.
However, there are some caveats.

Basic limitations. First, we assume that the defect is
reproducible and that the program behaves deterministically
on the test cases. This limitation can be mitigated by run-



ning the test cases multiple times, but ultimately if the pro-
gram behavior is random it will be difficult for our method
to find or evaluate a correct patch. We further assume that
positive test cases can encode program requirements. Test
cases are much easier to obtain than formal specifications
or code annotations, but if too few are used, a repair could
sacrifice important functionality. In practice, we are likely
to have too many test cases rather than too few, slowing
down fitness evaluation and impeding the search. We also
assume that the path taken along the negative test case is
different from the positive path. If they overlap completely
our weighted representation will not guide GP modifications
as effectively. Finally, we assume that the repair can be con-
structed from statements already extant in the program; in
future work we plan to extend our method to include a li-
brary of repair templates.

Evolution. One concern about our results to date is the
role of evolution. Most of our repairs result from one or two
random modifications to the program, and they are often
found within the first few generations or occasionally, not
at all. We have conducted some experiments using a brute
force algorithm (which applies simple mutation operations
in a predetermined order) and random search (which ap-
plies mutation operations randomly without any selection
or inheritance of partial solutions). Both these simpler al-
ternatives perform as well or better than the GP on many,
but not all, of our benchmark programs. We do not fully
understand what characteristics, either of the program or
the particular bug, determine how easily a solution can be
found through random trial and error. However, thus far GP
outperforms the other two search strategies in cases where
the weighted path is long (i.e., where the fault is difficult
to localize). There are several interesting questions related
to the design of our GP algorithm, but the overall process
proved so successful initially that we have not experimented
carefully with parameter values, selection strategies, and op-
erator design. These all could almost certainly be improved.

Fault localization. As Figure 1 shows, the time to find
a solution varies with the length of the weighted path. Since
the weighted path is a form of fault localization, we could
use off-the-shelf fault localization techniques (e.g., [11, 20])
or dynamically discovered invariants [13], in the style of
Daikon [6] to further narrow the search space. Predicates
over data might help in cases where faults cannot be local-
ized by control-flow alone, such as cross-site scripting or SQL
injection attacks. In addition, our recent experiments have
shown that the location of the fault (i.e., where to insert
new code) is rarely the same as source of the fix (i.e., where
to find code to insert). Since more than half of our repairs
involve inserting or swapping code, locating viable fixes is of
critical importance but remains poorly understood.

Fitness function. Our current test suite fitness function
has the advantage of conceptual simplicity: a variant that
passes all test cases is assumed to be correct, and a variant
that does not compile or fails all tests is rejected. However, it
may not be accurate in the middle ranges or precise enough
to guide the evolutionary search in more complex problems.
Consider a program with a race condition, for which the
fix consists of inserting separate lock and unlock calls. A
variant with a partial solution (e.g., just an inserted lock)
may unfortunately pass fewer test cases (e.g., by deadlock-
ing), thus “deceiving” the evolutionary algorithm. Fitness
function design could be enhanced in several ways, for exam-

ple, by weighting individual test cases, dynamically choosing
subsets of test cases to be included, or by augmenting the
test case evaluation with other information. For example,
if a simple predicate like x==y is true at a particular point
on all positive test cases, but false for the negative test, a
variant that causes it to be true for the negative test might
be given a higher fitness value.

Repair quality. We are interested in how much repairs
vary after minimization, and how repair quality compares
to human-engineered solutions. In our experiments to date,
many, but not all, repairs look identical after the minimiza-
tion step. For example, we have isolated twelve distinct re-
pairs for the nullhttpd fault, but much overlap exists (e.g.,
two repairs may insert the same statement into different
points in the same basic block). Repair quality depends
on the presence of a high-quality set of positive test cases
that encode program requirements. In other work, we ex-
perimented with held-out indicative workloads, fuzz testing,
and held-out exploits to demonstrate that our server repairs
address the causes of problems without being fragile memo-
rizations of the negative input and without failing common
requests (i.e., because of the positive tests). Much remains
to be done in this area, however, such as automatically doc-
umenting or proving properties of the generated repairs.

Future work. Beyond these immediate steps, there are
other more ambitious areas for future work. For example,
we plan to develop a generic set of repair templates so the
GP has an additional source of new code to use in muta-
tion, beyond those statements that happen to be in the pro-
gram. Our AST program representation could be extended
in various ways, for example, by including data structure
definitions and variable declarations. Similarly, we are cur-
rently experimenting with assembly- and bytecode-level re-
pairs. Finally, we are interested in testing the method on
more sophisticated errors, such as race conditions, and in
learning more about bugs that need to be repaired, such as
their size and distribution, and how we might identify which
ones are good candidates for the GP technique.

7. CONCLUSIONS
We credit much of the success of this technique to de-

sign decisions that limit the search space. Restricting at-
tention to statements, focusing genetic operations along the
weighted path, re-using existing statements rather than in-
venting new ones, and repairing existing programs rather
than creating new ones all help to make automatic repair of
errors using GP tractable in practice.

The dream of automatic programming has eluded com-
puter scientists for at least 50 years. The methods described
in this paper do not fulfill that dream by evolving new pro-
grams from scratch. However, they do show how to evolve
legacy software in a limited setting, providing at least a small
down payment on the dream. We believe that our success
in evolving automatic repairs may say as much about the
state of today’s software as it says about the efficacy of our
method. In modern environments, it is exceedingly difficult
to understand an entire software package, test it adequately,
or localize the source of an error. In this context, it should
not be surprising that human programming often has a large
trial and error component, and that many bugs can be re-
paired by copying code from another location and pasting it
in to another. Such debugging is not so different from the
approach we have described in this paper.
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