
1

11/28/2017

CS 152L
Computer Programming
Fundamentals
Lindenmayer Systems

Instructor:

Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

f=f-h, h=f+h

2

Context-Free Grammars - Definition

A Context-Free Grammar consists of 4 parts:

A set of Variables: Symbols that can be replaced by production
rules.

A set of Terminals: Symbols that do not appear on the
predecessor side of any of the system's production rules.

An Axiom: A string composed of some number of variables and/or
constants. The axiom is the initial state of the system.

A set of Production Rules: Which define the way variables can be
replaced with combinations of terminals and other variables.

 A production consists of two strings: the predecessor and
the successor.

 Being "Context-Free" requires that every predecessor be
exactly one variable.

2

3

Example:

Nondeterministic Context-Free Grammar
1. Axiom: S

2. Production Rules: {SaSb, SaSXb, S, Xb}

3. Set of Variables: {S, X}

4. Set of Terminals: {a, b}

Example Productions:

S

aSb

aaSbb

aaaSbbb

aaaaSbbbb

aaaabbbb

S

aSb

aaSXbb

aaaSbbbb

aaaaSXbbbbb

aaaabbbbbb

4

Context-Free Language Definitions

 A language is a set of strings.

 A language L, is said to be a context-free language
(CFL) if there exists a CFG, G, that recognizes the
language L.

 A grammar recognizes a language if and only if:
Given a string, the grammar can determine whether
that string is a member of the language.

 A Deterministic Context-Free Language (DCFL) is
one in which each variable appears in the
predecessor of exactly one Production Rule.

3

5

Simple Context Free Grammars

Which are deterministic?

1. S abS S ab

2. S SS S ab

3. S aX X bS X a

4. S aX X bS X ab

5. S aX X bS S ab

6. S aX X bS

7. S aX X aXY Y ab

6

CS Great Book: Gödel, Escher Bach

By

Douglas R. Hofstadter.

Pulitzer Prize winning,
metaphorical Fugue
on Minds and
Machines in the spirit
of Lewis Carroll.

4

7

Lindenmayer Systems

A Lindenmayer system is a deterministic, context-free
grammar where some of the symbols in the grammar's
alphabet have graphical interpretations.

Lindenmayer systems can produce fractal patterns.

Lindenmayer systems are most famously used to model the
growth processes of plant development.

8

Character Draw Commands

h Draw a straight line segment 5 pixels long in the current heading.

f Draw a straight line segment 5 pixels long in the current heading.

g Move (without drawing) 5 pixels in the current heading.

+ Turn the handing clockwise 90°

- Turn the handing counter-clockwise 90°

K Change the turtle color to BLACK

R Change the turtle color to RED

G Change the turtle color to GREEN

B Change the turtle color to BLUE

C Change the turtle color to CYAN

O Change the turtle color to ORANGE

5

9

Turtle Graphics

 An imaginary turtle moves and draws with commands
that are relative to its own position, such as:

1. "Move forward 10 spaces" and

2. "Turn left 90 degrees".

 The Turtle moves on a 2D surface and carries a pen.

 The state of the turtle has three attributes:

1. Position

2. Orientation

3. Color

Forward 1 Right 90° Right 90°Forward 1

10

Lindenmayer System Lab

Given: User inputs a String where each character is
interoperated as a draw command. All turns are right angles.
Program checks for bad user input.

Lab 8: User inputs an axiom, a set of rules, and the number of
times to apply those rules. The program uses this input to
generate a string. Each character of the string is
interoperated as a draw command as in lab 4.

Lab 8 - extra credit: The user also inputs an angle from 0 to
360 degrees. All '+' and '-' commands turn right or left
by that angle. Also, the image auto scales to fit the window
and the window can be resized.

6

11

Input Format Example #1

generation 1: f-h

generation 2: f-h - f+h

generation 3: f-h - f+h - f-h + f+h

generation 4: f-h - f+h - f-h + f+h - f-h - f+h + f-h + f+h

String axiom = "f"
String rules = "f=f-h; h=f+h"
int Generation = 4

Use JavaFX to ask
user for each of
these inputs.

How quickly does
the string grow?

Development of Given Program

 Create JavaFX window

 Add input field for String and "draw" button.

 Check input String for errors as the user types.

 When String is in error, display background in red, an error
message and "draw" button is inactive.

 When String is ready to draw, draw button becomes active.

 Clicking draw, draws the string.

12

7

13

Input Format Example #2

generation 1: f-f-

generation 2: f-f--f-f--

generation 3: f-f- - f-f- -- f-f- -f-f- --

String axiom = "f"
String rules = "f = f -f-"
int Generation = 3

Ignore All Spaces in
Input

What does this
look like after 20
generations?

14

Input Format Example #3

x

f+f+f+f+

hh-hhx--hh+h--+hh-hhx--hh+h--+hh-hhx--hh+h--
+hh-hhx--hh+h--+

hh-hhf+f+f+f+........

String axiom = "x"
String rules = "x=f+f+f+f+;f=hh-hhx--hh+h--"
int Generation = 4

8

Requirements: Axiom Input

 TextField for user to enter axiom

 Exit program if user closes window.

 If user enters invalid input. Display error
message and disable draw button.

 Valid input for axiom is a String consisting of
one or more of the following characters:

'+' '-'

Any lowercase letter 'a' through 'z'.

Any uppercase letter 'A' through 'Z'.

15

Requirements: Rules Input

 TextField for user to enter a set of Rules.

 If user enters invalid input. Display error message and
disable draw button.

 Remove all spaces and tabs from the input rule String.
 Each rule must be delimited by a ';'

 Each rule must have the form a=x where:
a is any single upper or lower case letter
x is a String consisting of one or more letters, '+' or '-'.

 No two rules may have the same character on the left of
the '='.

16

9

Requirements: Generation Input

 TextField for user to enter a number of generations.

 If user enters invalid input. Display error message and
disable draw button.

 The number of generations must be non-negative integer.

 The number of generations must be 25.

 If the number of generations is 0, then it means to just
draw the axiom.

17

Lab Clarifications

 One Window: All input, display, drawing error messages
and everything else is displayed in ONE WINDOW. All
these things use the same window.

 One input textfield for axiom, one for set of rules and a
third for number of generations.

 You are supporting a deterministic grammer. Thus,
there are NO RULES that have the SAME variable

 You are supporting a context free gramer. Thus, every
rule can only have one symbol on the left of the =.

18

10

Requirements: buildFractal

 The LSystem class must implement the method:

public static char[] buildFractal(
String axiom, String rules, int generation)

 Your program will be tested by a grading robot that calls this
method. If you do not implement the interface exactly as shown,
you WILL GET ZERO points for buildFractal.

 buildFractal must return a char[] containing no spaces that
results from the given number of generations.

 If a given set of inputs results in a string of more than 100 million
characters, your program may display an error message and exit.

 Since axiom, rules and generation are parameters to
buildFractal, they must input those BEFORE buildFractal
is called.19

Overview of buildFractal

 The input to buildFractal, is:
String axiom, String rules, int generation

 axiom and rules should already have all spaces removed and
should already have been verified to be valid. Also, there
should be two class instance fields, char[] srcArray and
char[] targetArray each with 100 million elements. Of
course, you can name these arrays whatever you want.

 This function needs to:
1) Break rules into an array of rules, String ruleList[].

2) Copy the axiom into targetArray.

3) For each generation greater than 0, the current targetArray
must become the srcArray, and targetArray must be
updated by applying all rules to the current srcArray.

4) Return the final targetArray.

20

11

Break rules into ruleList[]

 Breaking rules into an array of rules, ruleList[] is the
first step in buildFractal.

 How to do this was shown in class using the .split()
method of the String class:

String[] ruleList = rules.split(";");

21

Copy the axiom into targetArray[]

The second step in buildFractal should be to Copy the
axiom into targetArray. To do this:

1. Loop through each character in the axiom.
2. Copy each character into targetArray starting with element 0.

3. Set class field targetEnd to one less than the length of the length
of axiom.

for (int i=0; i<axiom.length(); i++)
{

char c = axiom.charAt(i);
targetArray[i] = c;

}
targetEnd = axiom.length()-1;

If the number of generations is 0, then the function is done.
Just return targetArray[i]22

12

Set targetArray[] to next generation

The third step in buildFractal is to update targetArray[]
so that it is the next generation:
1) Swap the pointers srcArray[] and targetArray[]

2) Set srcEnd = targetEnd

3) Set targetEnd to -1 (meaning it is empty).

4) Loop through each character in srcArray[] from element 0
through element srcEnd.

5) For each character in srcArray[], loop through all the rules
in ruleList[]. If the character is the same as the first
character of a rule, then copy all the characters after the =
from that rule into targetArray[] (adding 1 to targetEnd
each time you copy a character). If the character does not
match any rules, then copy that character and add 1 to
targetEnd.

23

Swap pointers srcArray[] & targetArray[]

char[] tmp = targetArray;
targetArray = srcArray;
srcArray = tmp;

24

f

f

+

f

targetArray

This does NOT create a
new array.

It just creates a new
pointer to an array.

tmp

srcArray

f

f

+

f

targetArray srcArray

13

Finishing buildFractal

 For each generation, repeat the steps of:
1) Swapping the targetArray with srcArray so that the

last generation's target is the source array for the next
generation.

2) set targetEnd back to -1.

3) loop through each character in srcArray and if it is the first
character of a rule, copy everything right of the '='
character in the rule to the end of targetArray (adding 1
to targetEnd for each character copied). If the character
is not in the first character of any rule, then just copy the
character into targetArray (adding 1 to targetEnd).

 When you have repeated this for the specified number of
generations, return targetArray.

25

Requirements: Visual Display

 For each valid input, your program must display the
resulting graphical interpretation of the resulting String.

 When drawing, any character that is not one of the
graphics commands is ignored. For example the strings
"f+f" and "fzzzzzzz+ZZZZf" have the same
graphical interpretation since all the 'z' and 'Z' must
be ignored.

 The canvas must be fully visible on the window, must
have a different background color than the window
background and must be 600x600 pixels.

26

14

Grading Rubric for Part 1(20 points total)

[3 point] Your program creates three input boxes labeled axiom, rules and
number of generations.

[2 points] When the user enters an axiom with a character that is not a
letter, then the text color of the axiom becomes red and an error label
displays in the window saying "Illegal Character".

[8 points] When the user enters a rule set that is not legal, then the text
color of the rule field becomes red and an error label displays in the
window saying an appropriate message. For example, missing '=',
illegal symbol, two or more rules with the same symbol on the left of the
'=', a rule with more than one symbol on the left of the equal.

[5 point] When the user enters a number of generations that is illegal, the
rule field becomes red and an error label displays in the window saying
an appropriate message. For example, a character that is not a digit or
a number that is too large.

[2 point] When none of the three input fields has an error, then the draw
button is enabled, otherwise it is disabled.27

Useful String and Character Methods

java.lang.Character

public static boolean isDigit(char ch)

public static boolean isLetter(char ch)

java.lang.String

public char charAt(int index)

public String[] split(String regex)

public String trim()

java.lang.Integer

public static Integer valueOf(String s)

28

15

Grading Rubric for Part 2 (35 points total)

[6 points] buildFractal works as specified for example #1 with
generations 0 through 10.

[6 points] buildFractal works as specified for example #2 with
generations 0 through 10.

[6 points] buildFractal works as specified for example #3 with
generations 0 through 10.

[6 points] buildFractal works as specified for unknown #1.

[6 points] buildFractal works as specified for unknown #2.

[5 points] The visual display works for each of the above test cases. This is
a free 5 points since, except for adding more colors, it is mostly
unchanged from the given code

29

Grading Rubric Penalties

[-5 points]: Code does not adhere to the hallowed CS-152 coding
standard: http://www.cs.unm.edu/~joel/cs152/CS-152-Lecture-
05-CodeStandards.pdf. This includes indenting, class, method,
and in-line comments, removing all warnings, etc. Note: all 5
points are lost if any one of the standards is severely broken. For
example:

● Very Poor comments: -5.

● Poor comments: -1 through -3.

● Many indenting errors: -5.

● A few indenting errors: -1 through -3.

● Multiple breaking of naming convention: -5. For example,
variables that start with an uppercase letter or fields declared
final that are not all uppercase.

● Multiple warnings (other than the ignorable: Serializable...).
30

16

Extra Credit [+10]: Fit to Screen

As specified, generation 10 of example 1 (named the
Heighway Dragon Curve) will fit within the 600600 pixel
drawing area.

Level 11 of the dragon curve will not fit

Equally unpleasant is the visual size of the first few
generations

For extra credit, upgrade the program so that the largest
dimension of each drawing, regardless of system and
generation, exactly fits within 10 pixels less than the
available space.

You must avoid distortion by scaling both x and y by the same
amount.

Your image must be centered within the display.
31

Extra Credit [+5]: Resizing Screen

 In the given version, when the user resizes the screen, the canvas
and text stay the same.

 This extra credit option by itself has no effect on the drawing
image size. When the user makes the window smaller/larger, a
smaller/larger picture will fit.

 This extra credit option may be combined with the fit to sereen
option.

32

17

Extra Credit [+10]: Metallic Coloring

By level 20, if drawn with each f and g no longer than one pixel, the
dragon curve appears to be space filling. At this density, metallic
coloring effects, if used, will be visible.

33

1) Load a 600x600 image of a
brushed steel texture into a onto
the screen

2) Merge the image of your L-
system with the steel texture.
This can be done by looping
through each pixel of the two
images, and for each pixel set the
new L-system red, green and
blue values as a weighted
average of the r, g and b of the
two images:

21

21 **

ww

rwrw
r texurelsystem

Extra Credit [+30]: Do it in 3D

JavaFX supports 3D
graphics rendering with

Ray casting, shadows,
specular and defuse
reflection...

Have fun and make something
beautiful.

34
Rendering by a Solkoll, a Swedish Wikipedian

18

Dragon Curve Rendering by Geoffrey Irving

35

Implementation Suggestions

 Whenever possible, software engineers should try to
remove all implementation specifications from the
project requirements.

 Ideally, requirements be limited to use cases and
performance.

 This is not always possible. A contractor (or teacher)
may require use of a particular language (i.e. Java in
CS-152) or may require a particular algorithm.

The next few slides show implementation suggestions and
spoilers. They are not requirements.

36

19

Implimentation Suggestion: Rules:

 Your program inputs the rules as a single string.
This is awk to work with becasue where in the
string is the left part and the right part

 so we will make a method that breakes the
single string of rules into an array of rules where
each element of the array is a single rule:

 String[] ruleList = cmdString.split(";");

37

38

Helper method: String.trim()

//String.trim() removes whitespace from the beginning and end of a
// string. This includes spaces, tabs, return characters and all
// ASCII control characters.
public class HelloWorld
{ public static void main(String[] args)
{ String str = " white space " + '\t' + " ";
System.out.println("<" + str + ">");
str.trim();
System.out.println("<" + str + ">");
str = str.trim();
System.out.println("<" + str + ">");

}
} Output: - what is going on?

< white space >
< white space >
<white space>

20

39

Helper method: removeWhitespace

//First, uses String.trim() to remove all whitespace from the front and
//end of the given str.
//The String str then references the new, trimmed string.
//Then builds a new String, str2, one character at a time from str.
//Each non-blank, non-tab character from str is added to str2.
//The method returns a reference to str2.

private static String removeWhitespace(String str)
{ String str2 = "";
for (int i=0; i<str.length(); i++)
{
char c = str.charAt(i);
if (c != ' ' && c != '\t') str2 += c;

}
return str2;

}

40

Testing: removeWhitespace

public static void main(String[] args)
{ String x = " I contain some whitespace ";
String y = "abcdefghijklmnop";
//The String object referenced by x is passed into
// removeWhitespace(x).

//After the method returns, x is assigned the reference to a new
// object created by removeWhitespace(x).

//The String object that x used to reference is no longer referenced
// therefore, Java marks it for garbage collection.

x = removeWhitespace(x);
y = removeWhitespace(y);

//By surrounding the Strings with <> symbols, we can
// see if there are leading or trailing spaces.
System.out.println("<" + x + ">");
System.out.println("<" + y + ">");

}

21

Other Suggested Helper Methods

private String inputAxiom()

//Display dialog, check for errors, repeat until good.

private String inputRules()

//Display dialog, check for errors, repeat until good.

private int inputGeneration()

//Display dialog, check for errors, repeat until good.

41

Separating code that can be understood as a functional
unit into a method helps organize your code.

Scaling and Centering to Fit the Screen in x
(horizontal) direction

 Initialize minX, maxX each to the center of the canvas, 300.0.

 Loop through all the draw commands of drawing the Original
Fractal starting at (300,300) and a draw distance of 5 pixels.
However, do not actually draw anything, just calculate each
change to x. Each time x changes:

if (x<minX) minX=x;
if (x>maxX) maxX=x;

 After the loop is done, calculate scaleX and shiftX:
double screenMinX = 0., sreenMaxX = 600.
screenRange = sreenMaxX - screenMin
fractalRange = maxX - minX
double lineLength = 5.0
scaleX = screenRange / fractalRange
lineLength = lineLength * scaleX
shiftX = -minX*scaleX42

