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Abstract
Source localization by electroencephalography (EEG) requires an accurate
model of head geometry and tissue conductivity. The estimation of source time
courses from EEG or from EEG in conjunction with magnetoencephalography
(MEG) requires a forward model consistent with true activity for the best
outcome. Although MRI provides an excellent description of soft tissue
anatomy, a high resolution model of the skull (the dominant resistive component
of the head) requires CT, which is not justified for routine physiological studies.
Although a number of techniques have been employed to estimate tissue
conductivity, no present techniques provide the noninvasive 3D tomographic
mapping of conductivity that would be desirable. We introduce a formalism
for probabilistic forward modeling that allows the propagation of uncertainties
in model parameters into possible errors in source localization. We consider
uncertainties in the conductivity profile of the skull, but the approach is general
and can be extended to other kinds of uncertainties in the forward model. We
and others have previously suggested the possibility of extracting conductivity
of the skull from measured electroencephalography data by simultaneously
optimizing over dipole parameters and the conductivity values required by the
forward model. Using Cramer–Rao bounds, we demonstrate that this approach
does not improve localization results nor does it produce reliable conductivity
estimates. We conclude that the conductivity of the skull has to be either
accurately measured by an independent technique, or that the uncertainties in
the conductivity values should be reflected in uncertainty in the source location
estimates.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Electroencephalography (EEG) source analysis is strongly affected by the geometric and
parametric accuracy of the forward model (Hämäläinen et al 1993). Just as forward model
accuracy is important for EEG source analysis in isolation (Ollikainen et al 1999, Marin
et al 1998), it is especially important for integrated MEG/EEG source analysis. An inaccurate
forward model may result in incompatibility between MEG and EEG analysis results. Since
MEG is less sensitive to forward model parameters than EEG, combined analysis might lead
to a less accurate result, defeating one purpose of joint analysis.

In contrast to magnetoencephalography (MEG), where a relatively simple forward model
(Sarvas 1987) yields adequate inverse results under a wide range of situations, EEG demands
more detailed and sophisticated forward models (Hämäläinen and Sarvas 1989) for similarly
accurate inverse results. More realistic models introduce new parameters, which need to
be estimated accurately for the models to work properly. However, the estimation of
conductivity parameters is a difficult process and inaccuracies introduce uncertainties into
forward computations. EEG is highly sensitive to the effects of head geometry and conductivity
profile on the flow of extracellular currents that give rise to potentials at the head surface.
Sources of uncertainty include the difficulties of precisely estimating the head shape, skull
structure, and the structure and anisotropy of white and gray matter (Ollikainen et al 1999).
Gross structural information can be obtained from MRI and CT scans and then incorporated
into the forward model. However, it is much harder, and at the same time very important, to
use information about the finer structure of the skull.

Leahy and colleagues (Leahy et al 1998) conducted a series of experiments on a human
skull phantom. These studies showed that, on average, the localization error over 32 dipoles
was 7–8 mm for EEG and 2–3 mm for MEG. This is an important practical observation.
In principle, under the assumption that there are no forward model errors, the expected
performance of EEG for the localization of a small number of sources is compatible to that
of MEG, as demonstrated in Liu et al (2002). The authors of Leahy et al (1998) conclude
that the biggest source of error in the skull is the uncertainty introduced when current passes
through the bone. The diploic space of the skull is a relatively conductive structure, which
can greatly affect the flow of volume currents in the head. The diploic space structure is
located in much of the cranium with only a few exceptions such as the temporal lobes, but
the thickness of the diploid varies. Several researchers have suggested that a more accurate
model, which considers the effects of the diploic space, can lead to better localization. In
principle, finite element (FEM) and finite difference (FD) models can describe the fine details
of the skull including realistic geometry, variable conductivity and even anisotropy (Strang
and Fix 1973). Unfortunately, their heavy computational load is a drawback for the use in
iterative methods, which require numerous evaluations of the forward solution. These methods
require a precomputing step (mesh generation and stiffness matrix construction) and the actual
solution step, which is usually performed using efficient sparse solvers but still requires a lot
of time for the meshes needed for an accurate result.

The increased computational complexity needed to account for all details of diploic
space may not deliver the expected benefits because of the difficulties in obtaining the
detailed information needed to construct such a model. Uncertainties in identifying and
characterizing fine-scale geometrical structures can, in principle, be eliminated by using high
resolution CT. Unfortunately, the ionizing radiation associated with x-ray techniques prevents
the routine use of this approach. Other currently existing ‘safe’ methods do not have the
resolution needed to accurately reflect details of the spongiosa. The noninvasive estimation of
conductivity profiles using methods such as diffusion tensor imaging (DTI) (Tuch et al 2001)
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does not provide the resolution and reliability required to describe the fine details of the
diploic space. Our experience suggests that the DTI method is more useful for characterizing
anisotropy in tissue conductivity than direct measurement of tissue conductivity. Even if
accurate conductivity estimates can be obtained, numerical problems, arising from using a
fine scale mesh to model the diploic space, can limit accuracy. The continuing development
of noninvasive impedance tomography methods driven by the demand to characterize finer
structures and obtain detailed information about the brain may eventually allow the collection
of detailed conductivity information. However, numerical problems can limit the effectiveness
of conductivity estimation.

Boundary element method (BEM) models are less computationally intensive compared to
FEM models, while providing improved computational accuracy relative to simple analytical
models. An accurate modeling of the major conductivity boundaries within the head geometry
together with smaller computational complexity makes BEM models a valuable tool in iterative
methods, even though they do not capture all the details possible in FEM models.

The ratio of conductivities between adjacent compartments plays an important role in
BEM calculations. The average values of scalp, brain and cerebrospinal fluid conductivities
are relatively easy to obtain and are well accepted in the community. The quantity that
affects the ratios and thus the results of computations is the skull average conductivity.
Traditionally the value of 80:1 for the brain-to-skull ratio (Rush and Driscoll 1969) is used in
EEG forward calculations. Another popular ratio is 100:1. However, recent findings show that
the living skull has much higher conductivity. Indirect measurements by electrical impedance
tomography (EIT) (Oostendorp et al 2000) obtained a ratio of 15:1. A recent result (Hoekema
et al 2003) uses live skull measurements of the bone removed during temporal lobe epilepsy
surgery and obtained a ratio of 5:1. Baysal and Haueisen (2004) obtained a ratio of 23:1. Fine
measurements where inner, outer and diploic space layers were measured separately were
performed in Akhtari et al (2002). Notably, reported values are consistently higher than the
value of Rush and Driscoll (1969) but disagree with each other. Difficulties with obtaining
an exact value for the average conductivity of the skull introduces uncertainty into forward
calculations.

Taking any average value as a basis for the forward model leads to unaccounted differences
from subject to subject. In vivo measurements of individuals can partially solve the problem
by providing subject-dependent data but measurement errors associated with this approach
introduce uncertainty and such studies are difficult to conduct on a routine basis with existing
EEG equipment. It is important to understand this uncertainty and propagate it to the result
in order to have some confidence bounds on the solution and have results that are consistent
with the underlying source.

In the longer term, the best strategy for producing accurate forward models for EEG
is likely to be some form of EIT. The usual strategy for EIT is to apply current between
pairs of electrodes at the head surface while measuring the modulation of potential at other
surface electrodes. However, these surface based measurements suffer from much of the
ill-posed character associated with the inverse problem of source localization. While general
tomographic reconstruction is limited in performance and accuracy, several investigators have
reported good results by constraining the geometry of the various classes of tissue based
on medical image data, and fitting a small number of class impedance values based on EIT
data (Glidewell and Ng 1997, Salman et al 2005). However, the highly resistive skull limits
most of the current to the superficial layers or the head (e.g. the scalp) so that measurements
carry relatively little information about the skull and cortical conductivity. This might be
addressed by using at least one electrode with preferred access to the interior of the skull, for
example though one of the natural penetrations. EIT incorporating MR imaging is potentially
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a very powerful techniques. Passing current through a conductive volume will generate local
magnetic field perturbations, especially at conductivity boundaries, and these perturb the
MRI signal arising from the region. Although recently many investigators have attempted to
exploit this idea to directly image neural currents, EIT techniques should relax sensitivity
limitations and allow 3D mapping of conductivity without requiring assumptions about tissue
structure.

One alternative strategy for measuring the conductivity of the skull is to extract its value
from the EEG data by simultaneously optimizing over source parameters and the conductivity.
This approach has been suggested in Lew et al (2007), Vallaghé et al (2007). In section 2
we use Cramer–Rao bounds to demonstrate the impracticality of this approach by showing
that the uncertainty in the skull conductivity is inherent to the model. In order to account for
this uncertainty we introduce the concept of a probabilistic forward model in section 3. For
the purposes of this paper we ignore the uncertainties introduced by the brain structure and
leave only the uncertainty due to the skull. Since the evaluation of the model is performed
using a human skull phantom, such treatment is valid and helps to demonstrate concepts in
a restricted and simpler environment. The notion of a probabilistic forward model is well
suited for Bayesian inference with Markov Chain Monte Carlo, which is developed in this
framework. Section 4 shows an application of the probabilistic model to simulated data and
the data from the human skull phantom experiment (Leahy et al 1998). The application and
evaluation of results is based on the goal of creating a model that is useful for the joint analysis
of MEG and EEG data.

2. Cramer–Rao lower bound

It was suggested in Lew et al (2007) that the true value of the ratio of brain to skull conductivity
can be estimated from the EEG data by simultaneous optimization over source parameters
and the conductivity in a piecewise constant conductivity model. The authors chose a limited
number of brain to skull conductivity ratios and performed optimization in the resultant
discrete space. Although the study produced correct results in the noiseless case, adding
noise has led to the deterioration of accuracy. Similar behavior was observed in Vallaghé
et al (2007).

In this section, we demonstrate the impracticality of simultaneous optimization over
dipole parameters and the skull conductivity. For this, we calculate the Cramer–Rao lower
bound (CRLB) on the dipole location for the case where the conductivity of the skull is a
parameter and compare the bound with the case where the skull conductivity is fixed (as in
Mosher et al (1993)). The Cramer–Rao bound we obtained discloses a considerable increase
in location uncertainty observed when introducing a parameter for the skull conductivity and
explains the fast performance deterioration associated with a decrease in the signal-to-noise
ratio observed in Lew et al (2007) and Vallaghé et al (2007).

The CRLB gives the minimal achievable variance for any unbiased estimator. When
calculating the CRLB in this work, we follow the notation and derivations of Mosher et al
(1993), Stoica and Nehorai (1989). We are interested only in a single time point and a single
dipole source. This is sufficient for our purposes of studying the influence of conductivity
of the skull on the bound. Thus, we do not develop the general form of a CRLB, as done
in, e.g., Mosher et al (1993), but just present a special case. As in the aforementioned
examples, the bounds are based on the spherical head model, without loss of generality of the
formulation.

The EEG forward model for a single time point, i.e. fixed dipole location and orientation,
can be represented by
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v = G(I)q + η, (1)

where v is the measurement vector, G is the gain matrix, I and q are the dipole location and
moment vectors, and η is the noise vector. The parameter vector for this model is

ψ = [ν, qT , IT ]T , (2)

where ν is the noise variance.
Denoting an unbiased estimate of these parameters by ψ̂ , the Cramer–Rao inequality

theorem states that the covariance matrix of the errors between the true and the estimated
parameters is bounded from below by the inverse of the Fisher information matrix,

C = E[(ψ − ψ̂)(ψ − ψ̂)T ] � J−1, (3)

where the Fisher information matrix J is defined as

J = E

{[
d

dψ
log P (M|ψ)

] [
d

dψ
log P (M|ψ)

]T
}

. (4)

E{} denotes the expected value, and P(M|ψ) denotes the likelihood with respect to data M.
For the regular case of m sensors and a single time instance derived in Mosher et al (1993),
where σskull is a fixed value, the Fisher information matrix (repeated from equation (A.12)) is

J = 1

ν

 m
2ν

0 0
0 GT G �

0 �T �

 . (5)

When we add the σskull parameter to our estimator, the parameter vector becomes

ψ = [ν, qT , IT , σskull]
T (6)

and the Fisher information matrix (for derivation details, see appendix A) is expressed as

J = 1

ν


m
2ν

0 0 0
0 GT G � α�

0 �T � β�

0 αT
� βT

� S

 . (7)

The CRLB for the location parameters is obtained from the inverse of the Fisher
information matrix J . In J−1 the 3 × 3 submatrix bounding the error covariance of these
parameters is located at the place of � in the matrix J . It is expressed as

C(I) =
σ 2

x σxσy σxσz

σyσx σ 2
y σyσz

σzσx σzσy σ 2
z

 (8)

This error covariance represents an ellipsoid. Following (Mosher et al 1993) we consider
errors in all directions equally important and focus on the length of the error vector. Thus, the
quantity of interest is the root mean square error, which is

RMS(I) =
√

σ 2
x + σ 2

y + σ 2
z . (9)

A single parameter for the conductivity of the skull (σskull) is relevant in the context of
the piecewise-constant conductivity models. Such models are called n-shell models. 3- and
4-shell models are the most commonly encountered in EEG source analysis (Berg and Scherg
1994, Sun 1997, Cuffin and Cohen 1979). In this section we use a 4-shell spherical model and
the approximation to its analytical solution of Sun (1997). Electrodes are attached to the upper
hemisphere in six concentric circles with an additional electrode directly on the top. The first
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(a) σskull is fixed (b) σskull is a parameter

Figure 1. EEG CRLB for a 4-shell model and a tangential dipole living in the displayed plane.
The skull shell is displayed with a solid blue color. The noise to dipole strength ratio σν/Q = 40
(V A−1 m−1). Two estimators are shown: one (on the left) that treats the conductivity of the skull
as a fixed number (0.00421/(� m)) and the other (on the right) that treats it as a parameter.

circle is placed 15◦ down from the axis, the rest follow with an interval of 15◦. The circles
have 6, 12, 18, 24, 30 and 36 electrodes, respectively. Due to the symmetry of this setup we
display CRLBs only for a quarter of the sphere projection.

Figure 1 displays CRLB for dipole location as defined in Mosher et al (1993) for the cases
when σskull is fixed and for when it is an optimization parameter. A single tangential dipole
in the plane of the contour plot was placed at different points and the CRLB was calculated.
The dipole strength Q and the noise variance ν were set such that the ratio σν/Q is equal
to 40 (V A−1 m−1), where σν represents the noise standard deviation. The contour lines in
figure 1 represent the lines of constant error variance.

The additional parameter of σskull in figure 1(b) significantly degrades the bounds. This
means that compensating the uncertainty in the measurements of skull conductivity by jointly
optimizing over σskull and location-orientation parameters will not lead to improvements in the
result. To the contrary, the location estimation accuracy will significantly deteriorate.

3. Probabilistic forward model

As demonstrated in section 2, simultaneous optimization of the skull conductivity and dipole
parameters is impractical. Extracting information about skull conductivity from the data
concurrently with dipole parameters impairs the accuracy of the result. It is essential to
obtain the skull conductivity in a separate procedure (Salman et al 2005, Tidswell et al
2001, Glidewell and Ng 1997) lest the accuracy deteriorates considerably. However, existing
conductivity measurements do not eliminate all the uncertainties. For example, inter- and
intra-subject variability prevents obtaining a single correct result usable in all circumstances.
Ignoring this uncertainty by setting some fixed value of the conductivity may adversely affect
the result of source analysis. A more appropriate approach is to account for the uncertainty in
the computations and propagate it to the result.
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In this section we introduce a probabilistic forward model which explicitly accounts for
uncertainties in the skull conductivity. The uncertainty in the value of the skull conductivity is
modeled by treating this conductivity as a random parameter. Whereas widely used forward
models produce identical results given identical input, our model, when sequentially run
on identical input, generates a distribution governed by the probability density of the skull
conductivity and its nonlinear influence on the forward computation. This is a useful feature
for studying the effects of the uncertainty in skull conductivity on the sensor measurements
and source localization. Moreover, the probabilistic forward model has great potential as a
part of a Monte Carlo based source analysis (Schmidt et al 1999, Jun et al 2005, 2006, Gelman
et al 1995, Gilks 1995), because it quantifies the effect of the uncertainty on source analysis
results.

We introduce the probabilistic forward model based on a BEM model. In spite of the
generality of our approach to treating uncertainty in the forward model parameters, we base our
presentation on a BEM model for the reasons listed in the introduction. We first demonstrate
how conductivities affect the BEM model. Second, we develop a Bayesian formulation for the
problem, making the probabilistic model an explicit part of the analysis. Third, we describe a
method of precomputing BEM matrices that speeds up source analysis.

3.1. Dependence on the conductivity

In order to construct the model, we first show how conductivities affect BEM output. The
voltage vector v observed on the output nodes is calculated by the linear collocation method
(Mosher et al 1999) used in the calculation in section 4, and is expressed by the following
discretized equation:(

‖ − H +
1

M
11

)−1

g = v, (10)

where ‖ is an identity matrix, 11 is the matrix with all elements equal to 1, g is the solution in
an unbounded homogeneous medium, H is the stiffness matrix that includes conductivities of
all shells.

For the 3-shell case, H can be represented as a 9-block matrix where each block Bij

depends only on the mesh geometry of the corresponding interacting shells i and j , and is
scaled by a coefficient of the form

σ−
j − σ +

j

σ−
i + σ +

i

, (11)

where σ +
j and σ−

j are the conductivities outside and inside, respectively, of shell j . The
9-block matrix of coefficients is

H =



σ−
1 − σ +

1

σ−
1 + σ +

1

σ−
2 − σ +

2

σ−
1 + σ +

1

σ−
3 − σ +

3

σ−
1 + σ +

1

σ−
1 − σ +

1

σ−
2 + σ +

2

σ−
2 − σ +

2

σ−
2 + σ +

2

σ−
3 − σ +

3

σ−
2 + σ +

2

σ−
1 − σ +

1

σ−
3 + σ +

3

σ−
2 − σ +

2

σ−
3 + σ +

3

σ−
3 − σ +

3

σ−
3 + σ +

3


. (12)
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To make expression (12) easier to use we separate the conductivity coefficients from the
geometry dependent component to get two block-diagonal matrices:

	L =


1

σ−
1 +σ +

1
0 0

0 1
σ−

2 +σ +
2

0

0 0 1
σ−

3 +σ +
3

 (13)

	R =
σ−

1 − σ +
1 0 0

0 σ−
2 − σ +

2 0
0 0 σ−

3 − σ +
3

 . (14)

The simplified version of expression (12) thus is

H = 	LĤ	R, (15)

where Ĥ is the stiffness matrix part independent of conductivities. The infinite homogeneous
solution can also be split in two parts. One part depends on dipole parameters and the
head geometry (R, J,Θ). The other part depends on conductivity scaling factors. Thus, the
infinite homogeneous solution factors as g = 2	Lĝ. Equation (10) now can be modified by
substituting expression (15) for H and introducing the scaling factors:[(

‖ − 	LĤ	R +
1

M
11

)−1

2	L

]
ĝ = v. (16)

Equation (16) makes clear the nonlinear dependence of surface potentials v on conductivities.
Also it is apparent that the matrix that depends only on geometry Ĥ can be precalculated once.
Subsequent changes in skull conductivity would require less computation.

3.2. Bayesian formulation

What follows is built on a previous result for spatiotemporal Bayesian analysis by Jun et al
(2005). The following notation is needed to define the Bayesian formulation:

E T × L matrix representing observed spatiotemporal data. L and T

represent the number of sensors and the number of time samples in
measurements.

N a priori unknown number of dipole sources
R = (R1, R2, . . . , RN) vector of N dipole sources, with each Ri = (xi, yi, zi) representing

the location of the ith dipole.
J = (J1, J2, . . . , JN) vector of N current time courses, with each Ji = (

j 1
i , j 2

i , . . . , jT
i

)
representing signed dipole moment magnitude over time of the ith
dipole. Negative sign means that dipole moment orientation is
reversed.

Θ = (θ1, θ2, . . . , θN) vector of N dipole moment orientations, with each θi representing a
unit tangential direction of the ith dipole.

σskull skull conductivity as used in section 2.

Equation (16) conveniently separates the part depending on the source parameters from
the part depending on the skull conductivity. This allows us to use the Bayesian framework
previously developed without modifying the sampling and marginalization procedures of Jun
et al (2005).
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Thus, assuming that prior distributions of location, orientation, time course and number
of dipoles are independent of the skull conductivity, our formulation of the Bayesian inference
has the form

P(N, R,Θ, J, C, σskull|E) ∝ P(E|N, R,Θ, J, C, σskull)

×P(Θ|R, N)P (J|N)P (R|N)P (N)P (C)P (σskull). (17)

Due to the clever separation of parameters, expression (17) utilizes all derivations of Jun
et al (2005). The only thing introduced to the formulation is the prior probability of σskull.
After applying marginalization over J and noise covariance C, the final posterior distribution
becomes

PJ̃(N, R,Θ, σskull|E). (18)

To complete the formulation we need to set a functional form of the prior distribution on
the skull conductivity. With a wide spread of σskull values reported in the literature (Akhtari
et al 2002, Hoekema et al 2003, Oostendorp et al 2000, Baysal and Haueisen 2004) it is hard
to extract a definite pattern of more and less likely conductivities in order to make an informed
choice for such a distribution. Instead we chose to allow skull conductivity to vary in the
whole range of reported possible conductivity values [σmin . . . σmax] without preferring any
particular one, i.e., we chose a uniform prior:

P(σskull) = 1

σmax − σmin
. (19)

The complete probabilistic description of the problem and construction of the posterior
is the first step in Bayesian inference. The next step is to extract a representative sample of
likely solutions from the posterior distribution using a MCMC sampling technique. From the
set of sampled likely solutions, we can infer statistical information about any feature of these
solutions. This provides an effective means for quantifying uncertainty that is distinct from
the other approaches to uncertainty quantification in inverse algorithms (Medvick et al 1989,
Singh and Harding 2000, Darvas et al 2005).

3.3. Interpolation scheme

After sampling σskull, the large matrix portion of equation (16), enclosed in parentheses, must be
inverted. Because of this required inversion, there may not be any computational advantages
over FEM. To lessen the computing burden and overcome the problem, we introduce the
following algorithm:

• Choose the range of possible values for σskull – [σmin . . . σmax].
• Discretize it with mesh step hσ .
• Precompute the inverse in (16) for the value of σskull at each step.
• In MCMC procedure, draw a sample of σskull from a chosen prior probability density and

find the closest smaller and larger values in the discretized range.
• Calculate solutions for both of these values.
• Interpolate to get the value at the drawn σskull.

The approach allows us to avoid extensive precomputation. Only a finite number of
matrices need to be precomputed. The required number is realistic and easily manageable, as
we demonstrate in section 4. At the same time, it provides a consistent way to complete the
values in those parts of the range where no precomputation has been performed. The result is
a continuous sampling in the space of the skull conductivity.
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Figure 2. A CT scan slice with dipole sources and electrodes visible (left panel) and a smooth
3-shell tesselation model used in this work (right panel).

4. Experimental results

In Leahy et al (1998) a localization accuracy study was performed using a human skull
phantom. The experiment is attractive to our work because all influence of the head except
that of the skull is eliminated. Only the skull is real, the ‘scalp’ is latex and the brain cavity
is filled with gel of known conductivity. Furthermore, the signal was generated by coaxial
cables constructed to produce dipolar current and the location of these cables was extracted
from a CT scan of the phantom. A CT scan slice with clearly visible cables and electrodes
is shown in figure 2. A triangular mesh for the model was obtained by the authors of Leahy
et al (1998) by segmentation of the CT scan. A modified version of this mesh is used in
our experiments—it has been smoothed and some inconsistencies have been corrected (see
figure 2). For the evaluation of the performance of our probabilistic model we use the data of
the skull phantom study.

4.1. Simulated data

In order to control the performance of the algorithm and create a simple case with a known
outcome, we have generated simulated data using the mesh of the human head phantom and
source locations at the real dipole positions with sinusoidal time courses. Following the
recommendations of Akhtari et al (2002) and of Hoekema et al (2003), table I, but allowing
greater variability for σskull, we have set the possible conductivity range to [0.002, 0.082] S m−1

and have generated simulated data using the value of 0.004 S m−1.
Using results of the calculation for one of the dipoles we demonstrate the convergence

properties of our sampling. The MCMC run was conducted for 10 000 iterations and figure 3
contains a plot of log of the posterior probability, where the long lasting variations around the
value of −3220 indicate the convergence of the process. Similar steady state behavior was
observed for the other dipoles.

Posterior distribution for the location components is shown in figure 4, where a black
vertical line denotes the true solution. The figure demonstrates that these distributions are
consistent with the true location. An additional observation made here is that the variance of
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Figure 3. Log probability as a function of MCMC iterations for a simulated one dipole problem.

Figure 4. Location posterior distributions for one dipole from simulated data. True location is
denoted by the black vertical lines. The result using the probabilistic forward model (solid color
histogram) is closer to the true location and has larger variance compared to the conventional
approach (outlined histogram).

the posteriors became bigger with the introduction of the probabilistic model. We demonstrate
the effect on phantom data in figure 6.

4.2. Human skull phantom data

The posterior distribution of MEG source analysis is, in general, more consistent with correct
dipole locations and the EEG source analysis posterior location distribution is inconsistent with
the expected outcome. It is impossible to perform the joint analysis with two non-overlapping
distributions as the result will be a null distribution. That is, these distributions are inconsistent
with the hypothesis that both MEG and EEG come from the same single source. The explicit
accounting of the uncertainty provided by the probabilistic forward model can resolve the
problem of combining MEG and EEG in joint analysis. Such analysis can bring EEG results
closer to the true locations or can widen the EEG location posterior distribution or both.
Increase in the variance is as good for the purpose of improving consistency as moving the
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Figure 5. Scatterplots of χ for each axis a. The smaller values are better. The points above the
45◦ line mean that the probabilistic forward model performed better according to χ .

mean closer to the true location. Both of these changes make the dipoles that were very
unlikely according to EEG posterior very likely, thus making combination with MEG results
beneficial. In order to summarize both these changes as one number, we use the following
criterion. Given that the mean of the posterior distribution is x, its standard deviation is σ and
the true value is x̄, we establish a criterion:

χ = |x − x̄|
σ

. (20)

Minimization of this criterion results in improving consistency of EEG sampling and increasing
opportunities for joint MEG/EEG analysis.

In order to evaluate the probabilistic model, we have used the data of the human skull
phantom experiment (Leahy et al 1998) and performed Bayesian analysis for each dipole using
the conventional approach with fixed σskull set to 0.0042 Sm−1 and using our new probabilistic
forward model allowing σskull to vary in the same range as for the simulated experiment. The
results for 24 dipoles are summarized in figure 5. We show scatter plots for each dimension
of the conventional model across probabilistic model results. The scatter plots illustrate
which approach produces the smaller criterion. The points above the 45◦ line mean that the
probabilistic forward model performed better according to χ .

An example of results for one of the dipoles is shown in figure 6. It compares posterior
distributions of locations for each dimension for the conventional method, when σskull is fixed,
with one using the probabilistic forward model. The new results (in red in the electronic
version of the journal) are wider and closer to the true location (black vertical lines). Thus,
the probabilistic forward model makes location posterior distributions consistent with the
underlying dipole locations. This comes as an effect of propagating skull conductivity
uncertainty to the results of source analysis.

In light of the Cramer–Rao bound results obtained in section 2, it is interesting to look
at how the skull conductivity is sampled. There was no known true skull conductivity in this
experiment since a real skull was used whose conductivity is not uniform nor known a priori.
For the starting point of the conductivity estimate a random value was used. The sampling of
the allowable range is presented in figure 7. As the left plot shows, MCMC has sampled the
whole range achieving a good coverage of possible values. Some preferable values of σskull

are visible in the histogram on the right. This is consistent with the CRLB demonstrating that
any value of σskull in the range is almost equally likely.
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Figure 6. Comparison of location posteriors for one of the dipoles using two methods: one with
the probabilistic forward model (shaded histogram) and the other—the conventional approach
(outlined histogram). The probabilistic model result is consistent with the source location (the
black vertical lines) and has higher variance.

Figure 7. Skull conductivity sampling on each fifth MCMC iteration (on the left) and the posterior
distribution of this conductivity (on the right).

5. Discussion

The idea of extracting the skull conductivity directly from the EEG data has been suggested
by several researchers (Gutierrez et al 2004, Lew et al 2007, Vallaghé et al 2007). However,
previous studies employed constrained estimation. In Gutierrez et al (2004), known source
locations were assumed; in Vallaghé et al (2007) the investigator found that constraints are
necessary in order to limit the space of possible dipole locations in order to achieve reliable
results. In Lew et al (2007), only a small set of allowable values of the skull conductivity
was used. Section 2 explains the observations made in these works by rigorous calculations
of the CRLBs. We show that when adding skull conductivity as a model parameter to be fit,
the Cramer–Rao bound increases for the location parameters making them more uncertain.
Although the model is calculated analytically for the case of the spherical head model, its
effects are also apparent on a realistic head model. In order to demonstrate the consequences
of our computations of the CRLB, we have used the 3-shell mesh and 32 dipole locations



5322 S M Plis et al

(a) Location error (b) Goodness of fit

Figure 8. Location error and the corresponding goodness of fit values for 32 single dipole problems
simulated with the skull conductivity value set to 0.01021/(� m) but analyzed with different fixed
values of skull conductivity.

from Leahy et al (1998) as shown of figure 2 in order to generate 32 noiseless single-dipole
problems with the skull conductivity set to 0.0102 1/(� m). For each of these problems we
found an optimal solution in terms of the normalized goodness of fit for each of the values
of skull conductivity from the range [0.0042 1/(� m), 0.0202 1/(� m)] with a step size of
0.001 1/(� m). For the target function we have used a normalized goodness of fit expressed
as (

1 − ‖E − EM‖2

‖EM‖2

)
· 100, (21)

where EM is the EEG measurements and E is the result after the forward calculation. The
results of this simulation are presented in figure 8. The figure shows that for a wide variation
of the location for each of the 32 dipoles the normalized goodness of fit stays practically flat.
Even though there is some variation with the maximum at the true conductivity value, all this
variation falls within 1%, as clearly visible in figure 8(b). Considering that these results are
from the noiseless case, it is clear that optimization in real settings is impractical.

Based on these findings, we conclude that an external procedure of estimating the skull
conductivity is needed. This can be accomplished through EIT (Salman et al 2005, Tidswell
et al 2001, Glidewell and Ng 1997). Since the uncertainty is not completely eliminated even
with separate measurement setups, the estimate obtained in such a method should be used
as a mean value of the prior of the probabilistic model with some assumed form of the
distribution.

Improvements in the consistency of EEG posteriors with the true dipole location should
improve the results of a combined MEG and EEG analysis. One possible improvement,
besides better dipole parameters estimation, is enhanced estimation of the skull conductivity.
We expect that a CRLB analysis similar to the one presented here but with the addition of MEG
data will show improved results for σskull. MEG should constrain the locations and force the
analysis to optimize the skull conductivity. For example, figure 7 demonstrates that in EEG-
only analysis σskull is sampled all over the allowable space without a pronounced preference
towards a single value. We expect that in the joint analysis, the posterior distribution of σskull

will be more peaked around its true value.
Modeling the skull conductivity as a random variable naturally incorporates the

uncertainty into the forward calculation and accounts for the effect of inhomogeneities of
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conductivity to randomly affecting results of forward calculations. Skull conductivity has a
nonlinear effect on the solution and by modeling it with a random variable we try to account
for that effect and obtain confidence limits. Even though the diploic structure of the skull and
its influence on the surface potential distribution is deterministic, it is legitimate to model it as
random quantity since we do not know the proper value. The uncertainties introduced by the
impossibility of correctly measuring all fine details of tissue geometry and conductivity profile,
the inter- and intra-subject variability and difficulties with the numerical issues associated with
detailed geometrical models make the probabilistic approach an attractive alternative.

The probabilistic forward model is not limited to modeling the single parameter of skull
conductivity. Other parameters of the forward model that are inherently uncertain can be
modeled with our approach. For example, it is possible to extend the probabilistic forward
model to account for the anisotropy of the skull. The skull is more conducting in the tangential
direction and less conducting in the radial one. This property can be modeled by adding two
additional shells into the skull volume of the 3-shell model used in this work. This could be
accomplished by either two additional concentric shells or one shell inside the skull volume.
It would slow down the computation because of the increase in the number of discretization
points. However, this is not a dramatic effect except for the pre-computing time since the
actual forward calculation time can be sufficiently decreased using the ideas of Mosher et al
(1999). An additional parameter to the current probabilistic model would increase the sampling
complexity but one parameter is not a terrible price to pay for the increase in descriptive power
and improvement in realism of the model. A BEM method that suits this approach the best is
symmetric BEM (Adde et al 2003). The relatively small sensitivity to mesh size perturbations
and distances between the shells makes it attractive for the case where four shells need to be
fitted in a small space. Other BEM methods would inevitably be affected by this setup. A
preliminary study, where a high conductivity layer was added to the skull layer in the spherical
head model, demonstrated an effect similar to the one shown in Wolters et al (2006), figure 8.
Another possible approach to modeling random conducting media can be adopted from Fokin
(1996).

The importance of the skull’s influence on the forward computation was shown by
Hämäläinen and Sarvas (1989), Leahy et al (1998), Wolters et al (2006). In a setup with
no influence from other tissue but the skull we have demonstrated that accounting for the
uncertainty by using a probabilistic model made results more consistent with the true solutions.
Accounting for anisotropy in the way discussed above can make results more realistic but
should not change the demonstrated effect. The importance of using a probabilistic forward
model for EEG should be realized also for the brain tissue in order to extend it to the analysis
of data from human subjects. Even in its present form, our approach can be used on real
data to model the skull influence, which is the dominant effect on EEG source localization.
However, a whole head probabilistic model, with only a few parameters in order not to overly
complicate the sampling in MCMC, would be beneficial for human data analysis.

6. Conclusions

This work introduces a notion of a probabilistic forward model as a means to account for
the effect of the uncertainties in the forward model on source analysis results. We have
demonstrated the utility of this model by treating the uncertainties in the skull conductivity
and showing how this strategy can be useful in joint MEG and EEG source analysis. The
importance of treating skull conductivity as an uncertain parameter of the probabilistic model
is highlighted by another result demonstrated here; the impossibility of improving source
analysis results by treating the skull conductivity as a parameter to be fitted based on the
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physiological data. We have demonstrated a dramatic increase in the CRLB when the skull
conductivity parameter is added to the analysis. The Cramer–Rao bound results demonstrate
the necessity of estimating skull conductivity in a separate procedure. Due to the nature of
the skull structure some uncertainties will remain and the use of a probabilistic forward model
can account for the effects of these uncertainties.
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Appendix A. Calculation of the Cramer–Rao lower bound

The CRLB derivation presented in this section is based on Stoica and Nehorai (1989) and
Mosher et al (1993). We adopt the notation used in (Mosher et al 1993) and use a derivation
obtained in Appendix E of Stoica and Nehorai (1989). We only consider the case where
a single dipole is used. This is sufficient for the purpose of our paper and can be easily
generalized to the multi-dipole case if necessary. In this case the vector of free parameters as
used in both of the papers is

ψ = [ν, qT , IT ]T , (A.1)

where ν is the noise variance, q is the dipole moment vector and I is the dipole location vector.
In order to consider the feasibility of adding optimization parameter σskull to the analysis,

we add it to vector (A.1), which then becomes

ψ = [ν, qT , IT , σskull]
T . (A.2)

We next need to calculate the changes in the Fisher information matrix introduced by
adding the parameter. The gain matrix G nonlinearly depends on σskull as it does on the
location vector I . The derivative of the log likelihood with respect to a nonlinear parameter
ωi is expressed (Stoica and Nehorai 1989) as

∂ ln L

∂ωi

= 2√
ν

N∑
t=1

qT (t)
∂GT

∂ωi

e(t), (A.3)

where e(t) is the uncorrelated additive noise. Replacing ωi with σskull, we rewrite

∂ ln L

∂σskull
= 2√

ν

N∑
t=1

qT (t)
∂GT

∂σskull
e(t). (A.4)

We next derive the elements of the Fisher information matrix that appear when introducing
σskull. For this, we need to define D as the partials of the gain matrix G,

I = [x, y, z] d(x) = ∂

∂x
G(I) D = [d(x),d(y),d(z)], (A.5)

and define X as a block-diagonal matrix of the moment q:

X(t) = I ⊗ q(t). (A.6)
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Using definitions (A.5) and (A.6), the Fisher information matrix elements are obtained as

E

[
∂ ln L

∂q(k)

] [
∂ ln L

∂σskull

]T

= 2

ν
E

(
GT e(k)eT (t)

∂G

∂σskull
q(t)

)
= 2√

ν
GT ∂G

∂σskull
q(t) (A.7)

E

[
∂ ln L

∂I(k)

] [
∂ ln L

∂σskull

]T

= 2

ν
E

(
N∑

t=1

N∑
t=1

XT (t)DT e(t)eT (t)
∂G

∂σskull
q(k)

)

= 2√
ν

N∑
t=1

XT (t)DT ∂G

∂σskull
q(t) (A.8)

E

[
∂ ln L

∂σskull

] [
∂ ln L

∂σskull

]T

= 2

ν
E

(
N∑

t=1

N∑
t=1

qT (k)

(
∂G

∂σskull

)T

e(k)eT (t)
∂G

∂σskull
q(t)

)

= 2√
ν

N∑
t=1

qT (t)

(
∂G

∂σskull

)T
∂G

∂σskull
q(t). (A.9)

For our purposes it suffices to look at a single time point and compare the CRLB of
analysis that uses σskull as an additional parameter with the analysis that uses a fixed σskull

value. Dropping time indices, we define the following matrices:

� = XT DT DX (A.10)

� = GT DX. (A.11)

The Fisher information matrix for the parameter vector (A.1) as derived in Mosher et al (1993),
Stoica and Nehorai (1989) is expressed as

J = 1

ν

 m
2ν

0 0
0 GT G �

0 �T �

 . (A.12)

Denoting the covariances derived in (A.7) as

S = qT

(
∂G

∂σskull

)T
∂G

∂σskull
q

α� = GT ∂G

∂σskull
q (A.13)

β� = XT DT ∂G

∂σskull
q,

we define the Fisher information matrix for parameter vector (A.2) as

J = 1

ν


m
2ν

0 0 0
0 GT G � α�

0 �T � β�

0 αT
� βT

� S

 . (A.14)

The CRLB of a parameter can be calculated from the inverse of this matrix by taking
its corresponding diagonal element. For this extended case we can either invert the lower
block of the matrix without the first column and the first row or we can use partitioned matrix
inversion, as was done in Mosher et al (1993).
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