
Reducing Energy and Increasing Performance with Traffic
Optimization in Many-core Systems

George B. P. Bezerra
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

gbezerra@cs.unm.edu

Stephanie Forrest
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131
forrest@cs.unm.edu

Payman Zarkesh-Ha
Dept. of Electrical and
Computer Engineering

University of New Mexico
Albuquerque, NM 87131

payman@ece.unm.edu

ABSTRACT
As the number of cores on a die continues to increase, it is
necessary to optimize the traffic patterns of applications in
order to minimize power consumption and maximize perfor-
mance. We present a new approach for traffic optimization
in many-core systems, which targets communication local-
ity and load-balancing. Our approach works by mapping
memory blocks to physical locations on the chip that are
close to cores that access them, and by enforcing load bal-
ance by limiting the number of blocks mapped to each loca-
tion. Communication locality reduces the average distance
traveled by packets, which minimizes power and increases
performance. Load-balancing avoids hotspots and improves
cache utilization. Rather than treating every application
in the same way, our method uses available information to
produce mappings that are specially tuned for individual ap-
plications. Simulations performed on a 64-core system show
a reduction in dynamic energy consumption of up to 81.6%
and of 45.5% on average, and gains in performance of up to
13.2% on scientific benchmarks.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design aids—simulation; C.4
[Performance of Systems]: Modeling techniques

General Terms
Design, Performance, Theory

Keywords
Traffic optimization, memory-block mapping, communica-
tion locality, load-balancing, many-core, communication graph,
non-uniform cache access

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

As microprocessor technology advances towards parallel
designs by increasing the number of cores on a die, opti-
mization of the communication patterns between cores be-
comes critically important. With a larger number of cores
the traffic volume increases, which leads to increased power
consumption. High traffic volumes also consume more net-
work bandwidth, causing contention and increasing message
latency. More cores on a die also increase the average num-
ber of hops between source and destination of a message,
which increases both latency and power.

In many-core Chip Multi-Processors (CMP), communica-
tion patterns can be improved by optimizing the mapping
of memory blocks to caches. Because slices of cache are
distributed among nodes, the latency in accessing a block
varies with the distance between the requester and the cor-
responding directory or home node of the block. Consider-
able work exists in the literature targeting block mapping in
Non-Uniform Cache Access (NUCA) architectures. In exist-
ing approaches, alternative cache management policies have
been proposed that employ a combination of shared and pri-
vate schemes [17, 14, 5, 6, 10], block migration [1, 12], or
both [8]. All these works provide dynamic solutions to the
mapping problem, which are useful when limited knowledge
is available about the workload, and every application must
be treated in the same way. In contrast, static solutions
are more desirable in scenarios where information about ap-
plications is known in advance, such as High-Performance
Computing (HPC). In this case, the mapping can be fine-
tuned for individual applications, yielding increased gains.

In NUCA architectures, the mapping of memory blocks
also has a large impact on energy consumption. In a remote
cache access, the dynamic energy of a message increases pro-
portionally to the distance between its source and destina-
tion. Consequently, mappings that minimize the average
access distance could lead to significant energy reduction.
In spite of the importance of energy efficiency to modern
computer architecture design [9], only [5] analyzes energy
consumption, reporting improvements of up to 13.9%, and
only [1, 12] consider distance explicitly in their formulation.
Most of the literature focuses on relatively small core counts,
ranging from 4 to 8 in [17, 14, 5, 6, 12] and 16 in [1, 8, 10].

We present a new approach for traffic optimization in
many-core systems that increases performance and energy
efficiency by improving traffic locality and load balance. Our
approach works by mapping blocks of memory to physical
locations on the chip that are close to cores that access
them. This method minimizes the average distance trav-

eled by packets and, consequently, energy and latency. To
prevent hot-spots and enforce load balance, we constrain
the maximum number of blocks assigned to each core. The
simulation results for a 64-core system show a reduction in
dynamic energy consumption of up to 81.6% and of 45.5% on
average, and improvements in performance of up to 13.2%
on benchmark applications.

The proposed approach was designed for environments in
which one application is running at a time and the proper-
ties of the workload are well known. In order to automati-
cally collect information about an application, a trace of all
messages in the system for a given input set is generated.
From the trace we extract the communication graph, which
is used to produce the mapping. For most applications, the
generated mappings are robust and can be reused for new
input data with similar performance. Our method does not
depend on the cache-coherence protocol used or on whether
caches are shared or private.

This paper is organized as follows. Section 2 reviews the
traditional block mapping for many-core architectures and
its consequences in terms of traffic patterns. Section 3 de-
scribes the materials and methods used, such as experimen-
tal setup and benchmark workloads. Section 4 explains the
technique used for optimizing traffic and presents the results.
A discussion of the results and the methodology proposed is
given in section 5, and section 6 concludes the paper.

2. TRAFFIC PATTERNS IN MANY-CORE
Many-core systems rely on a directory protocol to moni-

tor the state and location of memory blocks in cache [13].1

In the directory protocol, each core is the directory node
for a subset of the memory addresses and is responsible for
managing the information about those addresses. In shared-
cache systems, the directory node (also called home node)
is also the unique host of the address in cache, as duplicate
cache lines are not allowed in this case. For simplicity, in the
following we will refer to private caches, but the discussion
applies to both shared and private schemes.

When a processor needs to access an address that is not
in cache or to write to a memory location, communication
with the directory takes place in order to, for example, fetch
the block, or update its state in the directory. The specifics
of the communication process depends on several factors,
such as the cache-coherence protocol, the state of the cache
block, and whether last-level caches are shared or private.
Nonetheless, memory operations require frequent communi-
cation with the directory, no matter how the details of the
communication process are implemented.

In the standard hardware implementation, blocks of physi-
cal memory are mapped uniformly among all directory nodes.
The directory node D of a given address A is determined by
D = A mod N [7], where N is the number of nodes, as shown
in figure 1 for a small system with only four cores. The ad-
vantages of this method are two-fold. First, the directory
node of an address can be found using a mod computation,
which requires simple hardware. Second, because blocks are
uniformly distributed among all nodes, it prevents hotspots
and enforces load balance.

1The directory-based approach is a scalable alternative to
the snooping protocol, in which no centralized information
about a cache block is kept. Instead, this information is
broadcast to all cores, which consumes excessive network
bandwidth and power for large core-counts.

0

1

2

3

4

Core 0 Core 1

Core 2 Core 3

.

.

.

.

Physical memory Cores

Figure 1: Blocks of physical memory are assigned
to directory nodes present on the cores. The blocks
are uniformly distributed in an interleaved manner.

0 2 4 6 8 10 12 14
Distance (hops)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ili

ty

Communication Probability Distribution

uniform random
barnes
ocean_contiguous

Figure 2: Communication probability distribution
for two benchmark applications and uniform random
traffic.

Although the above approach has advantages, it is sub-
optimal because it ignores any underlying structure in the
communication pattern of the application. Since blocks are
uniformly distributed, a core has on average an equal prob-
ability of communicating with any directory node. This
results in traffic that is uniform and random. To illus-
trate this point, figure 2 shows the communication pattern
of two applications running on a 64-core machine and how
they compare to purely uniform-random traffic. The graph
corresponds to the Communication Probability Distribution
(CPD) [2], that is, the probability that a packet will travel a
certain number of hops for a given application. The farther
packets need to travel, the less communication locality. 2

Uniform random traffic is undesirable because it does not
exploit communication locality. The location to which a
memory block is mapped is independent of the distance to
the cores that are most likely to use it. As a result, pack-
ets have to travel longer distances, which increases latency
and consumes more network bandwidth and power. The ap-
proach proposed in this paper is based on mapping blocks

2Uniform random traffic does not have a uniform distribu-
tion in figure 2 because of the 2D mesh topology. A node
may send packets to other nodes with uniform probability,
but each node has at most 4 neighbors 1-hop away, 8 neigh-
bors 2-hops away, and so on, until the number of neighbors
decreases as the boundaries of the mesh are reached. There-
fore, the distribution reflects the average number of neigh-
bors at a certain distance away from the node.

to directory nodes that are close to where they are most
frequently accessed, thereby reducing power and increasing
performance.

3. MATERIALS AND METHODS
Full-system simulations were performed with the Graphite

simulator [15]. Graphite is an open-source parallel multi-
core simulator developed by the MIT. In order to achieve
high-performance, Graphite is not cycle-accurate, but it achieves
high accuracy by using sophisticated synchronization tech-
niques.

The simulations were performed with in-order, single issue
cores. The L1-I and L1-D caches are 4-way set-associative
with 32 KB cache-capacity, and 64-byte blocks. The L2-
cache is 8-way set-associative with 512 KB capacity, and
64-byte blocks. Both caches are private. The directory used
for cache coherence is DirNNB [4], that is, full-map with
no broadcast, and blocks were assigned to directories at the
cache-line granularity. The directory cache is set-associative
with 16384 entries. We used the MESI cache-coherence pro-
tocol.

Energy consumption in the network on-chip was measured
with Orion-2 [11], which is included with Graphite. Each
hop on the 2D-mesh network takes one cycle, and dimension-
order routing was used as the routing algorithm. All sim-
ulations were performed on a 64-core system. The number
of threads in each application is the same as the number of
cores. As threads are spawned, the simulator assigns each
new thread to the next available core, in order. Only one
thread is assigned to each core.

The parallel applications used in the simulations are from
the Splash-2 benchmark [16]. The input of most applica-
tions is defined by a random number generator. To produce
new inputs, which were used in the analysis in section 4.4,
we varied the seed of the generator. An exception is the
ocean application, which has no input. In this case, we
introduced variation by changing the parameters of the ap-
plication, such as the error tolerance.

Because in Graphite the state of the simulator depends on
the state of the host system, simulations are not determinis-
tic and may vary slightly from run to run. A full statistical
analysis of all applications would be impractical due to the
high-cost of full-system simulations. Instead, we report the
deviations obtained for one application. For FFT, a standard
deviation of 0.08% in energy, 0.03% in runtime, and 0.2% in
latency was obtained over 10 runs of the application.

In order to allow for a consistent mapping of memory
blocks, it is convenient to have the address space of appli-
cations laid out deterministically. To ensure a deterministic
layout, we disabled Address Space Layout Randomization
(ASLR) in our experiments.

4. TRAFFIC OPTIMIZATION
This section describes the proposed approach for traffic

optimization using memory-block mapping. The method for
producing the optimized mapping and testing the results is
divided into four steps:

1. Generate a communication graph from application traces
obtained with the traditional block mapping (described
in section 2);

2. Find the optimized block positions based on the com-
munication graph;

T

T

T1

2

3

1

2
3

B

B
B

B4

1,1

2,1

2,2
2,3

3,3

4,3

w

w

w
w

w

w

Figure 3: Simple illustration of a communication
graph. There is no direct communication between
threads or between blocks. All communication is
between threads and blocks.

3. Run the application with the optimized block mapping
and measure the changes in performance; and

4. Run the application again with different input data.

4.1 Network of blocks and threads
Communication in a shared-memory system can be mod-

eled as a network of blocks and threads, in which links cor-
respond to messages exchanged between them. Every mes-
sage to and from a directory or home node is associated with
an address that determines the memory block, and a core,
which defines the thread. There is no direct communication
between threads or between blocks. Following the above de-
scription, we define a communication graph G = {V,E} as
a weighted, undirected bipartite graph in which each ver-
tex corresponds to a block (B) or a thread (T), and edges
link blocks to threads, where the weight wi,j is the total
communication (in bytes) between block Bi and thread Tj .
Figure 3 depicts a schematic representation of a communi-
cation graph.

For each application, we extracted its communication graph
by running the application with the standard block map-
ping described in section 2, and generating a trace of all the
messages sent on the network. From the trace we created
the communication graph by representing each message as
an edge, where the size of the message is the weight of the
edge. Multiple messages between the same source and desti-
nation do not create a new edge, but are used to increase the
weight of an existing edge. Once the graph is constructed,
it does not matter what cache-coherence protocol the ma-
chine uses, or whether caches are shared of private. Only
the communication graph will be used in the optimization
process.

An analysis of the network structure of graph G could
reveal relevant information about an application. One im-
portant metric is the degree of a block, i.e., the number of
edges connected to the block in the graph, which is related
to its level of sharing. A block that has degree N , where
N is the total number of threads, is shared by all threads.
In this case, not much optimization can be done because
the block has no affinity to any specific thread (this is not
necessarily true if the weights differ considerably). The best
location for such blocks would be in the central nodes of the
mesh. On the other hand, if the block degree is 1, then the
block is private, i.e., it is only accessed by one thread. This

0 10 20 30 40 50 60 70
Degree

0

50

100

150

200

250

N
u
m

b
e
r

o
f

b
lo

ck
s

Block degree distribution1e3

Figure 4: Degree distribution of blocks for the
ocean_contiguous application.

0 10 20 30 40 50 60 70
Degree

100

101

102

103

104

105

106

N
u

m
b

er
 o

f
B

lo
ck

s

Block Degree Distribution (semi-log)

Figure 5: Semi-log plot of the block degree distribu-
tion for the ocean_contiguous application.

is the best case, because the block can be assigned to the
directory at the core in which the thread is running.

Figure 4 gives an example of a typical degree distribution
of the memory blocks of an application running on a 64-core
machine. The figure indicates that the great majority of
blocks have very small degree and, therefore, there is poten-
tial for optimization in this application. The figure may be
misleading in that no blocks seem to exist with large degree.
This happens because the number of blocks span several or-
ders of magnitude. Figure 5 shows the same distribution in a
semi-log plot, which in this case gives a clearer picture of the
entire distribution. Notice a peak in the distribution when
the degree is 64, corresponding to blocks that are shared by
all threads.

The block degree distribution should not be interpreted
as the only property influencing optimization. Several other
factors also play an important role. For example, blocks can
have different strengths (i.e., the sum of the weights of all
links connected to a block) and in general the higher the
degree the higher the strength of the block. The positions
of the threads on the chip also have an impact on the end
result. If a block has small degree but the threads it is
connected to are located at a long distance apart from each
other, the gains from optimization will be limited.

4.2 Traffic locality optimization
In order to improve traffic locality, blocks must be mapped

as close as possible to cores that are running the threads
that access them. In the current analysis, the positions of
the threads are pre-defined, so the algorithm used to find the

0 10 20 30 40 50 60 70
Core

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

b
lo

ck
s

Distribution of blocks assigned to cores

Figure 6: Distribution of blocks assigned to each
core for FFT.

optimal position of a block is simple. It consists of checking
all the N possible locations on the chip and choosing the one
that minimizes the communication cost, which is defined as
the sum of the weighted distances of all the links of that
block. Equation 1 shows the formula for the position of a
block Bi.

Pos(Bi) = min
1≤p≤N

Cost(Bi, p) :

N∑
j=1

wi,j ·D(p, Tj), (1)

where p is the candidate position for block Bi, D is the
distance function, and wi,j = 0 if there is no edge between
Bi and Tj in the graph G.

By applying the above formula, large reductions on the
average distance of a block to its threads can be achieved.
However, this simple allocation of blocks does not work in
practice, because some cores are likely to be assigned many
more blocks than others. Figure 6 shows a histogram of
the number of blocks assigned to each core according to the
mapping described in equation 1, in which case the thread
that runs the main() function is assigned a disproportion-
ate number of blocks. The consequences of such uneven
mapping would be catastrophic. Each node has a limited
cache capacity, and when this capacity is reached it needs
to make room for new blocks by replacing old ones, a process
called eviction. This slows down the system and increases
the number of messages.

In fact, running this block mapping for the FFT applica-
tion, for example, increases the number of messages in the
network by 23%, which outweighs the improvement in com-
munication distance. To solve this issue, the next section
discusses how the load can be balanced across cores.

4.3 Load-balancing
To avoid uneven mapping that could lead to hotspots, we

add a penalty to the number of blocks assigned to a core in
the cost function defined by equation 1. The new formula is
shown below:

Pos(Bi) = min
1≤p≤N

Cost(Bi, p) :

N∑
j=1

wi,j ·D(p, Tj)

(Max−Blocks(p))
,

(2)
where Max is the maximum number of blocks allowed on a
core, defined as the total number of blocks divided by N,
and Blocks(p) is the number of blocks currently mapped to
the core at position p. As more blocks are mapped to a

0 2 4 6 8 10 12 14
Distance (Hops)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

b
a
b
ili

ty

Communication probability distribution

Original
Optimized

Figure 7: Communication probability distribution
of FFT before and after optimization.

0 2 4 6 8 10 12 14
Distance (Hops)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
a
b
ili

ty

Communication probability distribution

Original
Optimized

Figure 8: Communication probability distribution of
ocean_non_contiguous before and after optimization.

given core, the cost function will increase. This ensures that
all cores will have the same number of blocks mapped onto
them.

One consequence of this modification is that the order in
which blocks are assigned to cores affects the end result.
We dealt with this issue by sorting the blocks by degree and
mapping the high-degree blocks first.

The results from applying the block mapping defined in
equation 2 are shown in table 1. The table contains the
percentage reduction in energy consumption, runtime, and
average packet latency for the applications when running
the optimized mapping. The results show a large improve-
ment in energy consumption of up to 81.6% and a moderate
improvement in runtime of up to 13.2%. Packet latency also
was greatly reduced by up to 77.1%. For all applications,
improvements were obtained in all three metrics.

Figure 7 and 8 show the traffic patterns before and after
optimization for FFT and ocean_non_contiguous, respec-
tively. Notice the dramatic change in the traffic patterns
towards increased communication locality. This reduction
in the average distance traveled by packets is the cause of
improved energy, runtime, and latency. In the figures, a dis-
tance of zero hop corresponds to blocks that are placed at
the same location as the threads that access them.

4.4 Varying the input
The results presented in section 4.3 work as a proof-of-

concept in showing that optimizing the location of blocks on
the chip is a promising technique. However, to be useful in
practice the method should be generalizable to new inputs.

In this section, we used the mappings obtained in section
4.3 to run the applications with a different input set of the
same size. We then compared the optimized performance
with that of the original mapping. The results are shown in
table 2.

From table 2, the gains of the optimized mapping are still
large and do not change considerably when new input data is
used. This means that the communication graph is robust to
variations in the input for most applications. For some appli-
cations, such as FMM (which models an n-body problem) and
radix (a distributed sorting algorithm), the mapping de-
cayed in performance, though the overall improvements are
still significant. This happens because part of the memory
accesses of these applications depends on the values of the
input data. Consequently, the communication graph could
change with new inputs, leading to smaller improvements.
Interestingly, in some cases the metrics actually improved
with the new input set. For example, water_spatial ob-
tained 3.9% improvement in runtime in table 2, compared
to only 0.1% in table 1.

The results in this section demonstrate that the method
is generalizable across inputs and therefore could be used
in practice to perform traffic optimization. Once the block
mapping of an application is produced, it can be reused mul-
tiple times for new input data with no need to be relearned.

5. DISCUSSION
The analysis above shows that the proposed optimization

method is a promising technique with good capacity of gen-
eralization and practical applicability. The results show a
large improvement in energy consumption and latency for
most applications, while only modest improvements in per-
formance were obtained. The fact that reduction in energy
and latency is much greater than that of runtime indicates
that network bandwidth is not a bottleneck to performance
for the analyzed system and applications. It would be inter-
esting to verify whether that holds true for larger systems,
in which the traffic volume is higher.

Tables 1 and 2 suggest that energy and runtime improve-
ments are not strongly correlated. For example FFT obtained
good improvement in energy and poor improvement in run-
time. On the other hand, radix had a smaller energy im-
provement in table 2, but the second largest reduction in
runtime. More studies need to be performed to understand
why these differences arise. It is possible that the network
structure of the communication graph could be used to pre-
dict improvements from optimization.

In our analysis, we used cache-line granularity for con-
structing the communication graph and performing the map-
pings. The reason for this choice is that the cache-line repre-
sents the smallest possible granularity and, therefore, allows
for maximum locality exploitation. Using this method in
practice, however, would require special hardware that is
able to implement arbitrary block mappings (instead of the
usual approach of identifying directories using a mod com-
putation, as explained in section 2). Alternatively, it is pos-
sible to use page-level directory granularity, in which case
the operating system would handle the mapping of pages
to directory nodes using page tables. This would require
no extra hardware and very little overhead by the OS. OS
management of L2-caches at the page-level granularity has
been proposed by [7]. They showed that the operating sys-
tem can be used to implement several L2-cache policies with

Table 1: Percent improvement in energy, runtime, and latency for the benchmark applications after applying
the optimized block mapping. The input data are the same as those used to generate the communication
graph.

Application Energy (%) Runtime (%) Latency (%)
barnes 36.2 2.0 23.8
FFT 44.7 0.6 48.7
FMM 19.2 1.1 11.4
LU_contiguous 26.4 0.3 16.1
LU_non_contiguous 52.8 2.2 48.6
ocean_contiguous 75.7 8.1 68.7
ocean_non_contiguous 81.6 13.2 77.1
water_nsquared 26.7 0.3 12.7
water_spatial 25.1 0.1 15.2
radix 56.6 11.8 49.1

Table 2: Percent improvement in energy, runtime, and latency for the benchmark applications after applying
the optimized block mapping. The input data are different from those used to generate the communication
graph.

Application Energy (%) Runtime (%) Latency (%)
barnes 35.2 1.1 23.8
FFT 44.4 0.5 48.7
FMM 8.1 2.1 3.0
LU_contiguous 26.3 0.3 26.4
LU_non_contiguous 53.9 1.9 48.9
ocean_contiguous 74.0 3.3 68.7
ocean_non_contiguous 80.5 11.2 76.7
water_nsquared 26.7 0.3 12.6
water_spatial 24.8 3.9 16.0
radix 23.5 9.7 21.3

little overhead, and reported good results in performance im-
provement, although they did not analyze energy consump-
tion. We leave the exploitation of page-level granularity in
traffic optimization for future work.

The methodology presented here was designed for static
environments, in which applications can be fine-tuned be-
fore they are run for multiple iterations, such as in High-
Performance Computing (HPC). However, we believe that
dynamic optimization is also possible using the same princi-
ples, that is, by maximizing traffic locality and load balance.
We plan to apply our method for traffic optimization in dy-
namic environments in the future.

One limitation of our approach is that once a mapping
is generated it will only work for inputs of the same size.
Because of the way virtual memory is allocated to a process,
if the size of the input data changes, the block addresses will
no longer be aligned and the quality of the mapping may
decay. There are compiler techniques that can be used to
circumvent this problem [3], which could be used to extend
our work to handle inputs of varying size.

6. CONCLUSIONS
This paper proposed a new method for traffic optimiza-

tion in many-core systems based on memory-block mapping.
The proposed approach works by maximizing traffic locality
while maintaining good load balance, and produces map-
pings that are tuned for individual applications. The results
show a large reduction in energy consumption and modest,
but significant, improvements in performance for benchmark
applications. The technique also has capacity of general-

ization, which proves its practical applicability. We believe
the proposed method for traffic optimization will be a useful
technique to increasing the scalability of many-core systems,
by reducing power consumption and increasing performance.

7. ACKNOWLEDGEMENTS
S. Forrest acknowledges the support of the National Sci-

ence Foundation (grants CCF 0621900, CCR-0331580, SHF-
0905236), Air Force Office of Scientific Research MURI grant
FA9550-07-1-0532, and the Santa Fe Institute. P. Zarkesh-
Ha acknowledges the support of the US Department of En-
ergy, Office of Science, under Grant DE-SC0002113. We
thank the members of the Adaptive Computation Labora-
tory and Steve Hofmeyr for insightful discussions and feed-
back.

8. REFERENCES
[1] M. Awasthi, K. Sudan, R. Balasubramonian, and

J. Carter. Dynamic hardware-assisted
software-controlled page placement to manage
capacity allocation and sharing within large caches. In
High Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium on,
pages 250–261, 2009.

[2] G. Bezerra, S. Forrest, M. Forrest, A. Davis, and
P. Zarkesh-Ha. Modeling noc traffic locality and
energy consumption with rent’s communication
probability distribution. In Proceedings of the 12th
ACM/IEEE international workshop on System level
interconnect prediction, pages 3–8, 2010.

[3] B. Calder, C. Krintz, S. John, and T. Austin.
Cache-conscious data placement. ACM SIGPLAN
Notices, 33(11):139–149, 1998.

[4] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal.
Directory-based cache coherence in large-scale
multiprocessors. Computer, 23(6):49–58, 2002.

[5] M. Chaudhuri. PageNUCA: Selected policies for
page-grain locality management in large shared
chip-multiprocessor caches. In High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 227–238. IEEE,
2009.

[6] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing
replication, communication, and capacity allocation in
CMPs. In Computer Architecture, 2005. ISCA’05.
Proceedings. 32nd International Symposium on, pages
357–368. IEEE, 2005.

[7] S. Cho and L. Jin. Managing distributed, shared l2
caches through os-level page allocation. In Proceedings
of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 455–468, 2006.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Reactive nuca: near-optimal block
placement and replication in distributed caches. In
Proceedings of the 36th annual international
symposium on Computer architecture, pages 184–195,
2009.

[9] J. L. Hennessy and D. A. Patterson. Computer
Architecture - A Quantitative Approach. Morgan
Kaufmann, fourth edition, 2007.

[10] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. Keckler. A NUCA substrate for flexible CMP cache
sharing. IEEE transactions on parallel and distributed
systems, pages 1028–1040, 2007.

[11] A. Kahng, B. Li, L. Peh, and K. Samadi. Orion 2.0: A
fast and accurate NOC power and area model for
early-stage design space exploration. In Design,
Automation, and Test in Europe, pages 423–428, 2009.

[12] M. Kandemir, F. Li, M. Irwin, and S. Son. A novel
migration-based NUCA design for chip
multiprocessors. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages
1–12, 2008.

[13] J. Kelm, M. Johnson, S. Lumetta, and S. Patel.
Waypoint: Scaling coherence to 1000-core
architectures. In Proceedings of the 19th international
conference on Parallel architectures and compilation
techniques, pages 99–110, 2010.

[14] J. Merino, V. Puente, P. Prieto, and J. Gregorio.
Sp-nuca: a cost effective dynamic non-uniform cache
architecture. ACM SIGARCH Computer Architecture
News, 36(2):64–71, 2008.

[15] J. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on, pages 1–12, 2010.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: Characterization and
methodological considerations. In Proceedings of the
22nd annual international symposium on Computer

architecture, pages 24–36, 1995.

[17] M. Zhang and K. Asanovic. Victim replication:
Maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In Computer Architecture, 2005.
ISCA’05. Proceedings. 32nd International Symposium
on, pages 336–345. IEEE, 2005.

