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Self-Healing Communication

Jeffrey Knockel · George Saad · Jared Saia

Abstract Recent years have seen significant interest in de-
signing networks that are self-healing in the sense that they
can automatically recover from adversarial attacks. Previous
work shows that it is possible for a network to automatically
recover, even when an adversary repeatedly deletes nodes
in the network. However, there have not yet been any al-
gorithms that self-heal in the case where an adversary takes
over nodes in the network. In this paper, we address this gap.

In particular, we describe a communication network over
n nodes that ensures the following properties, even when an
adversary controls up to t ≤ (1/4− ε)n nodes, for any con-
stant ε > 0. First, the network provides point-to-point com-
munication with message and latency costs that are asymp-
totically optimal. Second, the expected total number of mes-
sage corruptions isO(t(log∗ n)2), after which the adversari-
ally controlled nodes are effectively quarantined so that they
cause no more corruptions. Empirical results show that our
algorithm can reduce message cost by up to a factor of 60
when compared with algorithms that are not self-healing.

Keywords Byzantine Faults, Threshold Cryptography,
Quorum Graph, Self-Healing Algorithms

“Fool me once, shame on you. Fool me twice, shame on
me.” - English proverb

1 Introduction

Self-healing algorithms protect critical properties of a net-
work, even when that network is under repeated attack. Such
algorithms only expend resources when it is necessary to re-
pair damage done by an attacker. Thus, they provide signif-
icant resource savings when compared to traditional robust

J. Knockel · G. Saad · J. Saia
Department of Computer Science, University of New Mexico
E-mail: {jeffk, saad, saia}@cs.unm.edu

algorithms, which expend significant resources even when
the network is not under attack.

The last several years have seen exciting results in the
design of self-healing algorithms [1,2,3,4,5,6]. Unfortunately,
none of these previous results handle Byzantine faults, where
an adversary takes over nodes in the network and can cause
them to deviate arbitrarily from the protocol. This is a sig-
nificant gap, since traditional Byzantine-resilient algorithms
are notoriously inefficient, and the self-healing approach could
significantly improve efficiency.

In this paper, we take a step towards addressing this gap.
For a network of n nodes, we design self-healing algorithms
for communication that tolerate up to 1/4 fraction of Byzan-
tine faults. Our algorithms enable any node to send a mes-
sage to any other node in the network with message and la-
tency costs that are asymptotically optimal.

Moreover, our algorithms limit the expected total num-
ber of message corruptions. Ideally, each Byzantine node
would causeO(1) corruptions; our result is that each Byzan-
tine node causes an expected O((log∗ n)2) corruptions. 1 2

This paper is organized as follows. In Section 2, we de-
scribe our model. Our main theorem is given in Section 3,
and we provide a technical overview in Section 4. The re-
lated work is discussed in Section 5. Section 6 describes our
algorithms. The analysis of our algorithms is shown in Sec-
tion 7. Section 8 gives empirical results showing how our
algorithms improve the efficiency of the butterfly networks
of [7]. Finally, we conclude and describe problems for future
work in Section 9.

1 Recall that log∗ n or the iterated logarithm function is the number
of times logarithm must be applied iteratively before the result is less
than or equal to 1. It is an extremely slowly growing function: e.g.
log∗ 1010 = 5.

2 We thus amend our initial proverb to: “Fool me once, shame on
you. Fool me ω((log∗ n)2) times, shame on me.”
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Many of the results in this paper were first presented as
an extended abstract in [8]. This paper is the full version of
that extended abstract.

2 Our Model

We assume a static Byzantine adversary in the sense that
it takes over nodes before the algorithm begins. The nodes
that are controlled by the adversary are bad, and the other
nodes are good. The bad nodes may arbitrarily deviate from
the protocol, by sending no messages, excessive numbers of
messages, incorrect messages, or any combination of these.
The good nodes follow the protocol.

We assume that the adversary knows our protocol, but is
unaware of the random bits of the good nodes.

We further assume that each node has a unique ID. We
say that node p has a link to node q if p knows q’s ID and can
thus directly communicate with node q. Also, we assume the
existence of a public key digital signature scheme, and thus
a computationally bounded adversary.

Finally, we assume a partially synchronous communica-
tion model in the sense that any message sent from one good
node to another good node requires at most h time steps to
be sent and received, and the value h is known to all nodes.
Also, we tolerate if the adversary is rushing, where the bad
nodes receive all messages from good nodes in a round be-
fore sending out their own messages.

3 Our Contributions

This paper provides a self-healing algorithm, SEND, that
sends a message reliably from a source node to a target node
through a network. Our main theoretical result is summa-
rized in the following theorem.

Theorem 1 Assume we have a network with n nodes and
t ≤ (1/4− ε)n bad nodes, for any constant ε > 0. Then our
algorithm has the following properties:

(1) in an amortized sense3, any call to SEND has O(` +

log n) expected number of messages with expected la-
tency O(`); and

(2) the expected total number of times that SEND fails to
deliver a message reliably is O(t(log∗ n)2).

Our experimental results (Section 8) show that our al-
gorithms reduce the message cost, compared to the naive
algorithm, by a factor of 50 for n = 14,116, and by a factor
of 60 for n = 30,509.

3 In particular, if we call SEND L times through quorum paths,
where `M is the longest such path, then the expected total number of
messages sent will be O(L(`M + logn) + t · (`M log2 n+ log5 n))
with latency O(`(L + t)). Since t is fixed for large L, the expected
number of messages per SEND is O(`M + logn) with expected la-
tency O(`).
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Fig. 1 Quorum Graph

4 Technical Overview

Our algorithms make critical use of quorums and a quorum
graph.

4.1 Quorums and the Quorum Graph

We define a quorum to be a set of Θ(log n) nodes, of which
at most 1/4-fraction are bad. Many results show how to cre-
ate and maintain a network of quorums [7,9,10,11,12,13,
14]. All of these results maintain what we will call a quo-
rum graph in which each vertex represents a quorum. The
properties of the quorum graph are:

(1) each node is in O(log n) quorums;
(2) for any quorum Q, any node in Q can communicate di-

rectly to any other node in Q; and
(3) for any quorums Qi and Qj that are connected in the

quorum graph, any node inQi can communicate directly
with any node in Qj and vice versa.

Moreover, we assume that for any two nodes x and y in a
quorum, node x knows all quorums that node y is in.

Note that the quorum graph is created after the adversary
chooses the bad nodes.
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Fig. 2 Naive Algorithm

4.2 Communicating with Quorums

The communication in the quorum graph typically occurs
as follows. When a node s sends another node r some mes-
sage m, there is a canonical quorum path, Q1, Q2, . . . , Q`,
through the quorum graph. This path is determined by the
ID’s of both s and r. Note that we assume that node s is a
good node.

Figure 1 shows the communication between node s and
node r through a quorum path in the quorum graph, where
the message is propagated from the left to the right.

4.3 Naive Algorithm

A correct but inefficient algorithm to route a message m re-
liably from a source node to a target node is shown in Fig-
ure 2. In this algorithm, node s sends a message m to node
r through a path of quorums via all-to-all communication.
Each node participating in the quorum path takes the major-
ity of the messages it receives in order to determine the true
value of m.

Unfortunately, this algorithm requires O(` log2 n) mes-
sages and latency O(`). A main result of this paper is to
reduce the message cost to O(` + logn) in an amortized
sense.

4.4 Our Approach

An efficient approach to communication is to have a path
of nodes selected uniformly at random through the quorum
path from node s to node r. In this path of nodes, each node
forwards the message it has received to eventually be re-
ceived by node r. Unfortunately, a single bad node in this
path can corrupt the entire communication.

We provide an algorithm, CHECK, which detects if there
has been a corruption. CHECK is a light-weight algorithm in
terms of message cost. Node s triggers CHECK with some
probability. If CHECK detects a corruption, it calls HEAL,
which is a heavy-weight algorithm but it is bounded in an
amortized sense. In particular, the expected total number of
calls to HEAL before all bad nodes are marked is O(t).

CHECK is implemented as either CHECK1 or CHECK2.
CHECK1 runs in one round. Node s resends the mes-

sage through a path of subsets of 2 log log n nodes in the
quorum path via all-to-all communication. CHECK1 fails to
detect corruptions if all nodes in any subset are bad. A key
lemma (Lemma 1) shows that this algorithm fails to detect a
corruption with probability less than 1/2 for ` ≤ log2 n

2 .
CHECK2 is a more sophisticated algorithm, which runs

in O(log∗ n) rounds. In each round, node s sends the mes-
sage through a path of subsets of nodes in the quorum path.
These subsets are initially empty; and in each round, a new
node selected uniformly at random is added to each subset.

In order to show how CHECK2 detects a corruption, we
first define a deception interval in a round as a path of bad
nodes that are selected in this round to be added to the sub-
sets, and by which the adversary corrupts the message. Any
corruption in the first round must occur in a deception inter-
val in this round. Note that if the adversary corrupts a mes-
sage in any round, it has to keep corrupting this message
in all subsequent rounds. Thus, for i rounds of CHECK2 to
fail to detect a corruption, there must be nesting levels of
deception intervals in each of those i rounds. A key lemma
(Lemma 3) shows that any deception interval shrinks log-
arithmically from round to round with probability at least
1/2. We use this lemma to show that CHECK2 requires only
O(log∗ n) rounds to detect a corruption with constant prob-
ability.

In HEAL, each node has participated in the communi-
cation is investigated in order to determine which node(s)
corrupted the message. In particular, each node announces
the messages it has received. In this way, each call to HEAL
identifies at least one pair of nodes that are in conflict, where
informally, we say that a pair of nodes are in conflict if they
each accuse the other of malicious behavior. In such a sit-
uation, we know that at least one node in the pair is bad.
In HEAL, both nodes in each conflicting pair are marked,
and these marked nodes are prohibited from participating in
future communication.

A naive approach would be to never unmark marked
nodes. Unfortunately, this approach fails because all nodes
in a quorum may get marked and so inhabit communication.

To avoid this, we unmark the nodes of any quorum that
has 1/2-fraction of nodes marked. A subtle potential func-
tion argument (Lemma 7) shows that this marking scheme
will mark all bad nodes afterO(t) calls to HEAL, after which
the network is completely healed, i.e., no more corruption
will occur.

5 Related Work

Several papers [15,16,17,18,19] have discussed different
restoration mechanisms to preserve network performance by
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adding capacity and rerouting traffic streams in the presence
of node or link failures. They present mathematical mod-
els to determine global optimal restoration paths, and pro-
vide methods for capacity optimization of path-restorable
networks.

Our results are inspired by recent work on self-healing
algorithms [1,2,3,4,5,6]. A common model for these results
is that the following process repeats indefinitely: an adver-
sary deletes some nodes in the network, and the algorithm
adds edges. The algorithm is constrained to never increase
the degree of any node by more than a logarithmic factor
from its original degree. In this model, researchers have pre-
sented algorithms that ensure the following properties: the
network stays connected and the diameter does not increase
by much [1,2,3]; the shortest path between any pair of nodes
does not increase by much [4]; and expansion properties of
the network are approximately preserved [5].

Our results are also similar in spirit to those of Saia and
Young [20] and Young et al. [21], which both show how
to reduce message complexity when transmitting a message
across a quorum path of length `. The first result, [20], achieves
expected message complexity of O(` log n) by use of bi-
partite expanders. However, this result is impractical due to
high hidden constants and high setup costs. The second re-
sult, [21], achieves expected message complexity of O(`).
However, this second result requires the sender to iteratively
contact a member of each quorum in the quorum path.

As mentioned earlier, several peer-to-peer networks have
been described that provably enable reliable communica-
tion, even in the face of adversarial attack [7,22,9,10,11,
13]. To the best of our knowledge, our approach applies to
each of these networks, with the exception of [22]. In partic-
ular, we can apply our algorithms to asymptotically improve
the efficiency of the peer-to-peer networks from [7,9,10,11,
13].

Similar to Young et al. [23], we use threshold cryptogra-
phy as an alternative to Byzantine Agreement.

The results of this paper were first presented in an ex-
tended abstract in [8].

6 Our Algorithms

In this section, we describe our algorithms: SEND, SEND-
PATH, CHECK and HEAL. The main technical challenge of
our paper is in the design of the algorithm CHECK, which
is described in Section 6.4.

6.1 Overview

The objective of our algorithms is to detect the corruption
and to mark all bad nodes in the network, after which no

message corruption occurs. If a node is marked, it is not al-
lowed to participate for communication. Before our algo-
rithms start, all nodes in the network are initially unmarked.

Before discussing our main SEND algorithm, we describe
that when a node x broadcasts a message m, signed by the
private key of a quorum Q, to a set of nodes S, it calls
BROADCAST (m,Q, S).

6.2 BROADCAST

In BROADCAST (Algorithm 1), we use threshold cryptogra-
phy to avoid the overhead of Byzantine Agreement.

In a (η, η′)-threshold cryptographic scheme, a private
key is distributed among η nodes in such a way that 1) any
subset of more than η′ nodes can jointly reassemble the key;
and 2) no subset of at most η′ nodes can recover the key.
The private key can be distributed using a Distributed Key
Generation (DKG) protocol [24].

DKG generates the public/private key shares of all nodes
in every quorum. We assume that the public key share of
each node and the public key of each quorum are known to
all nodes in the quorum and the neighboring quorums in the
network.

Algorithm 1 BROADCAST(m,Q, S) . A node x sends a
message m, signed by quorum Q, to a set of nodes S.
1: Node x sends message m to all nodes in Q.
2: Each node in Q signs m by its private key share to obtain its mes-

sage share.
3: Each node in Q sends its message share back to node x.
4: Node x interpolates at least 3|Q|

4
message shares to obtain a

signed-message of Q.
5: Node x sends this signed-message to all nodes in S.

In particular, we use a (|Q|, 3|Q|
4 − 1)-threshold scheme,

where |Q| is the quorum size. A node x calls BROADCAST

in order to send a message m to all nodes in S so that: 1) at
least 3/4-fraction of the nodes in quorum Q have received
the same message m; 2) they agree upon the content of m;
and 3) they give a permission to x to broadcast this message.

Any call to BROADCAST requires O(log n + |S|) mes-
sages for signing the message m by O(log n) nodes in quo-
rum Q, with latency O(1).

6.3 SEND

Now we describe our main algorithm, SEND, that is stated
formally in Algorithm 2. SEND calls SEND-PATH, which is
described in Algorithm 3.

In SEND-PATH, as shown in Figure 3, node s sends mes-
sagem to node r through a path of unmarked nodes selected
uniformly at random.
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Algorithm 2 SEND(m, r) . node s sends a message m
reliably to node r.
1: Node s calls SEND-PATH (m, r).
2: With probability pc, node s calls CHECK (m, r).

Algorithm 3 SEND-PATH(m, r) . node s sends a
message m through a path of unmarked nodes to node r.
Declaration: for 1 < i < `, let Ui be the set of all unmarked nodes in
Qi. Also let w be the maximum number of nodes in any quorum.
1: Node s sets R to be an array of w integers selected uniformly at

random between 1 and w.
2: Node s broadcasts m and R to all nodes in Q1.
3: The nodes inQ1 calculate the node q2 usingR[|U2|] to index U2’s

nodes sorted by their IDs.
4: All nodes in Q1 send m to node q2.
5: for i = 2, . . . , `− 2 do
6: Node qi selects qi+1 ∈ Ui+1 uniformly at random.
7: Node qi sends m to node qi+1.
8: end for
9: Node q`−1 ∈ U`−1 broadcasts m to all nodes in Q`.

10: All nodes in Q` send m to node r.

Q1 Q2 Q!-1 Q!s r

!

Q!-2Q3

unmarked nodes
selected u.a.r.

Fig. 3 SEND-PATH Algorithm

SEND-PATH is efficient in terms of message cost and
latency; but in the presence of bad nodes, it is vulnerable
to corruption. Thus, we make SEND call CHECK algorithm
with probability pc, where CHECK detects with probability
pd if a message has been corrupted in the last call to SEND-
PATH.

In CHECK, the message is sent from node s to node r

through a path of subquorums, where a subquorum is a sub-
set of unmarked nodes selected uniformly at random in a
quorum.

Unfortunately, while CHECK can determine if a corrup-
tion occurred, it does not specify the location where the cor-
ruption occurred. Hence, if CHECK detects a corruption,
HEAL algorithm is called.

When HEAL is called, it identifies two neighboring quo-
rums Qi and Qi+1 in the path, for some 1 ≤ i < `, such
that at least one pair of nodes in these quorums is in conflict
and at least one node in such pair is bad. These nodes are
marked in all quorums they are in and in their neighboring
quorums.

In each call to HEAL, we mark at most one good node.
In order to always provide unmarked nodes to participate in

communication, we set the following condition. If (1/2−γ)-
fraction of nodes in any quorum have been marked, for a
constant γ > 0, these nodes are set unmarked.

In SEND-PATH and CHECK, the message is broadcasted
to Q1 and Q` to handle any accusation against node s or
node r in HEAL.

Our model does not directly consider concurrency. In a
real system, concurrent calls to HEAL that overlap at a sin-
gle quorum may allow the adversary to achieve multiple cor-
ruptions at the cost of a single marked bad node. However,
this does not effect correctness, and, in practice, this issue
can be avoided by serializing concurrent calls to SEND. For
simplicity of presentation, we leave the concurrency aspect
out of this paper.

6.4 CHECK

CHECK is implemented as either CHECK1 or CHECK2. In
this section, we describe CHECK1 and CHECK2. Then, we
compare between them in terms of message cost and latency.

Throughout this section, we let Uj be the set of all un-
marked nodes in Qj for 1 < j < `.

6.4.1 CHECK1

Now we describe CHECK1 that is stated formally as Algo-
rithm 4. CHECK1 is a simpler CHECK procedure compared
to CHECK2. Although it has a worse asymptotic message
cost, it performs well in practice.

Algorithm 4 CHECK1(m, r) . checks in one round if
there has been a corruption.
Declaration: for 1 < j < `, let Uj be the set of all unmarked nodes in
Qj and let each subquorum Sj be initially empty. Note that each sub-
quorum will have at most 2 log logn nodes. Also, let w be the maxi-
mum number of nodes in any quorum.
1: Node s generates R as an ` by w by 2 log logn array of random

integers.*
2: Node s sets m′ to be a message consisting of m, r, and R.
3: Node s broadcasts m′ to all nodes in Q1.
4: The nodes in Q1 use R2 to calculate the nodes of S2.**
5: The nodes in Q1 send m′ to the nodes of S2.
6: for j ← 2, . . . , `− 2 do
7: The nodes of Sj use Rj+1 to calculate the nodes of Sj+1.
8: The nodes of Sj send m′ to all nodes of Sj+1.
9: end for

10: The nodes of S`−1 broadcast m′ to all nodes in Q`.
11: The nodes of Q` send m′ to node r.
* R[j, k] is a multiset of 2 log logn integers selected uniformly at ran-
dom with replacement between 1 and k, for 1 < j < ` and 1 ≤ k ≤ w.
** R[j, |Uj |], shortly Rj , has the indices of the nodes of Sj selected
u.a.r. from the nodes of Uj ; note that the nodes of Uj are sorted by their
IDs.
Note that: if a node receives inconsistent messages or fails to receive
an expected message, then it initiates a call to HEAL.
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Q1 Q2 Q!s r

!

Q!-1

Subquorums

Q3 Q!-2

Fig. 4 CHECK1 Algorithm

CHECK1 is triggered by SEND with probability pc =

1/(log log n)2. CHECK1 runs in one round, in which node
s sends a messagem to node r through a path of subquorums
via all-to-all communication. (See Figure 4).

Each subquorum, Sj , has 2 log log n nodes that are cho-
sen uniformly at random with replacement from the nodes
of Uj in the quorum path, for 1 < j < `.

Note that if any node receives inconsistent messages or
fails to receive an expected message during CHECK1, it ini-
tiates a call to HEAL.

CHECK1 fails to detect message corruptions if all nodes
of any subquorum in the quorum path are bad. In Section 7,
we show that if the message was corrupted during the last
call to SEND-PATH, the probability that CHECK1 fails to
detect a corruption is less than 1/2 when ` ≤ log2 n

2 .
Thus, CHECK1 detects message corruptions with prob-

ability pd > 1/2. This requires O(`(log log n)2 + log n ·
log log n) messages and latency O(`). But since CHECK1
is triggered with probability 1/(log log n)2, it has an ex-
pected message cost of O(`+ log n/ log log n) with latency
O(`/(log log n)2).

6.4.2 CHECK2

In this section, we describe CHECK2, which is stated for-
mally as Algorithm 5.

SEND calls CHECK2 with probability pc = 1/(log∗ n)2.
When CHECK2 is triggered, CHECK2 runs for 4(log∗ n+3)

rounds.
First, node s generates a public/private key pair (kp, ks)

to let the nodes that receive kp verify any subsequent mes-
sage signed by ks. Note that if any node receives inconsis-
tent messages or fails to receive and verify any expected
message in any round, it initiates a call to HEAL.

In each round, node s sends a message m through a path
of subquorums of incremental size, in the sense that each
subquorum in the quorum path is initially empty; and in each
round, a new node xj ∈ Uj selected uniformly at random is
added to Sj , for all 1 < j < `. (See Figure 5).

CHECK2 detects message corruptions with probability
pd ≥ 1/2. It requires O((`+ log n)(log∗ n)2) message cost
andO(` log∗ n) latency. But since CHECK2 is triggered with

Algorithm 5 CHECK2(m, r) . checks in multiple rounds
if there has been a corruption.
Declaration: for 1 < j < `, let Uj be the set of all unmarked nodes
in Qj and let each subquorum Sj be initially empty. Also let w be the
maximum number of nodes in any quorum.
1: Node s generates public/private key pair (kp, ks).
2: for i← 1, . . . , 4(log∗ n+ 3) do
3: Node s generates Ri as an ` by w array of random integers.*
4: Node s sets mi = ([m, r, i, Ri]ks , kp).
5: Node s broadcasts mi to all nodes in Q1.
6: All nodes in Q1 use Ri2 to calculate node xi2 to be added to
S2.**

7: The nodes in Q1 send mi to all nodes in S2.
8: The nodes in Q1 send R1, . . . , Ri−1 to node xi2.
9: for j ← 2, . . . , `− 2 do

10: All i nodes in Sj use Ri(j+1) to calculate node xi(j+1)

to be added to Sj+1.
11: for k ← 1, . . . , i− 1 do
12: Node xkj sends mk to node xi(j+1).
13: Node xij uses Rk(j+1) to calculate node xk(j+1).
14: Node xij sends mi to node xk(j+1).
15: end for
16: Node xij sends mi to node xi(j+1).
17: end for
18: The nodes in S`−1 broadcast mi to all nodes in Q`.
19: All nodes in Q` send mi to node r.
20: end for
* Ri[j, k] is a uniformly random integer between 1 and k, for 1 < j <
` and 1 ≤ k ≤ w.
** Ri[j, |Uj |], shortly Rij , is the index of node, xij , to be selected
u.a.r. from the nodes of Uj in round i; note that the nodes of Uj are
sorted by their IDs.
Note that: if a node has previously received kp, then it verifies each
subsequent message with it; also if a node receives inconsistent mes-
sages or fails to receive and verify an expected message, then it initiates
a call to HEAL.

Q1 Q2 Q!-1 Q!s r

!
Subquorums

Q3 Q!-2

Round 1

unmarked nodes
selected u.a.r. in round 1 

Q1 Q2 Q!-1 Q!s r

!
Subquorums

Q3 Q!-2

Round 2

unmarked nodes
selected u.a.r. in round 2 

Fig. 5 CHECK2 Algorithm
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Fig. 6 Example run of CHECK2

probability 1/(log∗ n)2, it has expected message cost O(`+

log n)) with expected latency O(`/ log∗ n).
An example run of CHECK2 is illustrated in Figure 6.

In this figure, there is a column for each subquorum from
S2 to S`−1 in the quorum path and a row for each round of
CHECK2. For a given row and column, there is a G or B in
that position depending on whether the node selected in that
particular round and that particular quorum is good (G) or
bad (B).

We define a deception interval in a round as a path of
bad nodes that are selected in this round to be added to the
subquorums in the quorum path.

In Figure 6, we show the deception intervals maintained
by the adversary. These intervals are outlined by left and
right bar in each row. The adversary’s strategy is to maintain
the longest deception interval in the first row, and it keeps
corrupting the message in all subsequent deception intervals.

The left bar in each row specifies the rightmost subquo-
rum in which there is some good node that receives the cor-
rect messagem′. The right bar in each row specifies the left-
most subquorum in which there is some good node that does
not receive m′.

There are two key points by which CHECK2 detects
message corruptions: 1) any deception interval in any round
never expands in any subsequent round; and 2) any decep-
tion interval shrinks to length zero after O(log∗ n) rounds.

Deception intervals never expand. In order to show
that any deception interval never expends over rounds. We
show that the left bar never moves leftwards, and the right
bar never moves rightwards.

The left bar never moves leftwards because each good
node receives the message m′ in round i has to receive the
same message in all subsequent rounds; otherwise, it will
call HEAL. Moreover, we know that for each round i, all
nodes in each subquorum Sj send the message to the new
node that is selected in this round to be added to Sj+1 for
1 < j < `. Thus, those good nodes that receive and provide
m′ to the deception interval in round i will provide the same
message to all subsequent deception intervals.

Now we show that the right bar never moves rightwards.
Recall that in each round, each node that is added to each
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Fig. 7 A corruption is detected after the two bars meet.

subquorum Sj sends the message it has received to all nodes
in Sj+1 for 1 < j < `. Thus, all good nodes that receive a
message through a deception interval in any round expect
to receive the same message in all subsequent rounds. Also,
each good node that did not receive m′ in any round must
not receive this message in all subsequent rounds; otherwise,
it will initiate a call to HEAL. This shows that the right bar
never moves rightwards.

Deception intervals shrink logarithmically. The rea-
son that CHECK2 requires O(log∗ n) rounds is because of
a probabilistic result on the maximum length run in a se-
quence of coin tosses. In particular, if we have a coin that
takes on value “B” with probability at most 1/2, and value
“G” with probability at least 1/2, and we toss it x times, then
the expected length of the longest run of B’s is O(log x).
Thus, if in some round, the distance between the left bar and
the right bar is x, we expect in the next round this distance
will shrink to O(log x). Intuitively, we might expect that, if
the quorum path is of length `, then O(log∗ `) rounds will
suffice before the distance shrinks to 0. This intuition is for-
malized in Lemma 5 (Section 7).

When the two bars meet, the corruption is detected.
Figure 7 shows that when the two bars meet, a corruption
is detected. In this figure, as the deception intervals shrink
over rounds, node x in the last round receives message m′.
Then node x forwards this message to node y which has not
previously received m′ in this call to CHECK2. As a result,
node y calls HEAL declaring that it has received inconsistent
messages.

If all nodes in some subquorum are bad, does CHECK2
successfully detect message corruptions? We know that
CHECK1 fails if all nodes in any subquorum in the quo-
rum path are bad. However, CHECK2 can detect corruptions
even if all nodes in some subquorums are bad.

Recall that CHECK2 runs in O(log∗ n) rounds. In each
round, new nodes are selected uniformly at random to be
added to the subquorums. This makes the adversary not be
able to know, before all rounds finish, if all the nodes in any
particular subquorum are bad. Thus, the adversary would
rather maintain the longest deception interval in the first
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Fig. 8 A corruption is detected even if all nodes in subquorum S10 are
bad.

round and keeps corrupting the message over all subsequent
deception intervals. Note that if the adversary corrupts the
message in more than one interval in the same round, it will
increase the chance of detecting message corruption. Figure
8 shows that even though all nodes in S10 are bad, the good
node v receives message m′ from the bad node u, where
node u is not in the deception interval chosen by the adver-
sary in row 3.

6.4.3 A comparison between CHECK1 and CHECK2

CHECK1 has the following advantages over CHECK2. 1)
CHECK1 has less latency compared to CHECK2, where each
call to CHECK1 runs in one round, and each call to CHECK2
runs inO(log∗ n) rounds; and 2) CHECK1 has fewer calls to
broadcast, in particular, any call to CHECK1 calls BROAD-
CAST twice, and any call to CHECK2 calls BROADCAST
O(log∗ n) times.

However, CHECK2 has the following advantages over
CHECK1. 1) CHECK2 has less message cost for large n;
and 2) CHECK2 can handle a quorum path of length ` ≤ n

but CHECK1 handles a quorum path of length ` ≤ log2 n
2 .

6.5 HEAL

When a message is corrupted and CHECK detects such cor-
ruption, HEAL is called. HEAL is described formally as Al-
gorithm 6.

The purpose of calling HEAL is 1) to determine the lo-
cation at which the corruption has occurred; and 2) to mark
the nodes that are in conflict.

When HEAL starts, all nodes in each quorum in the quo-
rum path are notified. To determine the location at which
the corruption is occurred, HEAL investigates the corruption
situation, where each node, previously involved in SEND-
PATH or CHECK, broadcasts to all nodes in its quorum and
the neighboring quorums, the messages they have received
(and from whom) and the messages they have sent (and to
whom) in the previous call to SEND-PATH or CHECK.

Algorithm 6 HEAL . Node q′ ∈ Q′ calls HEAL after it
detects a corruption.
1: q′ broadcasts, the fact that it calls HEAL along with all the mes-

sages that it has received in this call to SEND, to all nodes in Q′.
2: The nodes in Q′ verify that q′ received inconsistent messages be-

fore proceeding.
3: Q′ notifies that a call to HEAL is occurring, via all-to-all commu-

nication, to all quorums in the quorum path.
4: INVESTIGATE
5: MARK-IN-CONFLICTS

Algorithm 7 INVESTIGATE . investigates the corruption
situation
1: for each node, q /∈ {s, r}, involved in the last call to SEND-PATH

or CHECK do
2: q compiles all messages they have received (and from whom)

and they have sent (and to whom) in the last call to SEND-PATH
or CHECK.

3: q broadcasts these messages to all nodes in its quorum and the
neighboring quorums.

4: end for

As a result of the investigation, HEAL identifies at least
one pair of nodes that are in conflict. We say that a pair of
nodes are in conflict if they each have broadcasted messages
that are in conflict with the messages broadcasted by the
other.

Algorithm 8 MARK-IN-CONFLICTS . marks the nodes
that are in conflict
1: for each pair of nodes, (qk, qk+1) ∈ (Qk, Qk+1), that is in con-

flict*, for 1 ≤ k < ` do
2: node qk+1 broadcasts a conflict message “{qk, qk+1}” to all

nodes in Qk+1,
3: each node in Qv forwards “{qk, qk+1}” to all nodes in Qk+1

and all nodes in Qk,
4: all nodes inQk (orQk+1) send “{qk, qk+1}” to all other quo-

rums that has node qk (or qk+1).
5: all nodes in each quorum that has qx or qk+1 send

“{qk, qk+1}” to the neighboring quorums.
6: end for
7: for each node, q, that receives a conflict message “{qk, qk+1}” do
8: q marks the nodes qk and qk+1 in its marking table.
9: end for

10: if (1/2 − γ)-fraction of nodes in any quorum have been marked,
for γ = 0.01 then

11: each of these nodes is set unmarked in all quorums.
12: each of these nodes is set unmarked in all its neighboring quo-

rums.
13: end if
* A pair of nodes, (qk, qk+1) is in conflict if: 1) qk was scheduled to
send a message to qk+1 at some point in the last call to SEND-PATH
or CHECK; and 2) qk+1 does not receive an expected message from
qk in INVESTIGATE, or qk+1 receives a message in INVESTIGATE
that is different than the message that it has received from qk in the last
call to SEND-PATH or CHECK.
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Each pair of nodes that HEAL has identified to be in con-
flict are marked in their quorums and the neighboring quo-
rums.

Moreover, each pair of nodes that are in conflict has at
least one bad node. Thus, at most one good node is marked
in each call to HEAL. In order to keep providing unmarked
nodes to participate in SEND-PATH and CHECK, we set the
constraint that if a (1/2−γ)-fraction of nodes in any quorum
has been marked, they are set unmarked in all their quorums
and the neighboring quorums.

Even though we unmark nodes in some situation, we
provide a potential function argument (Lemma 7), which
shows that all bad nodes are marked afterO(t) calls to HEAL.
After all bad nodes are marked, no more corruptions occur.

7 Analysis

In this section, we provide the analysis of our algorithms.
We first prove that CHECK1 succeeds to detect corruptions
with probability more than 1/2. Then, we prove the lem-
mas required for Theorem 1, in which SEND calls CHECK2.
Note that throughout this section, we let all logarithms be
base 2.

7.1 CHECK1

First, we show that if a message is corrupted in SEND-PATH,
CHECK1 succeeds to detect such corruption with probabil-
ity more than 1/2.

Lemma 1 If ` ≤ log2 n
2 , then CHECK1 fails to detect any

message corruption with probability less than 1/2.

Proof CHECK1 succeeds in detecting the message corrup-
tion if every subquorum has at least one good node.

Note that the fraction of bad nodes in any quorum is at
most 1/4. Note further that at least (1/2+γ)-fraction of the
nodes in any quorum are unmarked, for γ > 0. Thus, the
probability that an unmarked bad node is selected uniformly
at random is at most 1/2

1+2γ . Therefore, the probability that
any subquorum of size 2 log log n has only bad nodes is less
than

(1/2)2 log logn = 1/ log2 n.

Union-bounding over all ` subquorums, the probability
that CHECK1 fails to detect corruptions is less than `/ log2 n.
For ` ≤ log2 n

2 , the probability that CHECK1 fails is less
than 1/2. ut

7.2 CHECK2

In order to show that CHECK2 succeeds to detect corrup-
tions with probability at least 1/2, we first define the decep-
tion interval.

Definition 1 A deception interval, di(j, k), is a path of un-
marked bad nodes, xiw’s, that are added to the subquorums,
Sw’s, in round i, for 1 < j ≤ w ≤ k < `, such that:
1) Qj−1 is the rightmost quorum that has at least one good
node which provides the correct message to node xij ; and 2)
Qk+1 is the leftmost quorum that has at least one good node
to which node xik is scheduled to send and does not provide
the correct message.

Note that we say a deception interval, di(j, k), in round
i expands in any subsequent round if there exists a deception
interval di′(j′, k′) in round i′ > i such that j′ < j ≤ k′ or
j′ ≤ k < k′.

Note further that we say a deception interval, di(j, k), in
round i shrinks to length x in round i′ > i if there exists a
deception interval, di′(j′, k′), in round i′ such that j ≤ j′ ≤
k′ ≤ k and x = k′ − j′ + 1 < k − j + 1.

Then, we prove that 1) any deception interval never ex-
pands; and 2) any deception interval shrinks logarithmically
from round to round. This will imply that inO(log∗ n) rounds,
any deception interval shrinks to length zero at which the
corruption is detected.

Lemma 2 Any deception interval in any round never ex-
pands in any subsequent round; otherwise, HEAL will be
called.

Proof For each deception interval di(j, k), we have the fol-
lowing.

All good nodes in Qj−1 that are selected and have re-
ceived kp in rounds i or less, they must receive uncorrupted
messages signed by ks, in all rounds subsequent to i; oth-
erwise, HEAL will be called. Those good nodes that receive
the message signed by ks will provide this message to node
xij in di(j, k). They will also provide the nodes in each sub-
sequent deception interval, di′(j′, k′), with the same mes-
sage, for all i′ > i and j′ ≥ j.

Also, all good nodes in Qk+1 that have not received the
correct message from node xik in di(j, k) must not receive
this message from the nodes of each subsequent deception
interval, di′(j′, k′), for all i′ > i and k′ ≤ k; otherwise, they
will call HEAL. ut

Now we prove that any deception interval shrinks loga-
rithmically from round to round.

Lemma 3 When a coin is flipped x times independently given
that each coin gives tail with probability at most (1/2 − ε),
for any constant ε > 0, then the probability of having any
substring of tails of length at least max(1, 2 log x) is at most
1/2.
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Proof The probability of having a specific substring of tails
of length at least 2 log x is(

1

2

)2 log x

=
1

x2
.

Union bounding over all possible substrings of length 2 log x,
then the probability of having a substring of tails of length
at least 2 log x is at most x 1

x2 ; or equivalently, for x ≥ 2,
1
x ≤

1
2 ; and for x = 1, the probability of having a substring

of length at least max(1, 2 log x) is trivially at most (1/2−ε)
for ε > 0. ut

Corollary 1 When a coin is flipped x times independently
given that each coin gives tail with probability at most (1/2−
ε), for any constant ε > 0, then the probability of having any
substring of tails of length at least max(1, bx/2c) is at most
1/2.

Now let f(n) = 2 log n, and let f (i)(n) be the function
of applying function f , i times, over n. Also, we let log(i)(n)
be the function of applying logarithm i times over n.

Fact 1 ∀n > 4 and ∀i ≥ 1 such that log(i)(n) ≥ 2,

f (i)(n) ≤ 4 log(i)(n).

Proof We prove by induction over i ≥ 1 that for n > 4 and
log(i)(n) ≥ 2,

f (i)(n) ≤ 4 log(i)(n).

Base case: for i = 1, by definition,

f(n) = 2 log n ≤ 4 log n.

Induction hypothesis: for log(j)(n) ≥ 2,

∀j < i, f (j)(n) ≤ 4 log(j)(n).

Induction step: by definition,

f (i)(n) = f(f (i−1)(n)).

By induction hypothesis, for log(i−1)(n) ≥ 2,

f (i−1)(n) ≤ 4 log(i−1)(n).

Then, we have

f (i)(n) ≤ f(4 log(i−1)(n)) = 2 log(4 log(i−1)(n)),

or equivalently,

f (i)(n) ≤ 2(2 + log(i)(n)) ≤ 4 log(i)(n),

for log(i)(n) ≥ 2. ut

Now let f∗(n) be the smallest value i such that f (i)(n) ≤
16.

Fact 2 ∀n > 4, f∗(n) ≤ log∗ n− 2.

Proof Let j = log∗ n−2. We know that 2 < log(j)(n) ≤ 4.
And so by Fact 1, we have

f (j)(n) ≤ 4 log(j)(n) ≤ 16.

Thus, by definition, f∗(n) ≤ j = log∗ n− 2. ut

Lemma 4 Assume that any deception interval of length x
shrinks to length 2 log x in a successful step. Then, for any
deception interval of length x′ > 16, after log∗ x′ − 2 suc-
cessful steps, it shrinks to a length of at most 16.

Proof Fact 2 proves this lemma. ut

The next lemma shows that the algorithm CHECK2 catches
corruptions with probability at least 1/2.

Lemma 5 Assume some node selected uniformly at random
in the last call to SEND-PATH has corrupted a message in a
quorum path of length ` ≤ n. Then when CHECK2 is called,
with probability at least 1/2, some node will call HEAL.

Proof By Lemma 2, any deception interval never expands
over rounds. For shrinking deception intervals over rounds,
we make use of Lemma 3 to shrink logarithmically any de-
ception interval of length more than 16; otherwise, decep-
tion intervals shrink geometrically using Corollary 1.

Let Xi be an indicator random variable that is equal 1 if
the deception interval in round i shrinks logarithmically in
round i+ 1; and 0 otherwise.

Recall that the longest deception interval has length of at
most ` ≤ n. By Lemma 4, after having at most log∗ n−2 of
Xi’s equal 1, the longest deception interval of length more
than 16 shrinks to a deception interval of length at most 16.

Also let Yj be an indicator random variable that is equal
1 if the deception interval of length x ≤ 16 in round j

shrinks geometrically to a deception interval of length at
most bx/2c in round j + 1; and 0 otherwise.

Thus, we require at most log∗ n − 2 of Xi’s equal 1 to
shrink the longest deception interval, d, of length at most n
to a deception interval, d′, of length at most 16. Further, we
require at most 5 Yj’s equal 1, to shrink d′ to length 0.

By Lemma 3, each Xi is 1 with probability at least 1/2;
and by Corollary 1, each Yj is 1 with probability at least 1/2.

Let

X =

4(log∗ n−2)∑
i=1

Xi

and

Y =

4(log∗ n+3)∑
j=4(log∗ n−2)+1

Yj .

Now letZk be an indicator random variable that is 1 with
probability 1/2; and 0 otherwise, for 1 ≤ k ≤ 4(log∗ n+3);
and let

Z =

4(log∗ n+3)∑
k=1

Zk.
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We know that for all i, j and k, Xi and Yj are stochas-
tically larger than Zk. Thus, X + Y is stochastically larger
than Z. Therefore,

Pr (X + Y ≥ log∗ n+ 3) ≥ Pr (Z ≥ log∗ n+ 3) ,

or equivalently,

1−Pr (X + Y < log∗ n+ 3) ≥ 1−Pr (Z < log∗ n+ 3) .

Thus, we obtain

Pr (X + Y < log∗ n+ 3) ≤ Pr (Z < log∗ n+ 3) .

Note that E (Z) = 2(log∗ n + 3). Since the Zk’s are inde-
pendent random variables, by Chernoff bounds,

Pr (Z < 2(1− δ)(log∗ n+ 3)) ≤
(

eδ

(1 + δ)1+δ

)2(log∗ n+3)

.

For n > 1 and δ = 1
2 ,

Pr (Z < log∗ n+ 3) ≤

(
e

1
2

( 32 )
3
2

)2(log∗ n+3)

<
1

2
.

It is trivial the case that n = 1, in which the network has
only one node, which is node r.

Thus, the probability that CHECK2 succeeds in finding
a corruption and calling HEAL is at least 1/2. ut

7.3 HEAL

Lemma 6 If some node selected uniformly at random in the
last call to SEND-PATH has corrupted a message, then the
algorithm HEAL will identify a pair of neighboring quorums
Qj and Qj+1, for some 1 ≤ j < `, such that at least one
pair of nodes in these quorums is in conflict and at least one
node in such pair is bad.

Proof First we show that if a pair of nodes x and y is in
conflict, then at least one of them is bad. Assume not. Then
both x and y are good. Then node x would have truthfully
reported what it received; any message that x received would
have been sent directly to y; and y would have truthfully
reported what it received from x. But this is a contradiction,
since for x and y to be in conflict, y must have reported that
it received from x something different than what x reported
receiving.

Now consider the case where a selected unmarked bad
node corrupted a message in the last call to SEND-PATH. By
the definition of corruption, there must be two good nodes
qj and qk such that j < k and qj received the message m′

sent by node s, and qk did not. We now show that some pair
of nodes between qj and qk will be in conflict. Assume this
is not the case. Then for all x, where j ≤ x < k, nodes qx
and qx+1 are not in conflict. But then, since node qj received

the message m′, and there are no pairs of nodes in conflict,
it must be the case that the node qk received the messagem′.
This is a contradiction. Thus, HEAL will find two nodes that
are in conflict, and at least one of them will be bad.

Now we prove that at least one pair of nodes is found to
be in conflict as a result of calling HEAL. Assume that no
pair of nodes is in conflict. Then for every pair of nodes x
and y, such that x was scheduled to send a message to y dur-
ing any round i of CHECK2, x and y must have reported that
they received the same message in round i. In particular, this
implies via induction, that for every round i, for all j, where
1 ≤ j ≤ `, all nodes in the sets Sj must have broadcasted
that they received the message m′ that was initially sent by
node s in round i. But if this is the case, the node x that
initially called HEAL would have received no inconsistent
messages. This is a contradiction since in such a case, node
x would have been unsuccessful in trying to initiate a call
to HEAL. Thus, some pair of nodes must be found to be in
conflict, and at least one of them is bad. ut

The next lemma bounds the number of times that HEAL
must be called before all bad nodes are marked.

Lemma 7 HEAL is called O(t) times before all bad nodes
are marked.

Proof By Lemma 6, if a message is corrupted in the last
call to SEND-PATH and is caught by CHECK, then HEAL is
called. HEAL identifies at least one pair of nodes that are in
conflict.

Let p be the probability of selecting an unmarked bad
node uniformly at random. Recall that the fraction of bad
nodes in any quorum is at most 1/4 and at any moment the
fraction of unmarked nodes in any quorum is at least (1/2+
γ) for γ > 0. Thus, we have

p ≤ 1

2

(
1

1 + 2γ

)
.

Now let b be the number of bad nodes that are marked, and
let g be the number of good nodes that are marked. Further,
we let

f(b, g) = b−
(

p

1− p

)
g.

For each corruption caught, at least one bad node is marked.
This implies that b increases by at least 1 and g increases by
at most 1. Note that p

1−p < 1. Thus, f(b, g) increases by at
least (1− p

1−p ) > 0.
Moreover, when a (1/2 − γ)-fraction of nodes in any

quorum Q of size |Q| get unmarked for a constant γ > 0, b
decreases by at most p(1/2 − γ)|Q| and g decreases by at
least (1 − p)(1/2 − γ)|Q|. This implies that f(b, g) further
increases by at least 0.
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Thus, f(b, g) is monotonically increasing by at least (1−
p

1−p ) > 0 for each corruption caught. Note that when all bad
nodes are marked,

f(b, g) ≤ t.

Therefore, all bad nodes are marked after at most
(

1−p
1−2p

)
t,

or equivalently at most
(
1 + 1

2γ

)
t/2, calls to HEAL. ut

7.4 Our Theorem

Now we prove Theorem 1. Note that we consider that SEND
calls CHECK2.
Theorem 1 Assume we have a network with n nodes and
t ≤ (1/4− ε)n bad nodes, for any constant ε > 0. Then our
algorithm has the following properties. 1) In an amortized
sense, any call to SEND has O(`+ log n) expected number
of messages withO(`) expected latency; and 2) the expected
total number of times that SEND fails to deliver a message
reliably is O(t(log∗ n)2).

Proof We first show the message complexity and the la-
tency of our algorithms. By Lemma 7, the number of calls to
HEAL is O(t). Thus, the resource cost of all calls to HEAL
are bounded as the number of calls to SEND grows large.
Therefore, for the amortized cost, we consider only the cost
of the calls to SEND-PATH and CHECK2.

When sending a message through ` quorums, SEND-
PATH has message cost O(`+ log n) and latency O(`). Re-
call that CHECK2 has a message cost ofO((`+log n)(log∗ n)2)

and a latency of O(` log∗ n), but CHECK2 is called only
with probability 1/(log∗ n)2. Hence, the call to SEND has
amortized expected message cost O(` + log n) and amor-
tized expected latency O(`).

More specifically, if we perform any number of message
sends through quorum paths, where `M is the longest such
path, and L is the sum of the quorums traversed in all such
paths, then the expected total number of messages sent will
be O(L+ t · (`M log2 n+ log5 n)), and the latency is O(t ·
`M ).

This is true since each call to HEAL has message cost
O(`M log2 n+ log5 n) and latency O(`M ), where:

1. the node, x, making the call to HEAL broadcasts its rea-
son of calling HEAL to all nodes in its quorum, this has
message cost O(log n) and latency O(1);

2. all nodes in every quorum in the quorum path are noti-
fied via all-to-all communication when HEAL is called,
these notifications have a message cost of O(`M log2 n)

and a latency of O(`M );
3. HEAL has O(log∗ n) broadcasts over at most `M quo-

rums, that has message cost O(`M log∗ n · log n) and
latency O(1);

4. the message cost when all nodes inQ1 andQ` broadcast
is O(log2 n) with latency O(1);

5. marking a pair of nodes that are in conflict has message
cost O(log3 n) and latency O(1); and

6. note that marking a pair of nodes that are in conflict
could cause O(log n) quorums to be unmarked. Note
further that unmarking O(log n) nodes in any quorum
has a message cost ofO(log4 n). Thus, unmarkingO(log n)

quorums has message cost O(log5 n) and latency O(1).

Now we show the expected total number of corruptions.
Recall that by Lemma 7, the number of calls to HEAL be-
fore all bad nodes are marked is O(t). Thus, CHECK2 must
detect corruptions and calls HEAL O(t) times. Moreover,
if a bad node caused a corruption during a call to SEND-
PATH, then by Lemmas 5 and 6, with probability at least
1/2, CHECK2 will catch it. Note that CHECK2 is called
with probability 1

(log∗ n)2 . Therefore, the expected total num-
ber of corruptions is O(t(log∗ n)2). ut

8 Empirical Results

8.1 Setup

In this section, we empirically compare between two algo-
rithms in terms of the message cost, the latency, the fraction
of messages corrupted and the expected total number of cor-
ruptions via simulation.

The first algorithm we simulate is no-self-healing algo-
rithm from [25]. This algorithm has no self-healing proper-
ties, and simply uses all-to-all communication between quo-
rums that are connected in a butterfly network. The second
algorithm is self-healing, wherein we apply our self-healing
algorithm in the butterfly networks triggering CHECK1 and
CHECK2 separately.

In our experiments, we consider a butterfly network with
two sizes: n = 14,116 and n = 30,509, where ` = blog nc−
2 and the quorum size is b4 log nc.

In one experiment, SEND calls CHECK1 with proba-
bility 1/(log log n)2 and with subquorum size b2 log log nc.
Another experiment has SEND trigger CHECK2 with prob-
ability 1/(log∗ n)2 and with subquorum size b2 log∗ nc.

Moreover, we do our experiments for several fractions
of bad nodes such as f equal to 1/8, 1/16, 1/32 and 1/64,
where f = t/n. Note that for larger f , marking and unmark-
ing processes are performed more frequently. This makes
the simulation take longer to eventually mark all bad nodes.

Our simulations consist of a sequence of calls to SEND
over the network, given a pair of nodes s, r, chosen uni-
formly at random, where node s sends a message to node
r. We simulate an adversary who at the beginning of each
simulation chooses uniformly at random without replace-
ment a fixed number of nodes to control. Our adversary at-
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tempts to corrupt messages between nodes whenever possi-
ble. Aside from attempting to corrupt messages, the adver-
sary performs no other attacks.

8.2 Results

The results of our experiments are shown in Figures 9, 10,
11, 12, 13 and 14.

Our results highlight two strengths of our self-healing al-
gorithms (self-healing) when compared to algorithms with-
out self-healing (no-self-healing). First, the message cost per
SEND decreases as the total number of calls to SEND in-
creases. Second, for a fixed number of calls to SEND, the
message cost per SEND decreases as the total number of
bad nodes decreases. In particular, when there are no bad
nodes, self-healing has dramatically less message cost than
no-self-healing.

In our experiments, we show the expected number of
messages per call to SEND, the expected latency per call
to SEND, the fraction of messages corrupted for each call
to SEND and the expected total number of corruptions, for
n = 14,116 and n = 30,509.

8.2.1 Expected number of messages

Figures 9 and 10 show that before all bad nodes are marked:
1) the expected number of messages per call to SEND de-
creases as the total number of calls to SEND increases; and
2) for a fixed number of calls to SEND, the expected number
of messages per call to SEND decreases as f decreases.

Moreover, Table 1 shows that when all bad nodes are
marked, self-healing has dramatically less expected number
of messages per call to SEND than no-self-healing.

n
self-healing no-self-healingCHECK1 CHECK2

14,116 598 1,078 30,390
30,509 649 1,177 39,100

Table 1 Expected # messages per call to SEND in self-healing and in
no-self-healing for n = 14,116 and n = 30,509.

8.2.2 Expected latency

Figures 11 and 12 show that the latency of no-self-healing is
always less than the latency of self-healing due to the latency
of CHECK1 and CHECK2.

Moreover, Table 2 shows that for n = 14,116 and n =

30,506, after all bad nodes are marked, we have that: 1) self-
healing calling CHECK2 has more latency than self-healing
calling CHECK1; and 2) the latency of self-healing is at
most twofold the latency of no-self-healing.

n
self-healing no-self-healingCHECK1 CHECK2

14,116 17 23 12
30,509 18 25 13

Table 2 Expected latency per call to SEND in self-healing and in no-
self-healing for n = 14,116 and n = 30,509.

8.2.3 Fraction of messages corrupted

The fraction of messages corrupted per a call to SEND presents
the probability that the message is corrupted in this call.

In Figures 13 and 14, no-self-healing has 0 corruptions;
however, for self-healing, the fraction of messages corrupted
per SEND decreases as the total number of calls to SEND
increases. Also, for a fixed number of calls to SEND, the
fraction of messages corrupted per SEND decreases as the
total number of bad nodes decreases.

8.2.4 Expected total number of corruptions

In Figures 13 and 14, for each network given the number
of nodes and the fraction of bad nodes, if we integrate the
corresponding curve, then we get the total number of times
that the message is corrupted in all calls to SEND in this
network.

f total # corruptions Σ1

1/64 3,457 4,102
1/32 6,930 8,507
1/16 13,831 18,526
1/8 27,721 47,641

Table 3 Total # corruptions when SEND calls CHECK1 for n =
14,116.

f total # corruptions Σ2

1/64 3,454 7,293
1/32 6,918 15,124
1/16 13,845 32,859
1/8 27,685 84,696

Table 4 Total # corruptions when SEND calls CHECK2 for n =
14,116.

Tables 3, 4, 5 and 6 show the fact that when SEND calls
CHECK1, the expected total number of corruptions is at
most Σ1, where

Σ1 = 2

(
1− 2f

1− 4f

)
t(log∗ n)2,

and when SEND calls CHECK2, the expected total number
of corruptions is at most Σ2, where

Σ2 = 2

(
1− 2f

1− 4f

)
t(log log n)2.
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Fig. 9 # messages per call to SEND versus # calls to SEND, for n = 14,116 and n = 30,509, when SEND calls CHECK1.

Fig. 10 # messages per call to SEND versus # calls to SEND, for n = 14,116 and n = 30,509, when SEND calls CHECK2.

f total # corruptions Σ1

1/64 7,490 8,866
1/32 14,996 18,386
1/16 29,949 40,042
1/8 59,932 102,967

Table 5 Total # corruptions when SEND calls CHECK1 for n =
30,509.

9 Conclusion and Future Work

We have presented algorithms that can significantly reduce
communication cost in attack-resistant peer-to-peer networks.
The price we pay for this improvement is the possibility of
message corruption. In particular, if there are t < n/4 bad

f total # corruptions Σ2

1/64 7,498 15,762
1/32 14,989 32,687
1/16 29,970 71,187
1/8 59,969 183,054

Table 6 Total # corruptions when SEND calls CHECK2 for n =
30,509.

nodes in the network, our algorithm allows O(t(log∗ n)2)

message transmissions to be corrupted in expectation.
There are many issues remain.

– We assume that the sender is a good node, can we extend
our algorithms to tolerate if the sender is bad in such a
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Fig. 11 Latency per call to SEND versus # calls to SEND, for n = 14,116 and n = 30,509, when SEND calls CHECK1.

Fig. 12 Latency per call to SEND versus # calls to SEND, for n = 14,116 and n = 30,509, when SEND calls CHECK2.

way that 1) our algorithms will remain efficient in terms
of message cost; and 2) they will be resistant to denial
of service attacks?

– It seems unlikely that the smallest number of corruptions
allowable by an attack-resistant algorithm with optimal
message complexity is O(t(log∗ n)2). Can we improve
this to O(t) or else prove a non-trivial lower bound?

– Can we apply techniques in this paper to problems more
general that enabling secure communication? For exam-
ple, can we create self-healing algorithms for distributed
computation with Byzantine faults?

– Can we optimize constants and make use of heuristic
techniques in order to significantly improve our algo-
rithms’ empirical performance?

– In our algorithm CHECK2, we provide an array of ran-
dom integers in each round to select nodes uniformly at
random in order to participate for detecting message cor-
ruptions. Each array has O(` log n log log n) bits. If the
messagem has b bits, then the communication complex-
ity per call to SEND is O((`+ log n)(` log n log log n+

b)) and the communication complexity of the naive al-
gorithm is O(` log2 n · b). In order to improve the com-
munication complexity of our algorithms, can we reduce
the number of bits that is required to represent the array
of random integers to O(` log log n)?

– We assume a partially synchronous communication model,
which is crucial for our CHECK2 algorithm to detect
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Fig. 13 Fraction of messages corrupted versus # calls to SEND, n = 14,116 and n = 30,509, when SEND calls CHECK1.

Fig. 14 Fraction of messages corrupted versus # calls to SEND, for n = 14,116 and n = 30,509, when SEND calls CHECK2.

message corruptions over rounds. Can we extend this al-
gorithm to fit for asynchronous communication?
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