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Abstract

We describean artificial immune system(AIS)
thatis distributed, robust, dynamic,diverseand
adaptve. It capturesmary featuresof the ver-
tebrateimmune systemand placesthemin the
contet of the problemof protectinga network
of computersfrom illegal intrusions. The AIS
resembles classifiersystemin mary important
ways. Similaritiesanddifferencesarediscussed.

1 INTRODUCTION

The parallel betweenimmunology and classifiersystems
washotedasearlyas1986in [4]. In this work, a classi-
fier systemwas usedto model certainaspectof the im-
munesystem,by drawing an analogybetweenindividual
classifierrulesandantibodytypes. Classifierstrengthrep-
resentedhe concentratiorof the antibodytype, andinter
actionsbetweenclassifierrules modeledJernes idiotypic
network hypothesig16]. Although the comparisornwas
interesting,it hadrelatively little impacton classifiersys-
temresearchandthe two fields have continuedto develop
largely independently Sincethattime, however, artificial
immunesystemmodelinghasadwancedsignificantly and
the emphasisasswitchedfrom idiotypic network theory
to otheraspect®f immunology

Likewise,in thetwentyyearssincelearningclassifiersys-
temswereproposed12], ourthinking aboutcognitive sys-
temshasprogresseih mary interestingways. Oneof the
mostsignificantchange$asbeentherealizationthatliving
cognitive systemsare situatedin physical ervironments,
andthat their designsare both constrainecand helpedin
importantways by this embedding. Brooks and others
[8, 1] aguethatit is fruitlessto designintelligent sys-
temsin isolationfrom the ervironmentsin which they ex-
ist. Learningclassifiersystemsvereproposedisa general
modelof cognition,with alimited andhighly abstracinter-

faceto the ervironment. We believe thatresearcton clas-
sifier systemshassuffered from this loose coupling with
live ervironments Situatedntelligentartifactsareperhaps
morecomple to think about becauséhey cannobeneatly
separatedrom their environments,but they canin some
casesusetheir ervironmentsin ways that simplify their
computations.

This paperdescribesanongoingprojectto developanarti-

ficial immunesystem(AlS), which is both closelyrelated
to classifiersystemsandembeddedn a live ernvironment.
Our startingpoint for this line of researclwasa collection
of pressingunsohed problemsin computersecurity Over
the pastseveral yearswe have designedand built proto-
typesfor severalcomputersecurityproblems.Armedwith

that experiencewe shav herehow to embedan architec-
ture for adaptve behaior in a real-timeervironmentwith

live agentgcomputersandthe humanswvho operateghem).

A moredetaileddescriptiorof theAlS architectureppears
in [9, 10], togethemwith experimentabndanalyticalresults
of its performanceOuremphasisiereis onthecomparison
with classifiersystems.

2 THE IMMUNE SYSTEM

The immunesystemis highly complicatedandappeargo
be preciselytunedto the problemof detectingand elimi-
natinginfections.lIt is alsoa compellingexampleof a dis-
tributedinformation-processingystemonewhich we can
studyfor the purposeof designingbetterartificial adaptve
systems.

Theimmunesystemis comprisedf cellsandmolecules
Recognitiorof foreignprotein,calledantigen, occursvhen
immunesystemdetectorsjncluding T cells, B cells, and
antibodiespind to antigen.Binding betweendetectorand
antigenis determinecdby the physicaland chemicalprop-
ertiesof binding regions on the cell surface. Binding is

LA goodsourcefor basicimmunologyis [14].



highly specific, so eachdetectorrecognizesonly a lim-
ited setof structurallyrelatedantigen. When a detector
andantigenbind, a complec setof eventsis initiated, often
resultingin eliminationof the antigenby scarengercells
called macrophages(How antigenis boundand cleared
dependn the type of detectorinvolved.) A striking fea-
ture of theimmunesystemis thattheprocesseby whichit
generatesletectorsidentifiesandeliminatesforeignmate-
rial, andremembershe patternsof previousinfectionsare
all highly parallelanddistributed. This is onereasonm-
munesystemmechanismsre so complicated but it also
malkesthemhighly robustto failure of individual compo-
nentsandto attackson theimmunesystemitself.

Immunologistsoften describethe problemsolved by the
immune system as that of discriminating “self” from
“other” (or “nonself’) andeliminatingother In the lan-
guageof classifiersystemsthe immunesystemmustpro-
cessexternalandinternalmessagedirst classifyingthem
as self or nonself,and in the caseof dangeroudoreign
message$aking appropriateaction. In immunology self
is generallytakento betheinternalcellsandmoleculesof
the body, andnonselfis ary foreign material,particularly
bacteria parasitesandviruses.A moremodernview em-
phasizesheimmunesystems role in eliminatinginfection
in additionto its toleranceof self [17], (self vs. harmful
other). As the ability to distinguishcorrectlybetweenrself
andnonselfis certainlycrucialto theimmunesystems suc-
cessjt isacommonstartingpointfor immunesystenmod-
els. Distinguishingbetweerself andnonselfis difficult for
severalreasonsFirst, the componentsf thebodyarecon-
structedfrom the samebasicbuilding blocks, particularly
proteins,asnonself. Proteinsare animportantconstituent
of all cells,andtheimmunesystenprocessethemin vari-
ousways,includingin fragmentsalledpeptidesvhich are
shortsequencesf amino acids. Second,the size of the
problemto be solvedis large with respecto the available
resourcesFor example,it hasbeenestimatedhatthever
tebrateimmunesystemneedso be ableto detectbetween
10! and10'6 patterng13], yetit hasonly about10® differ-
entgenesrom which it mustconstructthe entireimmune
system(aswell aseverythingelsein the body). The diffi-
culty of thisdiscriminatiortaskis shavn by thefactthatthe
immunesystemcanmale mistakes. Autoimmunediseases
provide mary examplesof the immunesystemconfusing
selfwith othet

3 THE ENVIRONMENT

There are compelling similarities betweenthe problem
facedby the humanimmunesystemandthat of computer
security Both mustprotecthighly comple, dynamically
changingsystemsagainsintrusionsfrom awide variety of

sourcesBothmustensurehecontinuedunctioningof the

systemandmustensurehatthe protective mechanismso
not seriouslydamagehe system.However, thesesystems
seemto have radically differentwaysof solvingthe prob-
lems confrontingthem. Theimmunesystemdoessoin a
way thatis distributed,flexible, adaptablerobust,degrades
gracefully andis resilientto errorsand subversion[20].
Thesearepropertiesve would lik e to seein computerse-
curity systems.

We have studiedseveral computersecurity problems,in-

cluding computervirus detection[6], host-basedhtrusion
detection[5], and network security[9]. In this paperwe
concentrateon the latter—protectinga local-areabroad-
castnetwork (LAN) from network-basedattacks. Broad-
castLANs havethecorvenientpropertythateverylocation
(computer)seesevery paclet passingthroughthe LAN,

sowe canview the entire LAN asthe “body” to be pro-
tected,andeachcomputeron the LAN asa differentloca-
tion within it.

In this domain,we defineselfto bethe setof normalpair-
wise connectiongat the TCP/IP level) betweencomput-
ers, including connectionsdetweentwo computersn the
LAN aswell asconnectiondbetweenonecomputerin the
LAN and one external computer(Figure 1). A connec-
tion is definedin termsof its “data-pathriple”—the source
IP addressthe destinationlP addressandthe service(or
port) by which the computerscommunicate.This defini-
tion of self, including the datapathriples, wasintroduced
in [7, 18]. In our representatiorthis informationis com-
pressedo a single49-bit stringwhich unambiguouslye-
finesthe connection. Self is thenthe setof normally oc-
curring connection®bsered over time on the LAN, each
connectiorbeingrepresentedly a 49-bit string. Similarly,
nonselfis alsoa setof connectiongusingthe same49-bit
representation)the differencebeingthat nonselfconsists
of thoseconnectionspotentiallyanenormousiumberthat
arenotnormallyobsenedonthe LAN.

More generally we can think of both the protectedsys-
tem (self) andinfectiousagents(nonself)as dynamically
changingsetsof bit strings.In cells of the bodythe profile
of expressedproteins(self) changesover time, and like-
wise, we expectour setof protectedstringsto vary over
time. Similarly, the bodyis subjectedo differentkinds of
infectionsovertime; we canview nonselfasa dynamically
changingsetof strings.

4 ARCHITECTURE OF THE AIS?

Naturalimmunesystemgonsistof mary differentkindsof
cellsandmolecules—lymphogtes(B lymphogstesand T
lymphogytes), macrophagesjendritic cells, naturalkiller
cells, mastcells, interleukins,interferons,and mary oth-

*Thetext in this sectionis excerptedrrom [10].



ers. Althoughthesecomponenthave beenidentifiedand
studiedexperimentally it is not always well-understood
what role they play in the overall immuneresponse.In
our AlS, we will simplify by introducingonebasictype of
detectorcell which combinesuseful propertiesfrom sev-
eral differentimmunecells. This detectorcell will have
several differentpossiblestatesyoughly correspondingo
thymogytes(immatureT lymphog/tesundegoingnegative
selectionin thethymus),naive B lymphog/tes(which have
never matchedforeign material),and memoryB lympho-
cytes (which are long-lived and easily stimulated). The
naturalimmune systemalso hasmary differenttypes of
effector cells, eachimplementinga differentimmunere-
sponse(e.g., macrophagernastcells, etc.), which we do
not currentlyincludein our model.

Eachdetectorcell is representedby a single bit string of

lengthl = 49 bits, anda smallamountof state(seeFig-

urel). In effect, we arerepresentingnly the receptore-

gion on the surfaceof a lymphogyte, or in the caseof an-
tibody moleculesthe variableregion of the molecule. It

is this region that binds to foreign material,a procesghat
we call recognition. Thereare mary ways of implement-
ing the detectorsfor example,a detectorcould be a clas-
sifier, productionrule, a neuralnetwork, or an agent. We

choseo implementdetection(binding)asstringmatching,
whereeachdetectoiis a string d, anddetectionof a string
s occurswhenthereis a matchbetweens andd, accord-
ing to a matching rule. We usestring matchingbecausét

is simpleand efficient to implement,and easyto analyze
andunderstandObviousmatchingrulesincludeHamming
distancegdit distancepr the 1,0,#matchingrule for clas-
sifiers. We chosea moreimmunologicallyplausiblerule,

calledr-contiguous bits [19].

Two stringsd ands matchunderther-contiguouditsrule
if d ands have the samesymbolsin atleastr contiguous
bit positions. The valuer is a thresholdand determines
the specificityof the detectorwhichis anindicationof the
numberof stringscoveredby a singledetector For exam-
ple,if » = [, thematchings completelyspecific thatis, the
detectowill detectonly a singlestring (itself; recallthat!
is thelengthof thedetectorbit string). A consequencef a
partialmatchingrulewith athresholdsuchasr-contiguous
bits, is thatthereis a trade-of betweenthe numberof de-
tectorsused,andtheir specificity: As the specificityof the
detectorsncreasessothe numberof detectorgequiredto
achieve acertainlevel of coveragealsoincreases.

The detectorsare groupedinto setson the LAN, one set
per machine,or host; eachhostloosely correspondso a
differentlocationin the body?. Becauseof the broadcast

3The ability of immunesystemcells to circulatethroughout
the body is animportantpart of theimmunesystemthatwe are
currentlyignoring. In oursystemgdetectorgemainin onelocation

assumptioneachdetectorsetis constantlyexposedto the
currentsetof connectiondn the LAN, which it usesasa
dynamicdefinitionof self(i.e.,theobsenedconnectionsn
afixedtime periodareanalogoudo the setof proteinsex-
pressedn thethymusduringsomeperiodof time). Within
eachdetectorset, new detectors,or thymogytes, are cre-
atedrandomlyand asynchronouslyn a continualsched-
ule, similar to the naturalimmunesystem.Thesenew de-
tectorsremainimmature for someperiod of time, during
which they have the opportunityto matchary currentnet-
work connectionslf a detectormatchesvhenit is imma-
ture, it is killed (deleted). This processs called negative
selection [6], andcloselyresembleshe negative selection
of immatureT lymphogytes(thymogytes)in thethymus.A
potentialproblemwith this schemas thata nonselfpaclet
arriving during negative selectioncould causeimmature
detectorgo be erroneousheliminated.However, if we as-
sumethat nonselfpacletsarerare (a reasonableassump-
tion), therearelikely to be othermaturedetectorgpresent
to detectthe foreign paclet. We thushave a smallloss of
efficiency, from needlesslyleletinga valid detectoybut no
appreciabldossof function.

Detectorsthat survive this initial testing phaseare pro-
motedto maturedetectors(analogouso matureT lym-
phogtes leaving the thymusand matureB lymphogytes
leaving the bonemarrawv). Eachmaturedetectoris now
avalid detectorthatactsindependentlylf a maturedetec-
tor d matches sufficientnumberof paclets(seeactivation
thresholdbelow), an alarmis raised. The time for which
d is anaive B lymphogyte canbe thoughtof asa learning
phase.At the endof the learningphasejf d hasfailedto
matcha paclet it is deleted,but if it hasmatcheda suf-
ficient numberof nonselfpaclets, it becomesa memory
detectorwith a greatly extendedlifetime. Memory detec-
torshave a lower thresholdof activation (seebelaw), thus
implementinga “secondaryresponse’that is more sensi-
tive and respondsnore aggressiely than naive detectors
to previously seenstrings. Althoughthesememorydetec-
torsaredesirablea large fraction of naive detectoramust
always be presentbecauseahe nave detectorsare neces-
saryfor thedetectionof novel foreignpaclets,i.e. they are
essentiato anomalydetection.

BoththenaturalimmunesystemandourAlS facetheprob-
lem of “incompleteself sets. When T lymphog/tesun-
demgo negative selectionin the thymus,they are exposed
to mostbut not all of the proteinsin the body Conse-
guently the negative selectionprocesscanbe incomplete
in the sensethat a lymphogyte could survive negative se-
lectionbut still bereactive againsta legitimateself protein
(onethatwasnotpresentedh thethymus)potentiallylead-
ing to anauto-immuneeaction.In our AlS, suchan auto-

for theirlifetime.
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Figurel: Architectureof Artificial ImmuneSystem.

immunereactionis calleda false positive. Falsepositives
ariseif wetrainthesystemon anincompletedescriptiorof

self, andthenencountemew but legitimate patterns. We

would like the systemto be tolerantof suchminor, legit-

imate new patternsput still detectabnormalactiity, and
we have implementedwo methodsdesignedo overcome
this problem:Activationthresholdsandsensitvity levels.

Activation thresholds are similar in function to avidity
thresholdsn lymphogytes. A lymphogyte is coveredwith
mary identicalreceptorsandit is only actvatedwhensuf-
ficiently mary receptorsareboundto pathogensi,e. when
theavidity thresholdor bindingis exceededAnalogously
eachdetectolin the AIS mustmatchmultiple timesbefore
it is actvated. Eachdetectorrecordsthe numberof times
it matchesandit raisesanalarmonly whenthe numberof
matchesexceedsthe activation threshold,which is stored
locally for eachdetectorset. Oncea detectothasraisedan
alarm,it returnsits matchcountto zero. This mechanism
hasatime horizon: Overtime the countof matcheslowly
returnsto zero. Thus,only repeatedccurrence®f struc-
turally similar andtemporallyclumpedstringswill trigger
thedetectiorsystem.

However, someattackamaybelaunchedrom mary differ-
ent machines,n which casethe first methodis unlikely
to be successful. To detectsuchdistributed coordinated
attacks,we introducea secondmethod,called sensitivity
level (labeledcytokine level in Figure 1). Wheneer the
matchcountof a detectorgoesfrom 0 to 1, the local acti-
vation thresholdis reducedby one. Hence,eachdifferent
detectorthat matchedor thefirst time “sensitizes’the de-
tection system,so that all detectorson that machineare

more easily activatedin the future. This mechanisnalso
hasatimehorizon;overtime, theactivationthresholdyrad-
ually returnsto its defaultvalue. Thus,this methodwill de-

tectdiverseactiity from mary differentsourcesprovided

thatactivity happenswithin a certainperiodof time. This

mechanismoughlycapturesherolethatinflammationcy-

tokines,andothermoleculesplay in increasingor decreas-
ing the sensitvity of individual immune systemlympho-

cyteswithin a physicallylocal region.

Negative selectionand the maturationof nawve cells into
memorycellsaretwo simplelearningmechanismsisedby
theimmunesystem A third form of immune-systentearn-
ing, onethatresembles geneticalgorithm(without cross-
over),is incorporatednto our model—afinity maturation.
In its simpleform, detectorscompeteagainstone another
for foreign paclets, just aslymphog/tescompeteto bind
foreignantigen.In thecasewheretwo detectorsimultane-
ouslymatchthesamepaclet,theonewith theclosesmatch
(greatesfitnesswins, similarly to biddingin classifiersys-
tems. This introducegpressurdor morespecificmatching
into the system,causingthe systemto discriminatemore
preciselybetweenself andnonself. We proposealthough
we have notyetimplementedhis, thatsuccessfutletectors
(thosethatbind mary foreignpaclets)will undego prolif-
eration(makingcopiesandmigratingto othercomputers)
andsomatichypermutatior(copying with a high mutation
rate).

The conceptof a second signal, known as co-stimulation,
is often usedto explain certainimmunologicalresponses.
One example of a secondsignal is a T-helper lympho-
cyte. Whena B lymphogyte (that is possiblya mutated



descendanbf an earlier lymphogyte that survived nega-
tive selection)binds a foreign peptide(the first signal), it
requiresa T-helperlymphogyte (that has beencensored
againstselfin the thymus)in orderto trigger animmune
responseThis second-signadystempreventsmutatingB-
lymphogyte linesfrom incorrectlyreactingagainstself. In
our system,we usea humanasthe secondsignal. When
a detectoraisesanalarm,thereis somechancehatit is a
falsealarm (auto-immuneeaction). Beforetaking action,
the AIS waits a fixed amountof time (say 24 hours)for
a co-stimulatorysignal,which in the currentimplementa-
tion is an email messagdrom a human. If the signalis
recevved (confirmingthe anomaly),the detectorentersthe
competitionto becomea memorydetectoy but if it loses
the competition,it remainsnaive and hasits matchcount
resetto 0. If thesecondsignalis notreceved,the AlS as-
sumeghatit wasafalsealarmanddestrysthedetectoras
in the naturalimmunesystem).

It might seemmore naturalto sendmessageso the AIS

in the caseof falsealarmsinsteadof true anomaliesso
that the AIS can adjustitself appropriatelyby immedi-
ately deletingthe auto-reactie detectors. Unfortunately
this would createa vulnerability, because maliciousad-
versarycouldsendsignalsto the AlS, labelingtrueforeign
pacletsasfalsealarmsthustolerizingthe AIS againsicer

tain forms of attack. The form of co-stimulationthat we

have usedis muchmoredifficult to subvert. Becausdalse
alarmsare expectedto be morefrequentthantrue anoma-
lies, our co-stimulationmethodhasthe additionaladvan-
tagethat action by the humanoperatoris requiredin the
lessfrequentcase.

Figurel summarizeshelifecycle of adetector A detector
is initially randomlycreated,and thenremainsimmature
for a certainperiod of time, which is the tolerizationpe-

riod. If thedetectomatchesry stringasingletime during

tolerization,it is replacedy anew randomlygeneratede-

tectorstring. If adetectorsurvivesimmaturity; it will exist

for afinite lifetime. At theendof thatlifetimeit is replaced
by a new randomdetectorstring, unlessit hasexceededts

matchthresholdand becomesa memorydetector If the

activationthresholds exceededor a maturedetectorit is

activated.If anactivateddetectordoesnot receve costim-
ulation,it dies(theimplicit assumptioris thatits activation

wasafalsepositive). However, if theactivateddetectorre-

ceivescostimulationjt entersthe competition(seeabove)

to becomea memorydetectorwith anindefinite lifespan.
Memory detectorsneedonly matchonceto becomeacti-

vated.

Each of the mechanismslescribedabove can be imple-
mentedwith a single detectorsetrunningon a single lo-
cation. We cantrivially gainefficiency advantagedy dis-
tributing the single detectorsetacrossall locationson the

LAN, thusdistributing the computationatostof intrusion
detection. Suchdistribution will give linear speedupbe-
causethere are no communicationcosts(apartfrom the
signalingof alarmsandcostimulation).However, we take
adwantageof anotheiimmunesystemfeatureto implement
amorepowerful form of distribution.

The protein major histocompatibility complex (MHC)
plays an importantrole in immune systems,becauseit
transportgroteinfragmenty calledpeptides)from thein-
terior regionsof a cell to its surface,presenting thesepep-
tidesonthecell's surface. This mechanisnenablegoving
immunesystemcells to detectinfectionsin cells without
penetratinghe cell membrane Therearemary variations
of MHC, eachof which bindsa slightly differentclassof
peptides Eachindividualin a populationis geneticallyca-
pableof makingasmallsetof theseMHC types(abouten),
but the setof MHC typesvariesin differentindividuals.
Consequentlyindividualsin a populationare capableof
recognizingdifferentprofilesof peptidesproviding anim-
portantform of population-leel diversity*. Our AIS uses
permutationmasksto achieve a similar kind of diversity.
A permutationmaskdefinesa permutationof the bits in
the stringrepresentationf the network paclets. Eachde-
tectorsethasa different,randomly-generategermutation
mask.Onelimitation of thenegative-selectioralgorithmas
originally implementeds thatit canresultin undetectable
abnormabpatternscalledholes,which limit detectionrates
[3, 2]. Holescanexist for ary symmetric fixed-probability
matchingrule, but by using permutatiormasks,we effec-
tively changeghematchrule oneachhost,andsoovercome
the hole limitation. Thus, the permutationmaskcontrols
how the network pacletis presentedo the detectionsys-
tem, which is analogoudo the way differentMHC types
presentifferentsetsof peptidesonthecell surface.

The discussiorthusfar hasconcentratean the detection
sideof our AIS andignoredquestion®f immuneresponse.
Whenstimulatedby lymphog/tesboundto thecell surface,
immunesystemcells secretea variety of moleculesknown
collectively as cytokines. Thesecytokines diffuse from
the site wherethey were secretedandin turn play a role
in stimulatingor suppressingtherimmunesystemcells.
Thus, cells that detectpathogensan communicateusing
thesemolecularsignalswith cells that assistin eliminat-
ing the pathogenge.g.,mastcells,macrophagestc.). Al-
thoughwe planto extendourmodelin thefutureto include
thiskind of sighalingandresponsethecurrentmodelelim-
inatesthis complication(exceptfor the sensitvity level).

4For example, there are someviruses, such as the Epstein-
Barrvirus, thathave evolved dominantpeptidesnvhich cannotbe
boundby particular MHC types, leaving individuals who have
thoseMHC typesvulnerableto thediseasg15].
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5 COMPARISON WITH CLASSIFIER
SYSTEMS

The AIS outlinedin Section4 resembleghe architecture
of a classifiersystem[1], althoughmostof the detailsare

different(seeTablel). Themappingoetweerclassifiersys-

temsandour AlS is not 1-1, however. In this section,we

pointoutboththesimilaritiesanddifferences.

Eachdetectord correspondso the conditionpartof aclas-
sifier, wherethe matchrule is r-contiguousbits insteadof
the traditional 1,0, # alphabetusedin classifiersystems.
The parameter is a measureof the specificity of the de-
tectors,much like the numberof don't caresin a classi-
fier conditionis a measureof its generality In the cur
rentAlS, thereis nothingcorrespondingo the actionpart
of a classifierrule. However, if we concatenatsomebits
to eachdetectorto specify a responsganalogoudo dif-
ferentantibodyisotypes), theneachimmunecell (detector
plus responsevits) would correspondjuite directly to the
condition/actiorrule formatof classifiersystemsLessdi-
rectly analogousare activation thresholdswhich roughly
correspondo Holland's proposafor support, andsensity-
ity levelswhichseneasimilarroleto messagéntensity. In
bothcasesthe AIS mechanisnis quite differentfrom that
usedn classifiersystemsbut thereasorfor themechanism
is similar—in the one caseto aggreateinformationfrom

multiple sourcesandin the secondcaseto vary the sensi-
tivity of thesystemdynamically Bothactivationthresholds
andsensitvity levelsdecayovertime, similarly to therole
of taxin classifiersystems.

In placeof the messagdist we have a continuousflux of
datapathtriples that representhe currentstateof the en-
vironment. Currently the only network connectiongyen-
eratedby the AIS (analogougo internally generateanes-
sagesn aclassifiersystemarethoseresultingfrom alarms
beingsentto the humanoperator

Thereis no direct analogof the negative-selectioralgo-
rithm in classifiersystemsgxceptthelearningrules(such
as geneticalgorithm and trigger conditions)underwhich
new rulesaregeneratedBidding for messagem classifier
systemds analogoudo immune cells competingto bind
to foreign datapathsLikewise, we introducepressurdor
specificity which is reminiscentof classifiersystemspy
allowing the morespecificmatchto win the competition.

The role of the bucket brigade (credit assignmentjand
the geneticalgorithmis playedby our affinity maturation
model of learning, althoughoursis simplerin the sense
thatwe assigncreditdirectly from the ervironmentto the
detectorsand do not passstrengthamongimmunecells.

A moredirect analogof the bucket brigadewould occur
if we tried to build up idiotypic networks of immunecell



ClassifierSystems
classifiercondition
classifieraction
1,0, # matching
classifierstrength

Artificial ImmuneSystem
detector
isotypes
r-contiguoudits
immature mature activated,
andmemorystates
network traffic (datapatttriples)
biddingfor messages
morespecificmatchwins

messagédst
competitionfor paclets
morespecificmatchwins

support activationthreshold
messag@tensity sensitvity level
bucket brigade affinity maturation
geneticalgorithm, randomdetectors,
triggering negative selection
? permutatiormasks

Tablel: Tentatve comparisorof artificial immunesystem
with classifiersystems

in whichimmunecellsstimulateandrepres®therimmune
cells, as Jerneproposed16]. Althoughthis is appealing
from an adaptve designperspectie, thereis little if ary
experimentalevidencethat suchnetworks exist in natural
immune systems. In classifiersystems,eachclassifiers
strength is representedy a real number A classifiers
strengthdetermineghe probability of it being deletedor
replicatedthroughthe geneticalgorithm. In the AIS, each
detectoiis in oneof severaldiscretestatesimmature ma-
ture, activated,or memory Which stateit is in determines
the likelihood of it beingdeleted,replicated,or mutated.
Note, in the currentsystem only the first optionis imple-
mented.

The AIS is essentiallya stimulus/responssystem,where
the stimuli are network paclets, classificationof inputs
doesnotinvolve alargeamountof internalprocessingand
theresponsés anemailmessagéo a humanoperator The

naturalimmunesystemis considerablymorecomplicated,
with highly complec internal regulatory mechanismsand
several different kinds of potentialresponses.The regu-

latory mechanismappeato beimplementedhroughsig-

nalingmoleculesuchascytokines(discusseearlier).Our

planis to incorporaténternalfeedbacksndself-regulation
by extendingthe cytokine system(we sawv a primitive form

of thisin thesensitvity level).

Permutatiormaskshave no directanalogin classicaklas-
sifier systems. However, they do provide a naturalparti-
tioning of the setof detectorssomethingthat haseluded
classifiersystemsWe speculatehatdifferentdetectorsets
might discover differentkinds of regularitiesin network
traffic (dueto the combinationof permutationwith thelo-
cality of ther-contiguousbits matchingrule.

6 CONCLUSION

In the previoussectionsve describedanarchitecturdor an
adaptve artificial systembasedon theimmunesystem. |t
incorporateseveralimportantimmune-like propertiesjn-
cludingdetectiorof novel foreignpatterngbecausd is an
anomalydetector),distributed detectionvia the negative-
selectiomalgorithm,anddiversityacrossndividuals(com-
puters)in a population(the protectednetwork) using per
mutationmasks It incorporateseveralformsof adaptation
ondifferenttime scalesandit addresseanimportantprob-
lem of practicalsignificancgnetwork intrusiondetection).
Although the mappingbetweenclassifiersystemsandthe
AIS is not1 — 1, we believe thatthe systemwe have de-
scribedcapturesnary of the importantpropertiesof clas-
sifier systemsandprovidesaninterestingpoint of compar
ison.

Most of the featuresdescribedn this paperhave beenim-
plementedn a software prototype,which we have tested
in the CS Dept. at UNM. It hasdiscoreredoutsideat-
tacksaswell asinterestinganomaliegyeneratedhternally.
In onerecentexperiment,consistingof 50 computerson
a switchedsubnet,with 100 detectorson eachcomputer
(eachdetectorconsistingof a 49-bit string), we detected
100% of the eight abnormalincidentswe testedagainst
andachieveda false-alarnrateof abouttwo perday. This
comparesvith millions of falsealarmspermonththathave
beenreportedanecdotallyfor somefieldedsystems.

Moving beyond the computemetwork intrusion-detection
applicationthat we have describedthe AIS might be ap-
plied to other classesof networks, including social net-
works, organizations,networks of markets, neurological
networks, or ecologicalnetworks. Like our LAN with ex-
ternalconnectionsthesenetworksconsistof marny compo-
nentsthataresparselyconnectedin which therearesome
orderedand somerandomcomponentsandin which the
exactsetof connectiongs not static. Thereareimportant
computationassociatedavith eachof thesenetworks, and
they would provide an importanttestof the generalityof
our architecturein its ability to discriminatenormal and
abnormabhctiity andto respondappropriately
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