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Abstract

We describean artificial immunesystem(AIS)
that is distributed,robust, dynamic,diverseand
adaptive. It capturesmany featuresof the ver-
tebrateimmunesystemand placesthem in the
context of the problemof protectinga network
of computersfrom illegal intrusions. The AIS
resemblesa classifiersystemin many important
ways.Similaritiesanddifferencesarediscussed.

1 INTRODUCTION

The parallel betweenimmunologyand classifiersystems
wasnotedasearly as1986in [4]. In this work, a classi-
fier systemwas usedto modelcertainaspectsof the im-
munesystem,by drawing an analogybetweenindividual
classifierrulesandantibodytypes.Classifierstrengthrep-
resentedtheconcentrationof theantibodytype,andinter-
actionsbetweenclassifierrulesmodeledJerne’s idiotypic
network hypothesis[16]. Although the comparisonwas
interesting,it hadrelatively little impacton classifiersys-
temresearch,andthetwo fieldshave continuedto develop
largely independently. Sincethat time, however, artificial
immunesystemmodelinghasadvancedsignificantly, and
the emphasishasswitchedfrom idiotypic network theory
to otheraspectsof immunology.

Likewise,in thetwentyyearssincelearningclassifiersys-
temswereproposed[12], our thinkingaboutcognitivesys-
temshasprogressedin many interestingways. Oneof the
mostsignificantchangeshasbeentherealizationthatliving
cognitive systemsare situatedin physicalenvironments,
and that their designsareboth constrainedandhelpedin
important ways by this embedding. Brooks and others
[8, 1] argue that it is fruitless to designintelligent sys-
temsin isolationfrom theenvironmentsin which they ex-
ist. Learningclassifiersystemswereproposedasa general
modelof cognition,with alimitedandhighlyabstractinter-

faceto theenvironment.We believe thatresearchon clas-
sifier systemshassuffered from this loosecouplingwith
liveenvironments.Situatedintelligentartifactsareperhaps
morecomplex to thinkabout,becausethey cannotbeneatly
separatedfrom their environments,but they can in some
casesuse their environmentsin ways that simplify their
computations.

Thispaperdescribesanongoingprojectto developanarti-
ficial immunesystem(AIS), which is bothcloselyrelated
to classifiersystemsandembeddedin a live environment.
Our startingpoint for this line of researchwasa collection
of pressingunsolvedproblemsin computersecurity. Over
the pastseveral yearswe have designedand built proto-
typesfor severalcomputersecurityproblems.Armedwith
that experience,we show herehow to embedan architec-
ture for adaptive behavior in a real-timeenvironmentwith
liveagents(computersandthehumanswhooperatethem).

A moredetaileddescriptionof theAIS architectureappears
in [9, 10], togetherwith experimentalandanalyticalresults
of its performance.Ouremphasishereis onthecomparison
with classifiersystems.

2 THE IMMUNE SYSTEM

The immunesystemis highly complicatedandappearsto
be preciselytunedto the problemof detectingandelimi-
natinginfections.It is alsoa compellingexampleof a dis-
tributedinformation-processingsystem,onewhich we can
studyfor thepurposeof designingbetterartificial adaptive
systems.

Theimmunesystemis comprisedof cellsandmolecules.�
Recognitionof foreignprotein,calledantigen, occurswhen
immunesystemdetectors,including T cells, B cells, and
antibodies,bind to antigen.Binding betweendetectorand
antigenis determinedby the physicalandchemicalprop-
ertiesof binding regions on the cell surface. Binding is
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highly specific, so eachdetectorrecognizesonly a lim-
ited set of structurallyrelatedantigen. When a detector
andantigenbind,acomplex setof eventsis initiated,often
resultingin eliminationof the antigenby scavengercells
calledmacrophages.(How antigenis boundandcleared
dependson the typeof detectorinvolved.) A striking fea-
tureof theimmunesystemis thattheprocessesby which it
generatesdetectors,identifiesandeliminatesforeignmate-
rial, andremembersthepatternsof previousinfectionsare
all highly parallelanddistributed. This is onereasonim-
munesystemmechanismsareso complicated,but it also
makesthemhighly robust to failure of individual compo-
nentsandto attackson theimmunesystemitself.

Immunologistsoften describethe problemsolved by the
immune system as that of discriminating “self” from
“other” (or “nonself”) and eliminatingother. In the lan-
guageof classifiersystems,the immunesystemmustpro-
cessexternalandinternalmessages,first classifyingthem
as self or nonself, and in the caseof dangerousforeign
messagestaking appropriateaction. In immunology, self
is generallytakento betheinternalcellsandmoleculesof
the body, andnonselfis any foreignmaterial,particularly
bacteria,parasites,andviruses.A moremodernview em-
phasizestheimmunesystem’s role in eliminatinginfection
in additionto its toleranceof self [17], (self vs. harmful
other). As theability to distinguishcorrectlybetweenself
andnonselfis certainlycrucialto theimmunesystem’ssuc-
cess,it is acommonstartingpointfor immunesystemmod-
els.Distinguishingbetweenself andnonselfis difficult for
severalreasons.First, thecomponentsof thebodyarecon-
structedfrom the samebasicbuilding blocks,particularly
proteins,asnonself.Proteinsarean importantconstituent
of all cells,andtheimmunesystemprocessesthemin vari-
ousways,includingin fragmentscalledpeptideswhichare
short sequencesof amino acids. Second,the size of the
problemto besolvedis largewith respectto theavailable
resources.For example,it hasbeenestimatedthatthever-
tebrateimmunesystemneedsto beableto detectbetween��� ��� and

��� �
	 patterns[13], yetit hasonlyabout
�����

differ-
entgenesfrom which it mustconstructtheentireimmune
system(aswell aseverythingelsein thebody). Thediffi-
cultyof thisdiscriminationtaskis shownby thefactthatthe
immunesystemcanmakemistakes.Autoimmunediseases
provide many examplesof the immunesystemconfusing
selfwith other.

3 THE ENVIRONMENT

There are compelling similarities betweenthe problem
facedby thehumanimmunesystemandthat of computer
security. Both mustprotecthighly complex, dynamically
changingsystemsagainstintrusionsfrom awidevarietyof
sources.Bothmustensurethecontinuedfunctioningof the

system,andmustensurethattheprotectivemechanismsdo
not seriouslydamagethesystem.However, thesesystems
seemto have radicallydifferentwaysof solvingtheprob-
lemsconfrontingthem. The immunesystemdoesso in a
waythatis distributed,flexible,adaptable,robust,degrades
gracefully, and is resilient to errorsand subversion[20].
Thesearepropertieswe would like to seein computerse-
curity systems.

We have studiedseveral computersecurityproblems,in-
cludingcomputervirus detection[6], host-basedintrusion
detection[5], andnetwork security[9]. In this paperwe
concentrateon the latter—protectinga local-areabroad-
castnetwork (LAN) from network-basedattacks. Broad-
castLANs havetheconvenientpropertythateverylocation
(computer)seesevery packet passingthrough the LAN,
so we canview the entireLAN asthe “body” to be pro-
tected,andeachcomputeron theLAN asa differentloca-
tion within it.

In this domain,we defineself to bethesetof normalpair-
wise connections(at the TCP/IP level) betweencomput-
ers, including connectionsbetweentwo computersin the
LAN aswell asconnectionsbetweenonecomputerin the
LAN and one external computer(Figure 1). A connec-
tion is definedin termsof its “data-pathtriple”—thesource
IP address,the destinationIP address,andthe service(or
port) by which the computerscommunicate.This defini-
tion of self, including thedatapathtriples,wasintroduced
in [7, 18]. In our representation,this informationis com-
pressedto a single49-bit stringwhich unambiguouslyde-
finesthe connection.Self is thenthe setof normally oc-
curringconnectionsobservedover time on theLAN, each
connectionbeingrepresentedby a 49-bit string. Similarly,
nonselfis alsoa setof connections(usingthesame49-bit
representation),the differencebeing that nonselfconsists
of thoseconnections,potentiallyanenormousnumber, that
arenotnormallyobservedon theLAN.

More generally, we can think of both the protectedsys-
tem (self) and infectiousagents(nonself)as dynamically
changingsetsof bit strings.In cellsof thebodytheprofile
of expressedproteins(self) changesover time, and like-
wise, we expectour set of protectedstringsto vary over
time. Similarly, thebodyis subjectedto differentkindsof
infectionsovertime;wecanview nonselfasadynamically
changingsetof strings.

4 ARCHITECTURE OF THE AIS 

Naturalimmunesystemsconsistof many differentkindsof
cells andmolecules—lymphocytes(B lymphocytesandT
lymphocytes),macrophages,dendriticcells, naturalkiller
cells, mastcells, interleukins,interferons,andmany oth-�
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ers. Although thesecomponentshave beenidentifiedand
studiedexperimentally, it is not always well-understood
what role they play in the overall immuneresponse.In
ourAIS, wewill simplify by introducingonebasictypeof
detectorcell which combinesusefulpropertiesfrom sev-
eral different immunecells. This detectorcell will have
severaldifferentpossiblestates,roughlycorrespondingto
thymocytes(immatureT lymphocytesundergoingnegative
selectionin thethymus),naiveB lymphocytes(whichhave
never matchedforeign material),andmemoryB lympho-
cytes (which are long-lived and easily stimulated). The
natural immunesystemalso hasmany different typesof
effector cells, eachimplementinga different immunere-
sponse(e.g.,macrophage,mastcells, etc.), which we do
notcurrentlyincludein ourmodel.

Eachdetectorcell is representedby a singlebit string of
length ������� bits, anda small amountof state(seeFig-
ure1). In effect, we arerepresentingonly thereceptorre-
gion on thesurfaceof a lymphocyte, or in thecaseof an-
tibody molecules,the variableregion of the molecule. It
is this region that binds to foreignmaterial,a processthat
we call recognition. Therearemany waysof implement-
ing the detectors,for example,a detectorcould bea clas-
sifier, productionrule, a neuralnetwork, or an agent. We
choseto implementdetection(binding)asstringmatching,
whereeachdetectoris a string � , anddetectionof a string� occurswhenthereis a matchbetween� and � , accord-
ing to a matching rule. We usestringmatchingbecauseit
is simpleandefficient to implement,andeasyto analyze
andunderstand.ObviousmatchingrulesincludeHamming
distance,edit distance,or the1,0,#matchingrule for clas-
sifiers. We chosea moreimmunologicallyplausiblerule,
calledr-contiguous bits [19].

Two strings � and � matchunderthe � -contiguousbits rule
if � and � have the samesymbolsin at least � contiguous
bit positions. The value � is a thresholdand determines
thespecificityof thedetector, which is anindicationof the
numberof stringscoveredby a singledetector. For exam-
ple,if ����� , thematchingis completelyspecific,thatis, the
detectorwill detectonly a singlestring(itself; recall that �
is thelengthof thedetectorbit string).A consequenceof a
partialmatchingrulewith athreshold,suchas� -contiguous
bits, is that thereis a trade-off betweenthenumberof de-
tectorsused,andtheir specificity:As thespecificityof the
detectorsincreases,sothenumberof detectorsrequiredto
achievea certainlevel of coveragealsoincreases.

The detectorsaregroupedinto setson the LAN, one set
per machine,or host; eachhost looselycorrespondsto a
different locationin the body� . Becauseof the broadcast

�
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the body is an importantpart of the immunesystemthat we are
currentlyignoring.In oursystem,detectorsremainin onelocation

assumption,eachdetectorsetis constantlyexposedto the
currentsetof connectionsin the LAN, which it usesasa
dynamicdefinitionof self (i.e.,theobservedconnectionsin
a fixedtime periodareanalogousto thesetof proteinsex-
pressedin thethymusduringsomeperiodof time). Within
eachdetectorset, new detectors,or thymocytes,are cre-
atedrandomlyandasynchronouslyon a continualsched-
ule, similar to thenaturalimmunesystem.Thesenew de-
tectorsremainimmature for someperiodof time, during
which they have theopportunityto matchany currentnet-
work connections.If a detectormatcheswhenit is imma-
ture, it is killed (deleted).This processis callednegative
selection [6], andcloselyresemblesthenegative selection
of immatureT lymphocytes(thymocytes)in thethymus.A
potentialproblemwith thisschemeis thata nonselfpacket
arriving during negative selectioncould causeimmature
detectorsto beerroneouslyeliminated.However, if we as-
sumethat nonselfpacketsarerare(a reasonableassump-
tion), therearelikely to beothermaturedetectorspresent
to detectthe foreignpacket. We thushave a small lossof
efficiency, from needlesslydeletingavalid detector, but no
appreciablelossof function.

Detectorsthat survive this initial testing phaseare pro-
moted to maturedetectors(analogousto matureT lym-
phocytes leaving the thymusand matureB lymphocytes
leaving the bonemarrow). Eachmaturedetectoris now
a valid detectorthatactsindependently. If a maturedetec-
tor � matchesasufficientnumberof packets(seeactivation
thresholdbelow), an alarmis raised. The time for which
� is a naive B lymphocyte canbethoughtof asa learning
phase.At theendof the learningphase,if � hasfailed to
matcha packet it is deleted,but if it hasmatcheda suf-
ficient numberof nonselfpackets, it becomesa memory
detectorwith a greatlyextendedlifetime. Memorydetec-
torshave a lower thresholdof activation(seebelow), thus
implementinga “secondaryresponse”that is moresensi-
tive andrespondsmoreaggressively thannaive detectors
to previously seenstrings.Althoughthesememorydetec-
tors aredesirable,a large fraction of naive detectorsmust
alwaysbe present,becausethe naive detectorsareneces-
saryfor thedetectionof novel foreignpackets,i.e. they are
essentialto anomalydetection.

BoththenaturalimmunesystemandourAIS facetheprob-
lem of “incompleteself sets.” WhenT lymphocytesun-
dergo negative selectionin the thymus,they areexposed
to most but not all of the proteinsin the body. Conse-
quently, the negative selectionprocesscanbe incomplete
in the sensethat a lymphocyte could survive negative se-
lectionbut still bereactive againsta legitimateself protein
(onethatwasnotpresentedin thethymus)potentiallylead-
ing to anauto-immunereaction.In our AIS, suchanauto-
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Figure1: Architectureof Artificial ImmuneSystem.

immunereactionis calleda false positive. Falsepositives
ariseif wetrain thesystemonanincompletedescriptionof
self, andthenencounternew but legitimatepatterns.We
would like the systemto be tolerantof suchminor, legit-
imatenew patterns,but still detectabnormalactivity, and
we have implementedtwo methodsdesignedto overcome
thisproblem:Activationthresholdsandsensitivity levels.

Activation thresholds are similar in function to avidity
thresholdsin lymphocytes. A lymphocyte is coveredwith
many identicalreceptors,andit is only activatedwhensuf-
ficiently many receptorsareboundto pathogens,i.e. when
theavidity thresholdfor bindingis exceeded.Analogously,
eachdetectorin theAIS mustmatchmultiple timesbefore
it is activated. Eachdetectorrecordsthenumberof times
it matches,andit raisesanalarmonly whenthenumberof
matchesexceedsthe activation threshold,which is stored
locally for eachdetectorset.Oncea detectorhasraisedan
alarm,it returnsits matchcountto zero. This mechanism
hasa timehorizon:Over time thecountof matchesslowly
returnsto zero. Thus,only repeatedoccurrencesof struc-
turally similar andtemporallyclumpedstringswill trigger
thedetectionsystem.

However, someattacksmaybelaunchedfrom many differ-
ent machines,in which casethe first methodis unlikely
to be successful. To detectsuchdistributed coordinated
attacks,we introducea secondmethod,called sensitivity
level (labeledcytokine level in Figure 1). Whenever the
matchcountof a detectorgoesfrom 0 to 1, the local acti-
vation thresholdis reducedby one. Hence,eachdifferent
detectorthatmatchesfor thefirst time “sensitizes”thede-
tection system,so that all detectorson that machineare

moreeasilyactivatedin the future. This mechanismalso
hasatimehorizon;overtime,theactivationthresholdgrad-
ually returnsto its defaultvalue.Thus,thismethodwill de-
tectdiverseactivity from many differentsources,provided
thatactivity happenswithin a certainperiodof time. This
mechanismroughlycapturestherolethatinflammation,cy-
tokines,andothermoleculesplay in increasingor decreas-
ing the sensitivity of individual immunesystemlympho-
cyteswithin a physicallylocal region.

Negative selectionand the maturationof naive cells into
memorycellsaretwo simplelearningmechanismsusedby
theimmunesystem.A third form of immune-systemlearn-
ing, onethatresemblesa geneticalgorithm(withoutcross-
over), is incorporatedinto our model—affinity maturation.
In its simpleform, detectorscompeteagainstoneanother
for foreign packets, just as lymphocytescompeteto bind
foreignantigen.In thecasewheretwo detectorssimultane-
ouslymatchthesamepacket,theonewith theclosestmatch
(greatestfitness)wins,similarly to biddingin classifiersys-
tems.This introducespressurefor morespecificmatching
into the system,causingthe systemto discriminatemore
preciselybetweenself andnonself.We propose,although
wehavenotyet implementedthis,thatsuccessfuldetectors
(thosethatbindmany foreignpackets)will undergoprolif-
eration(makingcopiesandmigratingto othercomputers)
andsomatichypermutation(copying with a high mutation
rate).

Theconceptof a second signal, known asco-stimulation,
is often usedto explain certainimmunologicalresponses.
One example of a secondsignal is a T-helper lympho-
cyte. When a B lymphocyte (that is possiblya mutated



descendantof an earlier lymphocyte that survived nega-
tive selection)bindsa foreign peptide(the first signal), it
requiresa T-helper lymphocyte (that has beencensored
againstself in the thymus)in orderto trigger an immune
response.This second-signalsystempreventsmutatingB-
lymphocyte linesfrom incorrectlyreactingagainstself. In
our system,we usea humanasthe secondsignal. When
a detectorraisesanalarm,thereis somechancethat it is a
falsealarm(auto-immunereaction).Beforetakingaction,
the AIS waits a fixed amountof time (say 24 hours)for
a co-stimulatorysignal,which in the currentimplementa-
tion is an email messagefrom a human. If the signal is
received(confirmingtheanomaly),thedetectorentersthe
competitionto becomea memorydetector, but if it loses
the competition,it remainsnaive andhasits matchcount
resetto 0. If thesecondsignalis not received,theAIS as-
sumesthatit wasafalsealarmanddestroysthedetector(as
in thenaturalimmunesystem).

It might seemmorenaturalto sendmessagesto the AIS
in the caseof falsealarmsinsteadof true anomalies,so
that the AIS can adjust itself appropriatelyby immedi-
ately deletingthe auto-reactive detectors. Unfortunately,
this would createa vulnerability, becausea maliciousad-
versarycouldsendsignalsto theAIS, labelingtrueforeign
packetsasfalsealarms,thustolerizingtheAIS againstcer-
tain forms of attack. The form of co-stimulationthat we
have usedis muchmoredifficult to subvert. Becausefalse
alarmsareexpectedto bemorefrequentthantrueanoma-
lies, our co-stimulationmethodhasthe additionaladvan-
tagethat actionby the humanoperatoris requiredin the
lessfrequentcase.

Figure1 summarizesthelifecycleof adetector. A detector
is initially randomlycreated,and thenremainsimmature
for a certainperiodof time, which is the tolerizationpe-
riod. If thedetectormatchesany stringasingletimeduring
tolerization,it is replacedby anew randomlygeneratedde-
tectorstring. If a detectorsurvivesimmaturity, it will exist
for afinite lifetime. At theendof thatlifetime it is replaced
by a new randomdetectorstring,unlessit hasexceededits
matchthresholdand becomesa memorydetector. If the
activationthresholdis exceededfor a maturedetector, it is
activated.If anactivateddetectordoesnot receive costim-
ulation,it dies(theimplicit assumptionis thatits activation
wasa falsepositive). However, if theactivateddetectorre-
ceivescostimulation,it entersthecompetition(seeabove)
to becomea memorydetectorwith an indefinitelifespan.
Memory detectorsneedonly matchonceto becomeacti-
vated.

Eachof the mechanismsdescribedabove can be imple-
mentedwith a singledetectorset runningon a single lo-
cation. We cantrivially gainefficiency advantagesby dis-
tributing thesingledetectorsetacrossall locationson the

LAN, thusdistributing thecomputationalcostof intrusion
detection. Suchdistribution will give linear speedup,be-
causethereare no communicationcosts(apart from the
signalingof alarmsandcostimulation).However, we take
advantageof anotherimmunesystemfeatureto implement
a morepowerful form of distribution.

The protein major histocompatibility complex (MHC)
plays an important role in immune systems,becauseit
transportsproteinfragments(calledpeptides)from the in-
terior regionsof a cell to its surface,presenting thesepep-
tideson thecell’s surface.Thismechanismenablesroving
immunesystemcells to detectinfectionsin cells without
penetratingthecell membrane.Therearemany variations
of MHC, eachof which bindsa slightly differentclassof
peptides.Eachindividual in a populationis geneticallyca-
pableof makingasmallsetof theseMHC types(aboutten),
but the set of MHC typesvariesin different individuals.
Consequently, individuals in a populationare capableof
recognizingdifferentprofilesof peptides,providing anim-
portantform of population-level diversity � . Our AIS uses
permutationmasksto achieve a similar kind of diversity.
A permutationmaskdefinesa permutationof the bits in
thestringrepresentationof thenetwork packets. Eachde-
tectorsethasa different,randomly-generated,permutation
mask.Onelimitationof thenegative-selectionalgorithmas
originally implementedis that it canresultin undetectable
abnormalpatternscalledholes,which limit detectionrates
[3, 2]. Holescanexist for any symmetric,fixed-probability
matchingrule, but by usingpermutationmasks,we effec-
tively changethematchruleoneachhost,andsoovercome
the hole limitation. Thus, the permutationmaskcontrols
how the network packet is presentedto the detectionsys-
tem, which is analogousto the way differentMHC types
presentdifferentsetsof peptideson thecell surface.

The discussionthusfar hasconcentratedon the detection
sideof ourAIS andignoredquestionsof immuneresponse.
Whenstimulatedby lymphocytesboundto thecell surface,
immunesystemcellssecretea varietyof moleculesknown
collectively as cytokines. Thesecytokines diffuse from
the site wherethey weresecreted,andin turn play a role
in stimulatingor suppressingother immunesystemcells.
Thus,cells that detectpathogenscancommunicateusing
thesemolecularsignalswith cells that assistin eliminat-
ing thepathogens(e.g.,mastcells,macrophages,etc.).Al-
thoughweplanto extendourmodelin thefutureto include
thiskind of signalingandresponse,thecurrentmodelelim-
inatesthiscomplication(exceptfor thesensitivity level).

�
For example, thereare someviruses,suchas the Epstein-

Barr virus, thathave evolveddominantpeptideswhich cannotbe
boundby particularMHC types, leaving individuals who have
thoseMHC typesvulnerableto thedisease[15].
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5 COMPARISON WITH CLASSIFIER
SYSTEMS

The AIS outlined in Section4 resemblesthe architecture
of a classifiersystem[11], althoughmostof thedetailsare
different(seeTable1). Themappingbetweenclassifiersys-
temsandour AIS is not 1-1, however. In this section,we
pointoutboththesimilaritiesanddifferences.

Eachdetector� correspondsto theconditionpartof aclas-
sifier, wherethematchrule is � -contiguousbits insteadof
the traditional

����� �"!
alphabetusedin classifiersystems.

The parameter� is a measureof thespecificityof the de-
tectors,much like the numberof don’t caresin a classi-
fier condition is a measureof its generality. In the cur-
rentAIS, thereis nothingcorrespondingto theactionpart
of a classifierrule. However, if we concatenatesomebits
to eachdetectorto specify a response(analogousto dif-
ferentantibodyisotypes), theneachimmunecell (detector
plus responsebits) would correspondquitedirectly to the
condition/actionrule formatof classifiersystems.Lessdi-
rectly analogousareactivation thresholds,which roughly
correspondto Holland’sproposalfor support, andsensitiv-
ity levelswhichserveasimilarroleto messageintensity. In
bothcases,theAIS mechanismis quitedifferentfrom that
usedin classifiersystems,but thereasonfor themechanism
is similar—in the onecaseto aggregateinformationfrom

multiple sourcesandin the secondcaseto vary thesensi-
tivity of thesystemdynamically. Bothactivationthresholds
andsensitivity levelsdecayover time,similarly to therole
of tax in classifiersystems.

In placeof the messagelist we have a continuousflux of
datapathtriples that representthe currentstateof the en-
vironment. Currently, the only network connectionsgen-
eratedby theAIS (analogousto internallygeneratedmes-
sagesin aclassifiersystem)arethoseresultingfrom alarms
beingsentto thehumanoperator.

There is no direct analogof the negative-selectionalgo-
rithm in classifiersystems,exceptthe learningrules(such
asgeneticalgorithmand trigger conditions)underwhich
new rulesaregenerated.Bidding for messagesin classifier
systemsis analogousto immunecells competingto bind
to foreign datapaths.Likewise,we introducepressurefor
specificity, which is reminiscentof classifiersystems,by
allowing themorespecificmatchto win thecompetition.

The role of the bucket brigade(credit assignment)and
the geneticalgorithmis playedby our affinity maturation
model of learning,althoughours is simpler in the sense
thatwe assigncredit directly from the environmentto the
detectors,anddo not passstrengthamongimmunecells.
A more direct analogof the bucket brigadewould occur
if we tried to build up idiotypic networks of immunecell



ClassifierSystems Artificial ImmuneSystem
classifiercondition detector
classifieraction isotypes#�$
%&$
'

matching ( -contiguousbits
classifierstrength immature,mature,activated,

andmemorystates
messagelist network traffic (datapathtriples)
competitionfor packets biddingfor messages
morespecificmatchwins morespecificmatchwins
support activationthreshold
messageintensity sensitivity level
bucket brigade affinity maturation
geneticalgorithm, randomdetectors,
triggering negative selection
? permutationmasks

Table1: Tentative comparisonof artificial immunesystem
with classifiersystems

in whichimmunecellsstimulateandrepressotherimmune
cells, asJerneproposed[16]. Although this is appealing
from an adaptive designperspective, thereis little if any
experimentalevidencethat suchnetworks exist in natural
immunesystems. In classifiersystems,eachclassifier’s
strength is representedby a real number. A classifier’s
strengthdeterminesthe probability of it beingdeletedor
replicatedthroughthegeneticalgorithm. In theAIS, each
detectoris in oneof severaldiscretestates:Immature,ma-
ture,activated,or memory. Which stateit is in determines
the likelihoodof it beingdeleted,replicated,or mutated.
Note, in thecurrentsystem,only thefirst option is imple-
mented.

The AIS is essentiallya stimulus/responsesystem,where
the stimuli are network packets, classificationof inputs
doesnot involvea largeamountof internalprocessing,and
theresponseis anemailmessageto ahumanoperator. The
naturalimmunesystemis considerablymorecomplicated,
with highly complex internal regulatorymechanismsand
several different kinds of potentialresponses.The regu-
latory mechanismsappearto beimplementedthroughsig-
nalingmoleculessuchascytokines(discussedearlier).Our
planis to incorporateinternalfeedbacksandself-regulation
by extendingthecytokinesystem(wesaw aprimitiveform
of this in thesensitivity level).

Permutationmaskshave no directanalogin classicalclas-
sifier systems.However, they do provide a naturalparti-
tioning of the setof detectors,somethingthat haseluded
classifiersystems.We speculatethatdifferentdetectorsets
might discover different kinds of regularities in network
traffic (dueto thecombinationof permutationwith the lo-
cality of the � -contiguousbitsmatchingrule.

6 CONCLUSION

In theprevioussectionswedescribedanarchitecturefor an
adaptive artificial systembasedon the immunesystem.It
incorporatesseveral importantimmune-likeproperties,in-
cludingdetectionof novel foreignpatterns(becauseit is an
anomalydetector),distributeddetectionvia the negative-
selectionalgorithm,anddiversityacrossindividuals(com-
puters)in a population(the protectednetwork) usingper-
mutationmasks.It incorporatesseveralformsof adaptation
ondifferenttimescales,andit addressesanimportantprob-
lem of practicalsignificance(network intrusiondetection).
Although the mappingbetweenclassifiersystemsandthe
AIS is not

�*)+�
, we believe that the systemwe have de-

scribedcapturesmany of the importantpropertiesof clas-
sifier systemsandprovidesaninterestingpointof compar-
ison.

Most of thefeaturesdescribedin this paperhave beenim-
plementedin a softwareprototype,which we have tested
in the CS Dept. at UNM. It hasdiscoveredoutsideat-
tacksaswell asinterestinganomaliesgeneratedinternally.
In one recentexperiment,consistingof 50 computerson
a switchedsubnet,with 100 detectorson eachcomputer
(eachdetectorconsistingof a 49-bit string), we detected
100% of the eight abnormalincidentswe testedagainst
andachieveda false-alarmrateof abouttwo perday. This
compareswith millions of falsealarmspermonththathave
beenreportedanecdotallyfor somefieldedsystems.

Moving beyond thecomputernetwork intrusion-detection
applicationthat we have described,the AIS might be ap-
plied to other classesof networks, including social net-
works, organizations,networks of markets, neurological
networks,or ecologicalnetworks. Like our LAN with ex-
ternalconnections,thesenetworksconsistof many compo-
nentsthataresparselyconnected,in which therearesome
orderedandsomerandomcomponents,and in which the
exactsetof connectionsis not static. Thereareimportant
computationsassociatedwith eachof thesenetworks,and
they would provide an importanttestof the generalityof
our architecturein its ability to discriminatenormal and
abnormalactivity andto respondappropriately.
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