Rec-I-DCM3: A Fast Algorithmic Technique for
Reconstructing Large Phylogenetic Trees

Usman Roshan * Bernard M.E. Moret' Tiffani L. Williams'
Tandy Warnow* *

Abstract

Estimations of phylogenetic trees are most commonly obtained through the use of heuris-
tics for maximum parsimony (MP), an NP-hard problem. Although apparently good heuris-
tics have been devised, even they fail to produce good solutions in reasonable time for large
datasets—today’s limit is unknown, but is probably less than one thousand sequences. In this
paper, we present a promising new divide-and-conquer technique, Recursive-Iterative-DCM3
(Rec-I-DCM3). This new method belongs to our family of Disk-Covering Methods (DCMs);
it operates by iteratively dividing the input set of sequences into smaller overlapping subprob-
lems, solving them using some base method (e.g., neighbor-joining, heuristic MP, heuristic
ML, etc.), and then merging these subtrees into a single, phylogenetic tree. Thus, Rec-I-DCM3
is designed to boost the performance of its base method. Our new method is composed of a
new DCM, which we call DCM3, but utilizes recursion and iteration as well; the result is a
booster of phylogenetic reconstruction methods that can produce dramatic improvements for
standard heuristics, as well as substantial improvements over the very best methods (which
are harder to improve). We demonstrate the power of this new DCM on ten large biological
datasets ranging from 1,322 to 13,921 sequences.

Contact: usman@cs.utexas.edu
URL: http://www.cs.utexas.edu/users/usman/ismb04
Keywords: Phylogeny, maximum parsimony, algorithms, heuristics

1 Introduction

Maximum parsimony (MP) and maximum likelihood (ML) are two of the major optimization
problems in phylogeny (i.e., evolutionary tree) reconstruction. Both are quite hard to solve (MP
is NP-hard [3], and ML harder in practice), and datasets above 30 taxa cannot be solved exactly
with any reliability (branch and bound, or exhaustive search, techniques are both limited to smaller
datasets). ML heuristics have been used to analyze datasets of up to a hundred or so taxa, but larger

*Department of Computer Science, U. of Texas at Austin, usman, tandy@cs.utexas.edu
JfDepartment of Computer Science, U. of New Mexico, moret, t lw@cs.unm.edu
tRadcliffe Institute for Advanced Study twarnow@radcliffe.edu



datasets seem beyond the capabilities of existing ML heuristics. MP heuristics are the main way by
which systematists perform their phylogeny reconstructions (Sanderson surveyed 882 phylogenetic
analyses published in 76 journals, and observed that 60% of the phylogenies were constructed
using MP heuristics [14]).

Because of the importance of MP analyses in phylogeny reconstruction, systematists and algo-
rithms researchers in phylogeny have studied the existing methods (specifically, implementations
of heuristics in different software packages) to see which performed the best. The main criterion
by which these methods have been studied is the time needed to get to the optimal score (or, more
accurately, the best known score) on various real datasets, preferably of at least one hundred se-
quences. These studies [4, 11, 15, 12, 13] have suggested that the “parsimony ratchet” [11] was
more effective than Tree-Bisection and Reconnection (TBR) hill-climbing [9], and that TNT’s [4]
implementation of the parsimony ratchet was more efficient than PAUP*’s [16] implementation.
Thus, TNT’s ratchet is probably among the best of the existing software tools for solving MP.

In an independent development, new algorithmic strategies were also developed which were
hoped might result in improved parsimony heuristics. Divide-and-conquer methods in particular
were thought to be promising. The motivation behind this approach was that an exponential time
method (such as a thorough MP analysis would involve) would be faster if run on a small number
of datasets, each a fraction of the size of the full dataset.

An early such divide-and-conquer method called DCM2 was developed for MP analysis, and
presented at ISMB 1999 [7]. This divide-and-conquer method is used with an existing “base
method” as follows. First a decomposition of the set of taxa into overlapping subsets is obtained,
and trees are constructed on the subsets using the base method. Then the trees on the different
subsets are merged together into a tree on the full dataset. The study in [7] in which the DCM2
technique was presented suggested that this divide-and-conquer approach might speed up maxi-
mum parsimony analyses, but the study was limited to performance on simulated data, and used
the default heuristic within PAUP*, which is based solely on TBR hill-climbing.

Over the last two years we have attempted to evaluate the performance of the DCM2 technique.
Our studies (briefly reported upon in [13], and extended here) were disappointing. While we saw
that DCM2 sped-up the default (TBR-based) PAUP* heuristic for MP on real datasets, it failed to
provide advantages on most datasets when we used more effective techniques (such as the parsi-
mony ratchet) as the base method. This observation is consistent with the conjecture we had that
when the base method is not that efficient at finding good solutions, DCM2 can provide a dramatic
advantage, but as the base method improves in speed towards near-optimal solutions, DCM2’s
ability to boost the performance lessens. Consequently, DCM2’s ability to consistently boost the
performance of TBR hill-climbing but inconsistent performance with the parsimony ratchet made
sense. We therefore needed to improve the design of the DCM.

The problem with DCM2’s design seemed to be its decomposition: firstly, it turned out to be
costly (even though polynomial time) to compute the DCM2 decomposition, and secondly, the
decomposition it obtained often did not significantly decrease the size of the subproblems from the
full dataset size. We then turned to developing new divide-and-conquer techniques which would
be faster to compute, and also more likely to produce better decompositions. Our first attempt
produced the DCM3 technique (or third Disk-Covering Method). As hoped, the DCM3 decompo-



sition is faster to compute than the DCM2 decomposition, and produces about the same number
of subproblems as DCM2, but much smaller ones. However, when used with TNT’s ratchet for
the base method, DCM3 does not always provide improvements in MP analyses. We therefore
turned to other algorithmic techniques: recursive use of DCM3 (so that we further subdivide sub-
problems), and iterative use (so that we periodically call DCM3 during the MP analysis). Our
study, presented here, shows how these various methods perform in MP analyses of ten large real
biological datasets.

The main contribution of the paper is the presentation of these new heuristics, none of which
has been published before, and the empirical study evaluating their performance. As expected, the
best performing method, Recursive-Iterative-DCM3, or Rec-I-DCM3, is very powerful: we show
that when used with TNT’s ratchet on subproblems, it produces significant speed-ups over TNT’s
ratchet in terms of the time to optimal. More significantly, we show that at every point in time
during a 24 hour analysis, our Rec-I-DCM3 obtains better MP scores than TNT’s ratchet.

2 Maximum Parsimony

We now formally define the Maximum Parsimony (MP) problem. Let S be a set of n sequences
over a fixed alphabet ¥, all of the same length. Let 7" be a tree leaf-labelled by the set S and with
internal nodes labelled by sequences over X of the same length. The length of T with this labelling
is the sum, over all the edges, of the Hamming distances between the labels at the endpoints of the
edge. (The Hamming distance between two strings of the same length is the number of positions in
which they differ.) The MP problem seeks the tree 7" leaf-labelled by S with the minimum length;
this is the same as seeking the tree with the smallest number of point mutations for the data. While
MP is NP-hard [3], constructing the optimal labeling of the internal nodes of a fixed tree 7" can be
done in polynomial time [2].

Iterative Improvement Methods: Iterative improvement methods are some of the most popular
methods in phylogeny reconstruction. Some fast technique is used to find an initial tree; that tree
is then improved through a local search, in order to find a different tree with a better score. The
most popular local move is called Tree-Bisection and Reconnection, or TBR [9].

The Parsimony Ratchet: The parsimony ratchet is a technique that combines TBR hill-climbing
with a specific technique in order to move out of local optima. Precisely, when the TBR hill-
climbing reaches a local optimum, the ratchet modifies the input data (by doubling a random subset
of one fourth of the sites, thus producing a set of sequences that are 1.25 times as long as the input
sequences), and running TBR hill-climbing on the new data. When that new search reaches a local
optima, then the dataset is changed back to the original dataset, and hill-climbing is resumed.

Disk-Covering Methods: Disk-Covering Methods (DCMs) [6, 7, 10, 13, 17] are divide-and-
conquer methods that are designed to “boost” the performance of phylogenetic reconstruction
methods. The first DCM [6], also called DCM1, was designed for use with distance-based methods
and has provable theoretical guarantees about the sequence length required to reconstruct the true
tree with high probability under Markov models of evolution (see [17]). The second DCM, DCM2
[7], was designed to speed up heuristic searches for MP trees; we showed [7] that, when DCM2
was used with PAUP* [16] TBR search, it produced better trees faster on simulated datasets. We
also observed that the parsimony ratchet in PAUP* was better than TBR search at solving MP

3



[13] and so compared DCM2(PAUP*-ratchet) with the PAUP*-ratchet on biological datasets. We
found varying results: sometimes DCM2(PAUP*-ratchet) was better, and sometimes worse, than
the PAUP*-ratchet at solving MP (unpublished data, but see also [13]).

3 The DCMB3 technique and its variants

DCM2’s drawbacks are that (1) it takes a long time to compute a decomposition and (2) when it
does so, it usually (on most datasets) contains subproblems almost as large as the original dataset.
These two observations led us to design a new DCM, which we call “DCM3”, for the Third DCM.
The main change in the decomposition strategy is that DCM?2 operates on the basis of an estimated
distance matrix on the input, whereas DCM3’s decomposition is obtained on the basis of a “guide
tree” (which can change during the course of the heuristic search) for the dataset. Consequently,
DCM3 can be used at different times to obtain different decompositions, thus enabling an iterative
use of the decomposition strategy. Our experiments (reported on in this paper) show that DCM3
reliably produces a small number of subproblems, each of which contains at most 40% or 50%
of the taxa. Also, whereas in our DCM?2 strategy we explicitly minimize the size of the largest
subproblems during the decomposition, we use a very fast heuristic to decompose the dataset
(without trying to explicitly minimize the largest subproblem); this allows us to get good decom-
positions much faster than we could with DCM2. In the next sections, we describe the DCM3
decomposition and four methods based upon it: DCM3, Recursive-DCM3, Iterative-DCM3, and
Recursive-Iterative-DCM3.

3.1 DCM3 decompositions

We begin by describing the DCM3 decomposition. We assume we have a tree 7" on our set S of
taxa, and an edge weighting w of T' (i.e., w : E(T) — RT). Most typically this edge-weighting
will be given by the Hamming distances under the maximum parsimony labelling of the nodes of T’
(computable in polynomial time). Based upon this edge-weighted tree, we obtain a decomposition
of the leaf set using the following steps. We begin by constructing the short subtree graph, which
is the union of cliques formed on “short subtrees” around each edge.

Short subtrees of edges: Let e be an edge in a guide tree 7', with edge weighting w. A short
quartet around e is composed of four leaves (one from each of these four subtrees), where each
leaf is selected to be closest to the edge e (the distance between nodes u and v is measured as
Yecp,, w(e)). Let X (e) be the set of all leaves that are elements in a short quartet around e; we
call X (e) the “short subtree” around e. The graph formed by taking the union of all the cliques
on all X (e)’s is the Short Subtree Graph. We state without proof the following theorem (the proof
will be given in the full version of the paper if space permits):

Theorem 1 The short subtree graph G of an edge-weighted binary tree T is triangulated (that is,
it does not contain any simple induced cycles of size greater than three).

Since the short subtree graph G is triangulated, we can find (in polynomial time, as proven in
[5]) a maximal clique separator X that minimizes maz;|X U C;|, where G — X is the union of
k components C,Cs, ..., Cy. This would allow us to define a decomposition of the dataset into
subsets C; U X, for ¢ = 1,2, ..., k, which would minimize the maximum subset size. Despite the



appeal of such a decomposition (essentially what we did in DCM2), finding such a separator is
more time consuming than we want; thus, we used a different technique to find a vertex separator.

DCM3 decomposition First, compute the short subtree graph, G = (V, E) on T. Then find
a centroid edge in T' — that is, the edge such that when removed, produces the most balanced
bipartition of the leaves. We set X to be the leaves of the short subtree graph around the centroid
edge e. (Should this set X fail to be a separator in the short subtree graph defined by the guide tree,
we would then resort to computing all maximal clique separators in GG; however, in our experience
we have never needed to do this.) The subproblems are then defined to be A; = X U C;, where
G — X has k distinct connected components, Cy, Cs, . . ., C.

Subtrees are then constructed for each subset, A;, using the “base method”, and then combined
using the Strict Consensus Merger (see [6, 7]) to produce a tree on the combined dataset. The proof
that the resultant tree is accurate (i.e., agrees with the unknown underlying “true tree”’) follows from
the following structural theorem (we omit the proof which is along the same lines as in [6]).

Theorem 2 Let T be the true tree, let Ay ... Ay be the subproblems obtained in some DCM3
decomposition, perhaps based upon another tree. Suppose that every short quartet in T is a four-
clique in some A;, and that when we apply the base method to each subproblem A; we obtain the
true subtree (i.e. we get T; = T|A;). Then the Strict Consensus Merger (SCM), a consensus-based
supertree method [6], is applied to the set of trees Ty, T, . .., Ty to yield T.

Recursive-DCM3 (Rec-DCM3) decomposition The recursive DCM3 decomposition takes the
maximum subproblem size, m, as a parameter and is computed as follows. Let A;, ..., Ay be the
computed DCM3 subproblems on S and 7. For each subproblem A;, apply the DCM3 decompo-
sition recursively to A; with the guide tree defined for subset A; defined to be T restricted to A;,
until the subproblem becomes at most of size m.

Comparison of decompositions obtained by DCM3, Rec-DCM3, and DCM2: The design of
DCM3 was done so as to avoid producing very large subsets. Indeed we see in Figure 1 that
DCM3’s decomposition produces subproblems of sizes bounded by about half the initial subprob-
lem size, and that Rec-DCM3 produces subproblems that are consistently small (this last observa-
tion follows easily from the design of Rec-DCM3, since it always recurses until each subproblem
is of size at most one eighth the original size). Note that the DCM2 maximum subproblem sizes
are almost equal to the original size of the dataset.

3.2 DCM3 algorithms

All of our DCM3-based algorithms take as input the set S = {s1, ..., s,} of n aligned biomolec-
ular sequences, the base method, and a starting tree 7". In these experiments we have used the
TNT-Ratchet as our base method, since it is the hardest to improve (PAUP* heuristics are much
easier to improve). We describe below the four algorithms which we study.

DCM3 The DCM3 algorithm first computes a DCM3 decomposition on S using the guide-tree
T to produce subproblems Ay, As, ..., Ag. It then applies the base method to each subproblem A;
using the guide-tree T restricted to the subset A; (denoted as T'| A;) as the starting tree. The subtrees
are then merged using the strict consensus merger (see [7] for description) and the resulting tree is
randomly resolved to make it binary, in case it is not.

5



100 100 - 35 -
- n Bl Rec-DCM3 Bl Rec-DCM3 Il Rec-DCM3

90 [ bcMm3 90 n n [ pCM3 [ DCM3
(1 bcm2 [ bCcm2 J 30 (1 bcm2

80 80

25

70 70

60 60

20

50 50

40 40

Number of subproblems

30 30

? THE 11111} Z |

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Dataset# Dataset# Dataset#

Max subproblem size as a % of full dataset size
Average subproblem size as a % of full dataset size

(a) Maximum subproblem size (b) Average subproblem size (c) Number of subproblems

Figure 1: Comparison of DCM2, DCM3 and Recursive-DCM3 subproblem statistics. We were unable to
compute DCM?2 decompositions on datasets 5-10 because the current implementation is slow and uses up
too much memory. Thus, no values are reported for DCM?2 on these datasets.

Recursive-DCM3 (Rec-DCM3) The Rec-DCM3 algorithm also takes as input the maximum
subproblem size m. It operates the same way as DCM3 except that it produces smaller subproblems
by recursively applying the DCM3 decomposition until each subproblem is of size at most m. The
subtrees are then computed, merged, and randomly resolved (from the bottom-up) to obtain a tree
on the full dataset.

Iterative-DCM3 (I-DCM3) [-DCM3 computes a DCM3 tree and follows it up with TBR local
search until a local optimum is reached. A DCM3 tree is then computed again using the local
optimum as the guide-tree, and this process repeated iteratively for a specified number of iterations,
or until a time-limit has expired.

Recursive-I-DCM3 (Rec-I-DCM3) Rec-I-DCM3 is similar to -DCM3 except that a Rec-DCM3
tree is constructed between iterations instead of a DCM3 tree.

4 Experimental design

Overview Having described our algorithms, we now want to determine whether we can improve
upon the TNT-ratchet, possibly the best current technique for solving MP. We focus on perfor-
mance in the initial 24 hours, and ask the following questions: (1) Which of the DCMs can get
closest to “optimal” (i.e., to the current best known MP score) the fastest? (2) Which of the DCMs
consistently is able to boost the performance of the parsimony ratchet in TNT? (3) How much of
an improvement is gained over the unboosted TNT ratchet, if any? and (4) How long does the
best TNT ratchet trial (out of five) take to attain the average MP score obtained at 24 hours by
our best DCM? To answer these questions we gathered a number of large biomolecular sequence
datasets ranging from a dataset containing slightly more than 1300 sequences, to one containing
almost 14,000 sequences. All methods were tested on the basis of five independent runs, on the
same platform. Variances were computed to ensure that the results are statistically significant.

Datasets We gathered ten large datasets of the following sizes and types: (1) 1322 Isu rRNA
of all organisms (1078 sites) [18], (2) 2000 Eukaryotes rRNA (1326 sites) from the Gutell Lab at

6



The University of Texas (UT) at Austin, (3) 2594 rbcL DNA (1428 sites) [8], (4) 4583 16s rRNA
of all Actinobacteria (1263 sites) [1], (5) 6590 ssu rRNA of all Eukaryotes (1661 sites) [18], (6)
7180 three-domain rRNA (1122 sites) from the Gutell Lab at UT Austin, (7) 7233 16s rRNA of
all Firmicutes bacteria (1352 sites) [1], (8) 8506 three-domain + two organelles rRNA (851 sites)
from the Gutell Lab at UT Austin, (9) 11361 ssu rRNA of all Bacteria (1360 sites) [18], (10) 13921
16s rRNA of all Proteobacteria (1359 sites) [1].

Methods studied For each of the techniques studied here, we used five TNT-ratchet iterations as
the base method for the DCMs, and a fast technique to obtain starting trees for all the methods. For
the Recursive-I-DCM3 we used subproblems of size at most one-eighth the size of the complete
dataset. We studied the following six methods: (1) TNT-ratchet, (2) DCM2(TNT-ratchet), which
is a TNT-ratchet search that uses the DCM2 tree as the starting tree, (3) DCM3(TNT-ratchet),
which is a TNT-ratchet search that uses the DCM3 tree as the starting tree, (4) Rec-DCM3(TNT-
ratchet), which is a TNT-ratchet search that uses the Recursive-DCM3 tree as a starting tree, (5)
I-DCM3(TNT-ratchet), and (6) Rec-I-DCM3(TNT-ratchet).

Implementation and Platform Our DCM implementations are a combination of C++ (which
uses LEDA 4.3) and Perl scripts. The TNT linux executable was obtained from Pablo Goloboff,
one of the authors of TNT. We ran our experiments on three sets of processors running Linux:
the phylofarm cluster of 9 dual 500MHz Pentium III processors, 16 dual 733MHz Pentium III
processors which are part of the 132-processor SCOUT cluster, and the Phylocluster which consists
of 24 dual 1.5GHz AMD Athlon processors; these machines are all at the University of Texas at
Austin. For each dataset all the methods were executed on the same cluster, with larger datasets on
the faster machines and smaller ones on the slower ones.

5 Results

Overview We set the “op-
timal” MP score on each s

T 015

dataset to be the best score  g°*

8
8 013

found over all five runs over  E ow

2 0.11

all methods in the 24 hour 5 o
g 0.09
period we allowed; on our g o
£ 007
datasets, this optimal score  ? oo
5 0.05

was always obtained by Rec- £ oo

<003

[-DCM3(TNT-ratchet). On ¢ o

@ 0.01

each dataset and for each g &
< 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

method, we computed the av- Datasett Dataser

erage MP score at hourly (a) (b)

intervals, and graphed this

value as a percentage devia-

=
3

>
IS

N
S

©
>

N
N

IS
3

N
R

Hours for best TNT week-run to reach Rec-IDCM3 avg score
o

Figure 2: (a) compares the average MP score error rates (as a percent
. . . above “optimal”) obtained after 24 hours by TNT-ratchet and Rec-I-
tion f'rorn optimality. In our DCM3(TNT-ratchet). (b) shows the time taken by the best TNT trial
experiments, on eyery' dat?lset extended to run for a week, to reach the average Rec-I-DCM3 MP score
and at every point in time a¢ 24 hours (bars which reach 128 hours actually indicate that TNT was
(within these 24 hours), the ypable to reach the average Rec-I-DCM3 score at the end of one week).



best performance was obtained by Rec-I-DCM3(TNT-ratchet). See Figure 2(a) for a comparison
between the performance of Rec-I-DCM3(TNT-ratchet) and TNT-ratchet at 24 hours; this compar-
ison shows that as the dataset size increases, the relative error in MP scores and the gap between
the error rates both tend to increase. We then examined how long it would take the best TNT-
ratchet trial to reach the average 24 hour score obtained by Rec-I-DCM3(TNT-ratchet), and did an
experiment allowing up to one week (168 hours) for that single run. Figure 2(b) shows that on five
out of these ten datasets, TNT-ratchet was unable to reach the average Rec-I-DCM3(TNT-ratchet)
score in 168 hours, suggesting that order of magnitude improvements are likely on large datasets.
The standard deviations of the MP scores at 24 hours for all the methods on all the datasets were
very low, at most 0.035% (see the web page for all the standard deviations at 24 hours).

DCM2 vs DCM3 vs unboosted TNT We then compared DCM3 (our new DCM) against DCM2
(our previous DCM), to see whether they were able to boost the performance of the TNT-ratchet
(and how they compared relatively). Due to the cost of computing the DCM2 decomposition, we
were unable to use DCM?2 on datasets 5-10. Figure 3(a) shows that in dataset 1 DCM?2 has a slight
advantage over DCM3 and the unboosted TNT, but this advantage disappears by dataset 3 (see web
page), and it is significantly worse at dataset 4 (where it does not output a tree at all until the 12th
hour); this is due to the cost to compute the decomposition (data not shown). DCM2 is therefore
unsuitable for these larger datasets.

Comparison of DCM3-based techniques against unboosted TNT We then turned to evaluat-
ing the performance of the other variants of DCM3, where we include recursion and/or iteration;
see Figure 3. Due to space constraints we only show the results on datasets 1, 4, and 10. On
the first dataset (Figure 3(a)) the relative performance of TNT, DCM3, Rec-DCM3, and I-DCM3
varies yet Rec-I-DCM3 stays the consistent winner. Datasets two and three (see web page) follow
the same trend. The comparisons on datasets 5-10 are similar to those on datasets 4 and 10 (shown
in Figures 3(b) and (c)) and can be viewed on our web page. There we see a consistent improve-
ment in the MP scores of DCMs in the order of DCM3, Rec-DCM3, I-DCM3, and Rec-I-DCM3,
with DCM3 being the worse and Rec-I-DCM3 being the best (and significantly improving over
the unboosted TNT). Thus, recursion and iteration enhance the performance of DCM3 on these
datasets.

6 Summary and Future Plans

In this paper we have presented a new Disk-Covering Method (DCM) for boosting the perfor-
mance of phylogeny reconstruction methods. Our earlier work (presented in ISMB 1999) presented
DCM2 (another DCM), but that technique turned out to have limited ability to boost the perfor-
mance of the best maximum parsimony heuristics, including TNT’s parsimony ratchet. In this
study we show how a combination of techniques (including a new dataset decomposition strategy
(DCM3), recursion, and iteration) can be used to get very promising results. Our new DCM, which
we call Recursive-Iterative-DCM3, dramatically boosts the performance of the default heuristics
in the popular software package PAUP*, and quite substantially boosts the performance of TNT’s
ratchet. We demonstrate our method on 10 real datasets, ranging from 1000 to 14000 sequences,
suggesting that we can reduce the time to optimal (as compared to unboosted TNT) by an order of
magnitude on many datasets.



0.05 0.35 0.35
BoM oM
0.045 | X i ™ i e + 6 Bgm
O DCM3 03 O DCM3 osf o S R s
oosl % Rec-DCM3 %X Rec-DCM3 Oy Q- 1-DCM3
g 0 I-DCM3 x 0 I1-DCM3 g5 *
T 0035 Rec-1-DCM3 T 025 - Rec-1-DCM3 5 02s| 0 F Rec--DOM3
£ E s - £ “Ook+
S o8 @ s E s s = 0666
3 g 02 6 X g o2 O
< 0025 ,gié ] " i ] B @QQQQ 1o
s +@, s = x. 2 o By, 0000
% o002 +98% PRURE] B 55+ X PCRE] . LY +++¥X¥
§ o gtﬁ 9 + DDDDDD & "ﬁ'aoﬁj X $ <><> DDD o5z o XA Gt e
2 o015 #x S il o nr? "X g . H00gpg
z o O Az ﬁgggg%@@@@géggégg Z o1 ODDD§¢QQQ$ @@@@@ XXxxx | T <><>.<><> % Lol [a R
: X XX - Oopg G@ o
00 XXX o5t o oooononoSHeRE| oo 0000000
0008 00000000000600060% <><><><><><><><> BOOBOONAN 000000
00 4 8 12 16 20 24 OO 4 8 12 16 20 24 OO 4 8 12 16 20 24
Time (hours) Time (hours) Time (hours)
(a) Dataset #1 (1322 sequences) (b) Dataset #4 (4583 sequences) (c) Dataset #10 (13921 sequences)

Figure 3: Average MP scores of all the methods on datasets 1, 4, and 10, given as the percentage above
the optimal score. (Graphs on all dataset can be viewed on our web page.) We were unable to use DCM2
on datasets 5-10 because of its computational costs. On datasets 4 and 10 Rec-I-DCM3 is closest to the
optimal MP score at every point in time, followed by I-DCM3, Rec-DCM3 and then DCM3 (with the same
relative performance on datasets 4-10). Thus, we see that a combination of small subproblems and iteration
(Rec-I-DCM3) has the best performance and significantly improves over the unboosted TNT. Note that the
range of the y-axes varies across the datasets.

All of the work in this study concerns maximum parsimony, but our results are equally appli-
cable to maximum likelihood. Thus, a study of Rec-I-DCM3 (ML) remains to be conducted —
our initial study shows tremendous speed-ups with PAUP* ML heuristics, but better ML heuristics
may be harder to boost.

In a related paper (also submitted to this conference) we show that it suffices (in terms of
topological accuracy) to get within a hundredth of a percent of the optimal as opposed to finding
the exact optimal. The study presented here shows that indeed our best DCM, Rec-I-DCM3, gets
within a hundredth of a percent of optimal much faster than the unboosted TNT-ratchet.

7 Acknowledgments

This work was supported by the National Science Foundation under grants DEB 01-20709 (Moret
and Warnow), EIA 99-85991 (Warnow, the SCOUT Cluster), EIA 01-13095 (Moret), EIA 01-
13654 (Warnow), EIA 01-21377 (Moret), EIA 01-21680 (Warnow), EF 01-31453 (Warnow), EF
01-31654 (Moret), by the David and Lucile Packard Foundation (Warnow), by the Institute for
Cellular and Molecular Biology at UT-Austin (Warnow), by the Radcliffe Institute for Advanced
Study (Warnow), by the Program in Evolutionary Dynamics at Harvard University (Warnow), and
by an Alfred P. Sloan Foundation Postdoctoral Fellowship in Computational Molecular Biology,
U.S. Department of Energy DE-FG03-02ER63426 (Williams). We thank Pablo Goloboff for pro-
viding us with a copy of the linux version of TNT.

References

[1] B. Maidak et al. The RDP (ribosomal database project) continues. Nucleic Acids Research, 28:173—
174, 2000.



(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

W. M. Fitch. Toward defining the course of evolution: minimum change for a specified tree topology.
Syst. Zool., 20:406—416, 1971.

L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete. Advances in
Applied Mathematics, 3:43-49, 1982.

P.A. Goloboff. Analyzing large data sets in reasonable times: solution for composite optima. Cladis-
tics, 15:415-428, 1999.

M. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press Inc, 1980.

D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging method for phylogenetic tree
reconstruction. Journal of Computational Biology, 6:369-386, 1999.

D. Huson, L. Vawter, and T. Warnow. Solving large scale phylogenetic problems using DCM2. In
Proc. 7th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB’99), pages 118—129. AAAI
Press, 1999.

M. Kallerjo, J. S. Farris, M. W. Chase, B. Bremer, and M. F. Fay. Simultaneous parsimony jackknife
analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants,
seed plants, and flowering plants. Plant. Syst. Evol., 213:259-287, 1998.

D. R. Maddison. The discovery and importance of multiple islands of most parsimonous trees. Sys-
tematic Biology, 42(2):200-210, 1991.

L. Nakhleh, U. Roshan, K. St. John, J. Sun, and T. Warnow. Designing fast converging phylogenetic
methods. In Proc. 9th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB’01), volume 17
of Bioinformatics, pages S190-S198. Oxford U. Press, 2001.

K. C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics, 15:407-
414, 1999.

D. L. J. Quicke, J. Taylor, and A. Purvis. Changing the landscape: A new strategy for estimating large
phylogenies. Systematic Biology, 50(1):60-66, 2001.

U. Roshan, B. M. E. Moret, T. L. Williams, and T. Warnow. Performance of supertree methods on
various dataset decompositions. In O. R. P. Bininda-Emonds, editor, Phylogenetic Supertrees: Com-
bining Information to Reveal the Tree of Life, volume 3 of Computational Biology, pages 301-328.
Kluwer Academics, 2004. (Dress, A. series ed.).

M.J. Sanderson, B.G. Baldwin, G. Bharathan, C.S. Campbell, D. Ferguson, J.M. Porter, C. Von
Dohlen, M.F. Wojciechowski, and M.J. Donoghue. The growth of phylogenetic information and the
need for a phylogenetic database. Systematic Biology, 42:562-568, 1993.

D. E. Soltis, P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H.
Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon, and
J. S. Farris. Angiosperm phylogeny inferred from 18s rDNA, rbcL, and atpB sequences. Botanical
Journal of the Linnean Society, 133:381-461, 2000.

D. L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other methods), 2002. Sinauer
Associates, Underland, Massachusetts, Version 4.0.

T. Warnow, B.M.E. Moret, and K. St. John. Absolute convergence: True trees from short sequences.
In Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’01), pages 186—-195. SIAM Press,
2001.

J. Wuyts, Y. Van de Peer, T. Winkelmans, and R. De Wachter. The European database on small subunit
ribosomal RNA. Nucleic Acids Research, 30:183-185, 2002.

10



