CS-257L
Nonimperative Programming: Scheme!

Instructor:
Joel Castellanos
e-mail: joel@unm.edu
Web: http://cs.unm.edu/~joel/
Office: Farris Engineering Center (FEC) room 321
Homework Due Wednesday, March 5

- Nothing to hand-in.
- Scheme and The Art of Programming
- Read Chapter 4, and do
 - Exercise 4.3
 - Exercise 4.8
 - Exercise 4.14
- Be prepared for a quiz (open notes and open book) on this material.
- This will be like the final exam – you will be given Scheme code and asked to find the return value.
Scheme Do Statement

```
(do ((i 0 (+ i 1))) ((>= i 5))
    (display i)
    (display " ")
)

(newline)
```

Output:
0 1 2 3 4
roulette (lambda (numBets maxBet)

; Check for input errors
(do ((i 0 (+ i 1))) ((>= i numBets))
 ; Place a bet
 (set! myMoney (- myMoney currentBet))
 (cond ((< (random) (/ 18 38))
 ; I win!!
 (set! myMoney (+ myMoney (* 2 currentBet)))
 (set! currentBet 1))
 (else
 ; I lose
 (set! currentBet (* 2 currentBet))
 (if (> currentBet maxBet)
 (set! currentBet 1)))

3/3/2008
Roulette Results

- Since random numbers control the results of this function, the exact output is not predictable.

- Indeed, for small values of numBets the results are accentually random.

- However, if written correctly, large values of numBets will give consistent results for a given value of maxBet.
Roulette: Check Special Cases

- Change chance of winning to (/ 38 38)

 (roulette 10 16) => win $10.00.

- Change chance of winning to (/ 0 38)

 (roulette 10 1) => lose $10.00.
 (roulette 10 2) => lose $15.00.
 (roulette 10 4) => lose $22.00.

- Restore chance of winning to (/ 18 38)

 Set maxBet = 1, then every bet is 1 dollar.

 Thus, after 1,000,000 bets, there will be very close to

 1,000,000 * 18/38 wins and 1,000,000 * 20/38 losses.

 After 1,000,000 bets, it is highly predictable that you will loose

 between $50,000 and $55,000.
When maxBet is 1, then every bet is an independent event.

However, if maxBet is 512, then a single event may be composed of as many as 10 bets.

Thus, as maxBet gets larger, a given number of bets will consist of less events and, therefore, have less predictable results.

Yet, for large enough values of numBets, the results will be highly predictable.
Roulette: Expected Results

<table>
<thead>
<tr>
<th>maxBet</th>
<th>Expected Results with numBets = 1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Loose between $50,000 and $55,000.</td>
</tr>
<tr>
<td>2</td>
<td>Loose between $50,000 and $100,000.</td>
</tr>
<tr>
<td>5,000</td>
<td>Loose between $250,000 and $1,500,000.</td>
</tr>
<tr>
<td>50,000</td>
<td>Loose between $200,000 and $2,000,000.</td>
</tr>
<tr>
<td>5,000,000</td>
<td>Win between $450,000 and $500,000</td>
</tr>
<tr>
<td></td>
<td>(with 1 in 29 chance of loosing 4 million).</td>
</tr>
<tr>
<td>50,000,000</td>
<td>Win between $450,000 and $500,000</td>
</tr>
<tr>
<td></td>
<td>(with 1 in 273 chance of loosing 34 million).</td>
</tr>
</tbody>
</table>

- In the last two cases, the result is winning almost half a million dollars.
- This is dependant on there NEVER being a breaking loosing streak.
- A single breaking loosing streak at this magnitude, cannot be recovered in 1 million bets even if every other bet is a win on the first try.
The rate at which the bet increases is exponential: \(2^n\).

The Probability of a catastrophic loosing streak decreases exponentially: \((18/38)^n\).

<table>
<thead>
<tr>
<th>n</th>
<th>(2^{(n-1)})</th>
<th>((18/38)^{(n-1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.7 E-1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.2 E-1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1.1 E-1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5.0 E-2</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2.4 E-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>(2^{(n-1)})</th>
<th>((18/38)^{(n-1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>16,384</td>
<td>1.4 E-5</td>
</tr>
<tr>
<td>20</td>
<td>524,288</td>
<td>3.2 E-7</td>
</tr>
<tr>
<td>23</td>
<td>4,194,304</td>
<td>3.4 E-8</td>
</tr>
<tr>
<td>26</td>
<td>33,554,432</td>
<td>3.7 E-9</td>
</tr>
<tr>
<td>29</td>
<td>268,435,456</td>
<td>3.9 E-10</td>
</tr>
</tbody>
</table>
Thus, with 1 million bets and a $34 million bet limit, there is a:

- $1,000,000 * 3.7E-9 (=1/273) chance of loosing 34 million and a
- \(\frac{272}{273} \) chance of winning about $1,000,000 * \(\frac{18}{38} \) = $470,000.

With a max bet of 269 million, the chance of loosing after 1 million bets is $1,000,000 * 3.9E-10 (=1/2500).

As maxBet gets larger, the chance of loosing decreases a bit faster than the cost of loosing.
Recursion Vocabulary

- **Flat Recursion**
 Recursion being done over the top-level items in lists:

 \[
 (\text{flatCount } '(a (x y z) b)) \Rightarrow 3
 \]

- **Deep Recursion**
 - When recursion is over all the atomic items of a list:

 \[
 (\text{deepCount } '(a (x y z) b)) \Rightarrow 5
 \]
More Vocabulary

- We say that the sublist \((b \ c)\) is *nested* in list \((a \ (b \ c))\).

- If an item is not enclosed in parentheses, that item has *nesting level* 0.

- The item \(c\) in \((a \ (b \ (c \ d)))\) has nesting level 3.