

Buffer Overflows

● Buffer overflow vulnerabilities exist when a user
of your program can store data outside of the
buffer that you allocated for it

● These are a problem in languages without
bounds checking

● Stack smashing—when you overflow a buffer
allocated on the stack

● Today we will be exploring stack smashing in
particular

Buffer Overflows

Some examples from your Lab 5's:

char access[2];
re = fscanf(f,"%s %x", access ,&address);

char filename[100];
strcpy(filename, argv[optind]);

Buffer Overflows

● The goal of a stack-based buffer overflow is to
overwrite values on the stack that will allow you
to hijack control flow of the problem

● This is commonly the return address
● Recall MIPS:

● sw ra, 20(sp)
● . . .
● lw ra, 20(sp)

Buffer Overflows

● Consider this layout:

Addresses ↑
Stack grows ↓

Stack For example: With input
0x123456789ab
cdef0deadbeef

Return address 0x12345678 0xdeadbeef

Local variables int a; 0x9abcdef0

Buffer char buf[4] 0x12345678

Buffer Overflows

● If we were to overwrite the return address, what
would we overwrite it to? Some possibilities...
● The buffer. Then we could put our own machine code in

the buffer.
● Code that will jump into the buffer. For instance, if $a0

points to the buffer, jump to code that contains “jr $a0”.
Then, again, put our own machine code in the buffer.
This is a form of return-to-libc attack.

● Code that takes a large number of argument that will
require looking on the stack for the arguments. Take
control by putting your arguments in the buffer. This is
another form of return-to-libc attack.

Buffer Overflows

● Ways to mitigate buffer overflows...
● Randomized stack locations. This means that you

cannot hard code the location of your buffer when
you overwrite the return address, since it will be
different each time you run the program
– But you can still use a return-to-libc attack to jump to,

e.g., “jr $a0”, where $a0 points to the buffer
– Or you can find out where the stack is

Buffer Overflows

● Ways to mitigate buffer overflows...
● Place a canary with a random value before the

return address. Check if the canary is different (has
died) before returning. Abort the program if
different.
– But you can often overwrite the canary with, e.g., format

string vulnerabilities

Buffer Overflows

● Ways to mitigate buffer overflows...
● Have a non-executable stack

– But you can still use return-to-libc attacks

Buffer Overflows

● Why MIPS is more difficult to exploit than 32-bit x86...
● Many instructions have null bytes in them that cause string

functions to not copy the entire buffer
– But, with some effort, you can use instructions with no null bytes

● Word-aligned instructions—you can only jump to addresses
divisible by 4

● Word-aligned... words—you can only write words to addresses
divisible by 4

● First four 32-bit functions have dedicated arguments, so we do
not have to go to the stack for them
– But functions that take more than four 32-bit arguments (or variadic

functions) may still be applicable

● I-Cache vs. D-Cache

Buffer Overflows

● Best solution: just write non-exploitable code
● Let's look at some code...

● Some code to exploit a buffer overflow for privilege
escalation

● First attempt assumes no stack randomization
● Second attempt assumes and defeats stack

randomization
● Press escape...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

