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The problem domain

@ Wireless sensor networks:
@ Network of small resource-constrained devices.
@ Monitor their environment.
@ Limited radio range dictates a hop-by-hop routing
topology.
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@ Limited radio range dictates a hop-by-hop routing
topology.
@ Data aggregation:
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The problem domain

@ Wireless sensor networks:
@ Network of small resource-constrained devices.
@ Monitor their environment.
@ Limited radio range dictates a hop-by-hop routing
topology.
@ Data aggregation:
@ Nodes process, combine, or filter data to conserve
bandwidth.
@ We assume a standard tree like routing topology,
e.g. the collection tree protocol.
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Key challenges with sensitive data

@ Privacy:
@ Data aggregation: more complicated with sensitive data.
@ We want the nodes to aggregate data.
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Key challenges with sensitive data

@ Privacy:

@ Data aggregation: more complicated with sensitive data.

@ We want the nodes to aggregate data.

@ But we do not want them to know what those data are.
@ Power and energy:

@ Limited amount of power available.

@ Standard encryption is expensive

(computationally, memory, and energy).
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@ Power and energy:
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(computationally, memory, and energy).
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@ Data aggregation: more complicated with sensitive data.
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@ Data aggregation: more complicated with sensitive data.

@ We want the nodes to aggregate data.

@ But we do not want them to know what those data are.
@ Power and energy:

@ Limited amount of power available.

@ Standard encryption is expensive

(computationally, memory, and energy).

@ TinySec-AE adds about a 10% increase in energy consumption’.
@ Delay:
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@ Data aggregation: more complicated with sensitive data.

@ We want the nodes to aggregate data.

@ But we do not want them to know what those data are.
@ Power and energy:

@ Limited amount of power available.

@ Standard encryption is expensive

(computationally, memory, and energy).

@ TinySec-AE adds about a 10% increase in energy consumption’.
@ Delay:

@ Nodes need to encrypt a byte in the time to transmit a byte.
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1C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer security architecture for wireless sensor networks. SenSys ‘04,

162-175, 2004.
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Addressing these challenges, KIPDA

KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation:
@ Aggregates are anonymized among camouflage data in a message set.
@ The values in certain positions in the message set obey special properties.

@ These positions are divided into restricted and unrestricted sets
(and vary between nodes).

@ Because aggregates are not encrypted, aggregation can easily take place.
@ Sensitive values are indistinguishable from the camouflage values.
@ Definition: An item is indistinguishable from a set of items if an adversary cannot do
better than guessing the item from the set.
@ For non-linear functions such as MAX/MIN (can be extended to SUM).

@ We can not use algebraic properties of polynomials.
@ Homomorphic encryption does not work.
@ Perturbation techniques are not applicable.
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KIPDA'’s privacy assumptions and threat model

@ Privacy assumptions:
@ A datum is k-indistinguishable from k — 1 other camouflage data.

@ Definition: An item is k-indistinguishable if it cannot be distinguished better than guessing from
k — 1 other items.

@ A certain level of node collusion or capture is tolerated.
@ Threat model includes threats from:

@ Untrusted eavesdroppers intercepting or listening to packets.
@ Honest but curious ' nodes in between data transit.

T, Bozovic, D. Socek, R. Steinwandt, and V. I. Villanyi. Multi-authority attribute based encryption with honest-but-curious central authority. /ACR eprint
archive, 2009.
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KIPDA'’s privacy assumptions and threat model

@ Privacy assumptions:
@ A datum is k-indistinguishable from k — 1 other camouflage data.

@ Definition: An item is k-indistinguishable if it cannot be distinguished better than guessing from
k — 1 other items.

@ A certain level of node collusion or capture is tolerated.
@ Threat model includes threats from:

@ Untrusted eavesdroppers intercepting or listening to packets.
@ Honest but curious ' nodes in between data transit.
@ Polynomial time adversaries.

T, Bozovic, D. Socek, R. Steinwandt, and V. I. Villanyi. Multi-authority attribute based encryption with honest-but-curious central authority. /ACR eprint
archive, 2009.
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@ Nodes 2 and 3 report to node 1, who

reports to the base station.
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KIPDA example (MAX aggregation)

@ Nodes 2 and 3 report to node 1, who
reports to the base station.
@ TTTTT] @ Eachnode wants to report one number,
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KIPDA example for MAX aggregation

KIPDA example (MAX aggregation)

@ Nodes 2 and 3 report to node 1, who
reports to the base station.
TTTTT] @ Eachnode wants to report one number,
keeping that number anonymous.

@ KIPDA makes that number
HNEEEE indistinguishable from the others.

@ Message set of size 7.
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KIPDA example for MAX aggregation

4 phases to the protocol:

@ Pre-deployment phase.
@ Reporting phase.
@ L1TTT1]1 @ Aggregation phase.
© Base-station processing phase.
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KIPDA example for MAX aggregation

1) Pre-deployment phase:
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KIPDA example for MAX aggregation

GSS=1{1,3,5} 1) Pre-deployment phase:

Gss- {24675 @ BSchooses the size for the global
secret set, (GSS), then fills it in.
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KIPDA example for MAX aggregation

GSS=1{1,3,5} 1) Pre-deployment phase:

Gss- {24675 @ BSchooses the size for the global
secret set, (GSS), then fills it in.
TTTTTT] @ BS distributes the restricted sets, (RS)),
to each node /. (Yellow shades).
@ GSS c RS; (Accuracy).
TTTTTT Q RS c GSS (Anonymity).
© Truth value position € GSS (Accuracy).
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KIPDA example for MAX aggregation

GSS=1{1,3,5} 1) Pre-deployment phase:

@ BS chooses the size for the global
secret set, (GSS), then fills it in.

@ BS distributes the restricted sets, (RS)),
to each node /. (Yellow shades).

@ GSS c RS; (Accuracy).

© RS; ¢ GSS (Anonymity).

© Truth value position € GSS (Accuracy).
@ Nodes trivially determine unrestricted

sets (Green).

GSS = {2,4,6,7}
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KIPDA example for MAX aggregation

GSS=1{1,3,5} 1) Pre-deployment phase:

@ BS chooses the size for the global
secret set, (GSS), then fills it in.

@ BS distributes the restricted sets, (RS)),
to each node /. (Yellow shades).

@ GSS c RS; (Accuracy).

© RS; ¢ GSS (Anonymity).

© Truth value position € GSS (Accuracy).
@ Nodes trivially determine unrestricted

sets (Green).

[1]2[3]4[5]6 7 @ Attention is given to the sizes of sets.

GSS = {2,4,6,7}
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KIPDA example for MAX aggregation

GSS={1,3,5}  2) Reporting phase:
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KIPDA example for MAX aggregation

GSS={1,3,5}  2) Reporting phase:

@ The sensed values are put in the real
value slots, (dark yellow).
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KIPDA example for MAX aggregation

GSS={1,3,5}  2) Reporting phase:

@ The sensed values are put in the real
value slots, (dark yellow).

@ Restricted slots are filled with values
that below the sensed value.
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ARENEE

27 sofsaf 4 |

1234567

Michael M. Groat (University of New Mexico) KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation April 13, 2011 6/16



KIPDA example for MAX aggregation

GSS={1,3,5}  2) Reporting phase:

@ The sensed values are put in the real
value slots, (dark yellow).

@ Restricted slots are filled with values
that below the sensed value.

@ Unrestricted slots are filled with values
either above or below the sensed
value.

25] 6] 22fas] 15 ea] 1o

o [11[sofssf+ [s |

16]47]27]30]3¢fs ]4 |
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KIPDA example for MAX aggregation

GSS={1,3,5}  3) Aggregation phase:
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KIPDA example for MAX aggregation

GSS={1,3,5}  3) Aggregation phase:

@ The aggregation function is then
performed on the children and itself, if
the aggregator senses.
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KIPDA example for MAX aggregation

GSS = {1,3,5}

@ The aggregation function is then
performed on the children and itself, if
the aggregator senses.

@ The MAX is taken from all three
message sets for each position.

3) Aggregation phase:
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KIPDA example for MAX aggregation

GSS = {1,3,5}

3) Aggregation phase:

@ The aggregation function is then
performed on the children and itself, if
the aggregator senses.

@ The MAX is taken from all three
message sets for each position.

@ Message set is sent up the aggregation
tree.
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6 [ 112
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KIPDA example for MAX aggregation

GSS = {1,3,5}

4) Base station phase:
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KIPDA example for MAX aggregation

GSS = {1,3,5}

4) Base station phase:

@ The base station determines the
network aggregate by taking the

maximum from the GSS.

6 [ 112
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KIPDA example for MAX aggregation

GSS = {1,3,5}

4) Base station phase:

@ The base station determines the
network aggregate by taking the
maximum from the GSS.

@ Position 5 contains the maximum.

25] 6] 22fas] 15 ea] 1o

6 [ 112
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KIPDA: other aggregation functions

@ Summation aggregation function:
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KIPDA: other aggregation functions

@ Summation aggregation function:
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@ Summation aggregation function:
@ Truth values: more than one.
@ Truth values: sum to sensed value.
@ Restricted values: sum to 0.
@ Unrestricted values: sum to any value.
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Privacy guarantees

@ Privacy is quantified by the level of k.
@ Kk is given as: o
k=|RSi| + k =|RS;| +1.

= ° @ Any node / knows for any node j the real value is in the
4 [ I I I |RS;| + 1 largest values.
! S e .. s @ Toan outside observer though, k equals the size of the

IRSi| message set.
@ Kk is reduced if more rogue nodes collude.
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Privacy: Encryption vs. KIPDA

Method Limitations

Hob-by-hop Encryption 1) Aggregate data are vulnerable at the nodes.
2) Does not work well for honest-but-curious nodes.

End-to-End Encryption 1) Does not work well for non-linear functions.

KIPDA 1) Provides a type of k-indistinguishability.
2) Secrets are in plain text but camouflaged.
3) Works well for honest-but-curious nodes.
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On the optimal sizes of sets

@ Sets sizes are determined in the following order:

@ The message sets:

@ A higher size gives more privacy.
@ A lower size uses less energy.

© The restricted sets:

@ A higher size gives robustness to node-collusion.
@ A lower size gives a higher k for k-indistinguishability.

© The global secret set:
@ Determined from the message and restricted set sizes. We give equations in the paper.
@ The reverse order determines the size of the message set given the
required minimal amount of node collusion.
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Challenges to KIDPA

@ Nodes that are more than honest-but-curious, and will subvert the network
aggregates.

@ Not as efficient with streaming encryption techniques.
@ Information is not 100% concealed, only indistinguishable.

@ Still need to exchange the restricted sets with the nodes and the base
station every often.
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Conclusion

@ First work we are aware of that provides “indistinguishability” to privacy
preserving data aggregation.

@ Saves energy and time even though more messages are sent.
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Future Work

@ Implement in TOSSIM or similar WSN simulator.
@ Address other adversarial models.

@ Byzantine attacks.
@ Denial-of-Service attacks.
@ Node insertion attacks.

@ Address mobility in nodes.
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Thank you for your attention.
Questions?
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